本文整理汇总了Python中tensorflow.python.lib.io.file_io.delete_recursively函数的典型用法代码示例。如果您正苦于以下问题:Python delete_recursively函数的具体用法?Python delete_recursively怎么用?Python delete_recursively使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了delete_recursively函数的16个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testBadSavedModelFileFormat
def testBadSavedModelFileFormat(self):
export_dir = self._get_export_dir("test_bad_saved_model_file_format")
# Attempt to load a SavedModel from an export directory that does not exist.
with self.test_session(graph=ops.Graph()) as sess:
with self.assertRaisesRegexp(IOError,
"SavedModel file does not exist at: %s" %
export_dir):
loader.load(sess, ["foo"], export_dir)
os.makedirs(export_dir)
# Write an invalid binary proto to saved_model.pb.
path_to_pb = os.path.join(export_dir, constants.SAVED_MODEL_FILENAME_PB)
with open(path_to_pb, "w") as f:
f.write("invalid content")
with self.test_session(graph=ops.Graph()) as sess:
with self.assertRaisesRegexp(IOError, "Cannot parse file.*%s" %
constants.SAVED_MODEL_FILENAME_PB):
loader.load(sess, ["foo"], export_dir)
# Cleanup the directory and start again.
file_io.delete_recursively(export_dir)
os.makedirs(export_dir)
# Write an invalid text proto to saved_model.pbtxt
path_to_pbtxt = os.path.join(export_dir,
constants.SAVED_MODEL_FILENAME_PBTXT)
with open(path_to_pbtxt, "w") as f:
f.write("invalid content")
with self.test_session(graph=ops.Graph()) as sess:
with self.assertRaisesRegexp(IOError, "Cannot parse file.*%s" %
constants.SAVED_MODEL_FILENAME_PBTXT):
loader.load(sess, ["foo"], export_dir)
开发者ID:KiaraStarlab,项目名称:tensorflow,代码行数:32,代码来源:saved_model_test.py
示例2: create_dir_test
def create_dir_test():
"""Verifies file_io directory handling methods ."""
starttime = int(round(time.time() * 1000))
dir_name = "%s/tf_gcs_test_%s" % (FLAGS.gcs_bucket_url, starttime)
print("Creating dir %s" % dir_name)
file_io.create_dir(dir_name)
elapsed = int(round(time.time() * 1000)) - starttime
print("Created directory in: %d milliseconds" % elapsed)
# Check that the directory exists.
dir_exists = file_io.is_directory(dir_name)
print("%s directory exists: %s" % (dir_name, dir_exists))
# List contents of just created directory.
print("Listing directory %s." % dir_name)
starttime = int(round(time.time() * 1000))
print(file_io.list_directory(dir_name))
elapsed = int(round(time.time() * 1000)) - starttime
print("Listed directory %s in %s milliseconds" % (dir_name, elapsed))
# Delete directory.
print("Deleting directory %s." % dir_name)
starttime = int(round(time.time() * 1000))
file_io.delete_recursively(dir_name)
elapsed = int(round(time.time() * 1000)) - starttime
print("Deleted directory %s in %s milliseconds" % (dir_name, elapsed))
开发者ID:paolodedios,项目名称:tensorflow,代码行数:26,代码来源:gcs_smoke.py
示例3: create_object_test
def create_object_test():
"""Verifies file_io's object manipulation methods ."""
starttime = int(round(time.time() * 1000))
dir_name = "%s/tf_gcs_test_%s" % (FLAGS.gcs_bucket_url, starttime)
print("Creating dir %s." % dir_name)
file_io.create_dir(dir_name)
# Create a file in this directory.
file_name = "%s/test_file.txt" % dir_name
print("Creating file %s." % file_name)
file_io.write_string_to_file(file_name, "test file creation.")
list_files_pattern = "%s/test_file*.txt" % dir_name
print("Getting files matching pattern %s." % list_files_pattern)
files_list = file_io.get_matching_files(list_files_pattern)
print(files_list)
assert len(files_list) == 1
assert files_list[0] == file_name
# Cleanup test files.
print("Deleting file %s." % file_name)
file_io.delete_file(file_name)
# Delete directory.
print("Deleting directory %s." % dir_name)
file_io.delete_recursively(dir_name)
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:27,代码来源:gcs_smoke.py
示例4: testCreateRecursiveDir
def testCreateRecursiveDir(self):
dir_path = os.path.join(self._base_dir, "temp_dir/temp_dir1/temp_dir2")
file_io.recursive_create_dir(dir_path)
file_path = os.path.join(dir_path, "temp_file")
file_io.FileIO(file_path, mode="w").write("testing")
self.assertTrue(file_io.file_exists(file_path))
file_io.delete_recursively(os.path.join(self._base_dir, "temp_dir"))
self.assertFalse(file_io.file_exists(file_path))
开发者ID:JamesFysh,项目名称:tensorflow,代码行数:8,代码来源:file_io_test.py
示例5: _analyze
def _analyze(args, cell):
# For now, always run python2. If needed we can run python3 when the current kernel
# is py3. Since now our transform cannot work on py3 anyway, I would rather run
# everything with python2.
cmd_args = ['python', 'analyze.py', '--output', _abs_path(args['output'])]
if args['cloud']:
cmd_args.append('--cloud')
training_data = args['training_data']
if args['cloud']:
tmpdir = os.path.join(args['output'], 'tmp')
else:
tmpdir = tempfile.mkdtemp()
try:
if isinstance(training_data, dict):
if 'csv' in training_data and 'schema' in training_data:
schema = training_data['schema']
schema_file = _create_json_file(tmpdir, schema, 'schema.json')
cmd_args.append('--csv=' + _abs_path(training_data['csv']))
cmd_args.extend(['--schema', schema_file])
elif 'bigquery_table' in training_data:
cmd_args.extend(['--bigquery', training_data['bigquery_table']])
elif 'bigquery_sql' in training_data:
# see https://cloud.google.com/bigquery/querying-data#temporary_and_permanent_tables
print('Creating temporary table that will be deleted in 24 hours')
r = bq.Query(training_data['bigquery_sql']).execute().result()
cmd_args.extend(['--bigquery', r.full_name])
else:
raise ValueError('Invalid training_data dict. '
'Requires either "csv_file_pattern" and "csv_schema", or "bigquery".')
elif isinstance(training_data, google.datalab.ml.CsvDataSet):
schema_file = _create_json_file(tmpdir, training_data.schema, 'schema.json')
for file_name in training_data.input_files:
cmd_args.append('--csv=' + _abs_path(file_name))
cmd_args.extend(['--schema', schema_file])
elif isinstance(training_data, google.datalab.ml.BigQueryDataSet):
# TODO: Support query too once command line supports query.
cmd_args.extend(['--bigquery', training_data.table])
else:
raise ValueError('Invalid training data. Requires either a dict, '
'a google.datalab.ml.CsvDataSet, or a google.datalab.ml.BigQueryDataSet.')
features = args['features']
features_file = _create_json_file(tmpdir, features, 'features.json')
cmd_args.extend(['--features', features_file])
if args['package']:
code_path = os.path.join(tmpdir, 'package')
_archive.extract_archive(args['package'], code_path)
else:
code_path = MLTOOLBOX_CODE_PATH
_shell_process.run_and_monitor(cmd_args, os.getpid(), cwd=code_path)
finally:
file_io.delete_recursively(tmpdir)
开发者ID:javiervicho,项目名称:pydatalab,代码行数:57,代码来源:_ml.py
示例6: testGetMatchingFiles
def testGetMatchingFiles(self):
dir_path = os.path.join(self._base_dir, "temp_dir")
file_io.create_dir(dir_path)
files = ["file1.txt", "file2.txt", "file3.txt"]
for name in files:
file_path = os.path.join(dir_path, name)
file_io.FileIO(file_path, mode="w").write("testing")
expected_match = [os.path.join(dir_path, name) for name in files]
self.assertItemsEqual(file_io.get_matching_files(os.path.join(dir_path, "file*.txt")), expected_match)
file_io.delete_recursively(dir_path)
self.assertFalse(file_io.file_exists(os.path.join(dir_path, "file3.txt")))
开发者ID:pronobis,项目名称:tensorflow,代码行数:11,代码来源:file_io_test.py
示例7: tearDownModule
def tearDownModule():
file_io.delete_recursively(test.get_temp_dir())
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:2,代码来源:reader_test.py
示例8: tearDown
def tearDown(self):
file_io.delete_recursively(self._base_dir)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:2,代码来源:file_io_test.py
示例9: testDeleteRecursivelyFail
def testDeleteRecursivelyFail(self):
fake_dir_path = os.path.join(self._base_dir, "temp_dir")
with self.assertRaises(errors.NotFoundError):
file_io.delete_recursively(fake_dir_path)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:4,代码来源:file_io_test.py
示例10: export_fn
def export_fn(estimator, export_dir_base, checkpoint_path=None, eval_result=None):
with ops.Graph().as_default() as g:
contrib_variables.create_global_step(g)
input_ops = feature_transforms.build_csv_serving_tensors_for_training_step(
args.analysis, features, schema, stats, keep_target)
model_fn_ops = estimator._call_model_fn(input_ops.features,
None,
model_fn_lib.ModeKeys.INFER)
output_fetch_tensors = make_prediction_output_tensors(
args=args,
features=features,
input_ops=input_ops,
model_fn_ops=model_fn_ops,
keep_target=keep_target)
# Don't use signature_def_utils.predict_signature_def as that renames
# tensor names if there is only 1 input/output tensor!
signature_inputs = {key: tf.saved_model.utils.build_tensor_info(tensor)
for key, tensor in six.iteritems(input_ops.default_inputs)}
signature_outputs = {key: tf.saved_model.utils.build_tensor_info(tensor)
for key, tensor in six.iteritems(output_fetch_tensors)}
signature_def_map = {
'serving_default':
signature_def_utils.build_signature_def(
signature_inputs,
signature_outputs,
tf.saved_model.signature_constants.PREDICT_METHOD_NAME)}
if not checkpoint_path:
# Locate the latest checkpoint
checkpoint_path = saver.latest_checkpoint(estimator._model_dir)
if not checkpoint_path:
raise ValueError("Couldn't find trained model at %s."
% estimator._model_dir)
export_dir = saved_model_export_utils.get_timestamped_export_dir(
export_dir_base)
if (model_fn_ops.scaffold is not None and
model_fn_ops.scaffold.saver is not None):
saver_for_restore = model_fn_ops.scaffold.saver
else:
saver_for_restore = saver.Saver(sharded=True)
with tf_session.Session('') as session:
saver_for_restore.restore(session, checkpoint_path)
init_op = control_flow_ops.group(
variables.local_variables_initializer(),
resources.initialize_resources(resources.shared_resources()),
tf.tables_initializer())
# Perform the export
builder = saved_model_builder.SavedModelBuilder(export_dir)
builder.add_meta_graph_and_variables(
session, [tag_constants.SERVING],
signature_def_map=signature_def_map,
assets_collection=ops.get_collection(
ops.GraphKeys.ASSET_FILEPATHS),
legacy_init_op=init_op)
builder.save(False)
# Add the extra assets
if assets_extra:
assets_extra_path = os.path.join(compat.as_bytes(export_dir),
compat.as_bytes('assets.extra'))
for dest_relative, source in assets_extra.items():
dest_absolute = os.path.join(compat.as_bytes(assets_extra_path),
compat.as_bytes(dest_relative))
dest_path = os.path.dirname(dest_absolute)
file_io.recursive_create_dir(dest_path)
file_io.copy(source, dest_absolute)
# only keep the last 3 models
saved_model_export_utils.garbage_collect_exports(
export_dir_base,
exports_to_keep=3)
# save the last model to the model folder.
# export_dir_base = A/B/intermediate_models/
if keep_target:
final_dir = os.path.join(args.job_dir, 'evaluation_model')
else:
final_dir = os.path.join(args.job_dir, 'model')
if file_io.is_directory(final_dir):
file_io.delete_recursively(final_dir)
file_io.recursive_create_dir(final_dir)
recursive_copy(export_dir, final_dir)
return export_dir
开发者ID:javiervicho,项目名称:pydatalab,代码行数:90,代码来源:task.py
示例11: delete_temp_dir
def delete_temp_dir(dirname=temp_dir):
try:
file_io.delete_recursively(dirname)
except errors.OpError as e:
logging.error('Error removing %s: %s', dirname, e)
开发者ID:LUTAN,项目名称:tensorflow,代码行数:5,代码来源:googletest.py
示例12: create_dir_test
def create_dir_test():
"""Verifies file_io directory handling methods."""
# Test directory creation.
starttime_ms = int(round(time.time() * 1000))
dir_name = "%s/tf_gcs_test_%s" % (FLAGS.gcs_bucket_url, starttime_ms)
print("Creating dir %s" % dir_name)
file_io.create_dir(dir_name)
elapsed_ms = int(round(time.time() * 1000)) - starttime_ms
print("Created directory in: %d milliseconds" % elapsed_ms)
# Check that the directory exists.
dir_exists = file_io.is_directory(dir_name)
assert dir_exists
print("%s directory exists: %s" % (dir_name, dir_exists))
# Test recursive directory creation.
starttime_ms = int(round(time.time() * 1000))
recursive_dir_name = "%s/%s/%s" % (dir_name,
"nested_dir1",
"nested_dir2")
print("Creating recursive dir %s" % recursive_dir_name)
file_io.recursive_create_dir(recursive_dir_name)
elapsed_ms = int(round(time.time() * 1000)) - starttime_ms
print("Created directory recursively in: %d milliseconds" % elapsed_ms)
# Check that the directory exists.
recursive_dir_exists = file_io.is_directory(recursive_dir_name)
assert recursive_dir_exists
print("%s directory exists: %s" % (recursive_dir_name, recursive_dir_exists))
# Create some contents in the just created directory and list the contents.
num_files = 10
files_to_create = ["file_%d.txt" % n for n in range(num_files)]
for file_num in files_to_create:
file_name = "%s/%s" % (dir_name, file_num)
print("Creating file %s." % file_name)
file_io.write_string_to_file(file_name, "test file.")
print("Listing directory %s." % dir_name)
starttime_ms = int(round(time.time() * 1000))
directory_contents = file_io.list_directory(dir_name)
print(directory_contents)
elapsed_ms = int(round(time.time() * 1000)) - starttime_ms
print("Listed directory %s in %s milliseconds" % (dir_name, elapsed_ms))
assert set(directory_contents) == set(files_to_create + ["nested_dir1/"])
# Test directory renaming.
dir_to_rename = "%s/old_dir" % dir_name
new_dir_name = "%s/new_dir" % dir_name
file_io.create_dir(dir_to_rename)
assert file_io.is_directory(dir_to_rename)
assert not file_io.is_directory(new_dir_name)
starttime_ms = int(round(time.time() * 1000))
print("Will try renaming directory %s to %s" % (dir_to_rename, new_dir_name))
file_io.rename(dir_to_rename, new_dir_name)
elapsed_ms = int(round(time.time() * 1000)) - starttime_ms
print("Renamed directory %s to %s in %s milliseconds" % (
dir_to_rename, new_dir_name, elapsed_ms))
assert not file_io.is_directory(dir_to_rename)
assert file_io.is_directory(new_dir_name)
# Test Delete directory recursively.
print("Deleting directory recursively %s." % dir_name)
starttime_ms = int(round(time.time() * 1000))
file_io.delete_recursively(dir_name)
elapsed_ms = int(round(time.time() * 1000)) - starttime_ms
dir_exists = file_io.is_directory(dir_name)
assert not dir_exists
print("Deleted directory recursively %s in %s milliseconds" % (
dir_name, elapsed_ms))
开发者ID:DILASSS,项目名称:tensorflow,代码行数:72,代码来源:gcs_smoke.py
示例13: create_object_test
def create_object_test():
"""Verifies file_io's object manipulation methods ."""
starttime_ms = int(round(time.time() * 1000))
dir_name = "%s/tf_gcs_test_%s" % (FLAGS.gcs_bucket_url, starttime_ms)
print("Creating dir %s." % dir_name)
file_io.create_dir(dir_name)
num_files = 5
# Create files of 2 different patterns in this directory.
files_pattern_1 = ["%s/test_file_%d.txt" % (dir_name, n)
for n in range(num_files)]
files_pattern_2 = ["%s/testfile%d.txt" % (dir_name, n)
for n in range(num_files)]
starttime_ms = int(round(time.time() * 1000))
files_to_create = files_pattern_1 + files_pattern_2
for file_name in files_to_create:
print("Creating file %s." % file_name)
file_io.write_string_to_file(file_name, "test file creation.")
elapsed_ms = int(round(time.time() * 1000)) - starttime_ms
print("Created %d files in %s milliseconds" %
(len(files_to_create), elapsed_ms))
# Listing files of pattern1.
list_files_pattern = "%s/test_file*.txt" % dir_name
print("Getting files matching pattern %s." % list_files_pattern)
starttime_ms = int(round(time.time() * 1000))
files_list = file_io.get_matching_files(list_files_pattern)
elapsed_ms = int(round(time.time() * 1000)) - starttime_ms
print("Listed files in %s milliseconds" % elapsed_ms)
print(files_list)
assert set(files_list) == set(files_pattern_1)
# Listing files of pattern2.
list_files_pattern = "%s/testfile*.txt" % dir_name
print("Getting files matching pattern %s." % list_files_pattern)
starttime_ms = int(round(time.time() * 1000))
files_list = file_io.get_matching_files(list_files_pattern)
elapsed_ms = int(round(time.time() * 1000)) - starttime_ms
print("Listed files in %s milliseconds" % elapsed_ms)
print(files_list)
assert set(files_list) == set(files_pattern_2)
# Test renaming file.
file_to_rename = "%s/oldname.txt" % dir_name
file_new_name = "%s/newname.txt" % dir_name
file_io.write_string_to_file(file_to_rename, "test file.")
assert file_io.file_exists(file_to_rename)
assert not file_io.file_exists(file_new_name)
print("Will try renaming file %s to %s" % (file_to_rename, file_new_name))
starttime_ms = int(round(time.time() * 1000))
file_io.rename(file_to_rename, file_new_name)
elapsed_ms = int(round(time.time() * 1000)) - starttime_ms
print("File %s renamed to %s in %s milliseconds" % (
file_to_rename, file_new_name, elapsed_ms))
assert not file_io.file_exists(file_to_rename)
assert file_io.file_exists(file_new_name)
# Delete directory.
print("Deleting directory %s." % dir_name)
file_io.delete_recursively(dir_name)
开发者ID:DILASSS,项目名称:tensorflow,代码行数:62,代码来源:gcs_smoke.py
示例14: delete_recursively
def delete_recursively(cls, dirname):
file_io.delete_recursively(dirname)
开发者ID:idil77soltahanov,项目名称:hugin-1,代码行数:2,代码来源:IOUtils.py
示例15: tearDown
def tearDown(self):
file_io.delete_recursively(test.get_temp_dir())
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:2,代码来源:loader_test.py
示例16: export_fn
def export_fn(estimator, export_dir_base, checkpoint_path=None, eval_result=None):
with ops.Graph().as_default() as g:
contrib_variables.create_global_step(g)
input_ops = serving_from_csv_input(train_config, args, keep_target)
model_fn_ops = estimator._call_model_fn(input_ops.features,
None,
model_fn_lib.ModeKeys.INFER)
output_fetch_tensors = make_output_tensors(
train_config=train_config,
args=args,
input_ops=input_ops,
model_fn_ops=model_fn_ops,
keep_target=keep_target)
signature_def_map = {
'serving_default': signature_def_utils.predict_signature_def(input_ops.default_inputs,
output_fetch_tensors)
}
if not checkpoint_path:
# Locate the latest checkpoint
checkpoint_path = saver.latest_checkpoint(estimator._model_dir)
if not checkpoint_path:
raise NotFittedError("Couldn't find trained model at %s."
% estimator._model_dir)
export_dir = saved_model_export_utils.get_timestamped_export_dir(
export_dir_base)
with tf_session.Session('') as session:
# variables.initialize_local_variables()
variables.local_variables_initializer()
data_flow_ops.tables_initializer()
saver_for_restore = saver.Saver(
variables.global_variables(),
sharded=True)
saver_for_restore.restore(session, checkpoint_path)
init_op = control_flow_ops.group(
variables.local_variables_initializer(),
data_flow_ops.tables_initializer())
# Perform the export
builder = saved_model_builder.SavedModelBuilder(export_dir)
builder.add_meta_graph_and_variables(
session, [tag_constants.SERVING],
signature_def_map=signature_def_map,
assets_collection=ops.get_collection(
ops.GraphKeys.ASSET_FILEPATHS),
legacy_init_op=init_op)
builder.save(False)
# Add the extra assets
if assets_extra:
assets_extra_path = os.path.join(compat.as_bytes(export_dir),
compat.as_bytes('assets.extra'))
for dest_relative, source in assets_extra.items():
dest_absolute = os.path.join(compat.as_bytes(assets_extra_path),
compat.as_bytes(dest_relative))
dest_path = os.path.dirname(dest_absolute)
gfile.MakeDirs(dest_path)
gfile.Copy(source, dest_absolute)
# only keep the last 3 models
saved_model_export_utils.garbage_collect_exports(
python_portable_string(export_dir_base),
exports_to_keep=3)
# save the last model to the model folder.
# export_dir_base = A/B/intermediate_models/
if keep_target:
final_dir = os.path.join(args.job_dir, 'evaluation_model')
else:
final_dir = os.path.join(args.job_dir, 'model')
if file_io.is_directory(final_dir):
file_io.delete_recursively(final_dir)
file_io.recursive_create_dir(final_dir)
_recursive_copy(export_dir, final_dir)
return export_dir
开发者ID:parthea,项目名称:pydatalab,代码行数:81,代码来源:util.py
注:本文中的tensorflow.python.lib.io.file_io.delete_recursively函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论