本文整理汇总了Python中tensorflow.python.framework.sparse_tensor.convert_to_tensor_or_sparse_tensor函数的典型用法代码示例。如果您正苦于以下问题:Python convert_to_tensor_or_sparse_tensor函数的具体用法?Python convert_to_tensor_or_sparse_tensor怎么用?Python convert_to_tensor_or_sparse_tensor使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了convert_to_tensor_or_sparse_tensor函数的16个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_convert_sparse
def test_convert_sparse(self):
with self.test_session():
indices = [[0, 1], [1, 0]]
values = [42, 43]
shape = [2, 2]
sparse_tensor_value = sparse_tensor.SparseTensorValue(
indices, values, shape)
st = sparse_tensor.SparseTensor.from_value(sparse_tensor_value)
from_value = sparse_tensor.convert_to_tensor_or_sparse_tensor(
sparse_tensor_value).eval()
from_tensor = sparse_tensor.convert_to_tensor_or_sparse_tensor(st).eval()
for convertee in [from_value, from_tensor]:
self.assertAllEqual(sparse_tensor_value.indices, convertee.indices)
self.assertAllEqual(sparse_tensor_value.values, convertee.values)
self.assertAllEqual(sparse_tensor_value.dense_shape, convertee.shape)
开发者ID:Hwhitetooth,项目名称:tensorflow,代码行数:15,代码来源:sparse_tensor_test.py
示例2: _set_operation
def _set_operation(a, b, set_operation, validate_indices=True):
"""Compute set operation of elements in last dimension of `a` and `b`.
All but the last dimension of `a` and `b` must match.
Args:
a: `Tensor` or `SparseTensor` of the same type as `b`. If sparse, indices
must be sorted in row-major order.
b: `Tensor` or `SparseTensor` of the same type as `a`. Must be
`SparseTensor` if `a` is `SparseTensor`. If sparse, indices must be
sorted in row-major order.
set_operation: String indicating set operaiton. See
SetOperationOp::SetOperationFromContext for valid values.
validate_indices: Whether to validate the order and range of sparse indices
in `a` and `b`.
Returns:
A `SparseTensor` with the same rank as `a` and `b`, and all but the last
dimension the same. Elements along the last dimension contain the results
of the set operation.
Raises:
TypeError: If inputs are invalid types.
ValueError: If `a` is sparse and `b` is dense.
"""
a = sparse_tensor.convert_to_tensor_or_sparse_tensor(a, name="a")
if a.dtype.base_dtype not in _VALID_DTYPES:
raise TypeError("'a' invalid dtype %s." % a.dtype)
b = sparse_tensor.convert_to_tensor_or_sparse_tensor(b, name="b")
if b.dtype.base_dtype != a.dtype.base_dtype:
raise TypeError("Types don't match, %s vs %s." % (a.dtype, b.dtype))
# pylint: disable=protected-access
if isinstance(a, sparse_tensor.SparseTensor):
if isinstance(b, sparse_tensor.SparseTensor):
indices, values, shape = gen_set_ops.sparse_to_sparse_set_operation(
a.indices, a.values, a.shape, b.indices, b.values, b.dense_shape,
set_operation, validate_indices)
else:
raise ValueError("Sparse,Dense is not supported, but Dense,Sparse is. "
"Please flip the order of your inputs.")
elif isinstance(b, sparse_tensor.SparseTensor):
indices, values, shape = gen_set_ops.dense_to_sparse_set_operation(
a, b.indices, b.values, b.dense_shape, set_operation, validate_indices)
else:
indices, values, shape = gen_set_ops.dense_to_dense_set_operation(
a, b, set_operation, validate_indices)
# pylint: enable=protected-access
return sparse_tensor.SparseTensor(indices, values, shape)
开发者ID:Hwhitetooth,项目名称:tensorflow,代码行数:48,代码来源:sets.py
示例3: new_model_fn
def new_model_fn(features, labels, mode, config): # pylint: disable=missing-docstring
spec = estimator.model_fn(features, labels, mode, config)
predictions = spec.predictions
if predictions is None:
return spec
verify_keys_and_predictions(features, predictions)
for key in get_keys(features):
feature = sparse_tensor_lib.convert_to_tensor_or_sparse_tensor(
features[key])
if not isinstance(feature, ops.Tensor):
raise ValueError(
'Forwarded feature ({}) should be a Tensor. Please use keys '
'argument of forward_features to filter unwanted features. Type of '
'features[{}] is {}.'.format(key, key, type(feature)))
predictions[key] = feature
spec = spec._replace(predictions=predictions)
if spec.export_outputs:
for ekey in ['predict', 'serving_default']:
if (ekey in spec.export_outputs and
isinstance(spec.export_outputs[ekey],
PredictOutput)):
export_outputs = spec.export_outputs[ekey].outputs
for key in get_keys(features):
export_outputs[key] = predictions[key]
return spec
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:26,代码来源:extenders.py
示例4: _clone_and_build_model
def _clone_and_build_model(mode,
keras_model,
custom_objects,
features=None,
labels=None):
"""Clone and build the given keras_model.
Args:
mode: training mode.
keras_model: an instance of compiled keras model.
custom_objects: Dictionary for custom objects.
features:
labels:
Returns:
The newly built model.
"""
# Set to True during training, False for inference.
K.set_learning_phase(mode == model_fn_lib.ModeKeys.TRAIN)
# Clone keras model.
input_tensors = None if features is None else _create_ordered_io(
keras_model, features)
if custom_objects:
with CustomObjectScope(custom_objects):
model = models.clone_model(keras_model, input_tensors=input_tensors)
else:
model = models.clone_model(keras_model, input_tensors=input_tensors)
# Compile/Build model
if mode is model_fn_lib.ModeKeys.PREDICT and not model.built:
model.build()
else:
optimizer_config = keras_model.optimizer.get_config()
optimizer = keras_model.optimizer.__class__.from_config(optimizer_config)
optimizer.iterations = training_util.get_or_create_global_step()
# Get list of outputs.
if labels is None:
target_tensors = None
elif isinstance(labels, dict):
target_tensors = _create_ordered_io(keras_model, labels, is_input=False)
else:
target_tensors = [
_cast_tensor_to_floatx(
sparse_tensor_lib.convert_to_tensor_or_sparse_tensor(labels))
]
model.compile(
optimizer,
keras_model.loss,
metrics=keras_model.metrics,
loss_weights=keras_model.loss_weights,
sample_weight_mode=keras_model.sample_weight_mode,
weighted_metrics=keras_model.weighted_metrics,
target_tensors=target_tensors)
if isinstance(model, models.Sequential):
model = model.model
return model
开发者ID:keithc61,项目名称:tensorflow,代码行数:60,代码来源:estimator.py
示例5: _check_labels
def _check_labels(labels, expected_labels_dimension):
"""Check labels type and shape."""
with ops.name_scope(None, 'labels', (labels,)) as scope:
labels = sparse_tensor.convert_to_tensor_or_sparse_tensor(labels)
if isinstance(labels, sparse_tensor.SparseTensor):
raise ValueError('SparseTensor labels are not supported.')
labels_shape = array_ops.shape(labels)
err_msg = 'labels shape must be [batch_size, {}]'.format(
expected_labels_dimension)
assert_rank = check_ops.assert_rank(labels, 2, message=err_msg)
with ops.control_dependencies([assert_rank]):
static_shape = labels.shape
if static_shape is not None:
dim1 = static_shape[1]
if (dim1 is not None) and (dim1 != expected_labels_dimension):
raise ValueError(
'Mismatched label shape. '
'Classifier configured with n_classes=%s. Received %s. '
'Suggested Fix: check your n_classes argument to the estimator '
'and/or the shape of your label.' %
(expected_labels_dimension, dim1))
assert_dimension = check_ops.assert_equal(
expected_labels_dimension, labels_shape[1], message=err_msg)
with ops.control_dependencies([assert_dimension]):
return array_ops.identity(labels, name=scope)
开发者ID:cneeruko,项目名称:tensorflow,代码行数:25,代码来源:head.py
示例6: _convert_tensor
def _convert_tensor(x):
"""Create or cast tensor if needed."""
if not tensor_util.is_tensor(x):
# x is a numpy array
x = sparse_tensor_lib.convert_to_tensor_or_sparse_tensor(x)
if check_ops.is_numeric_tensor(x):
# is_numeric_tensor returns False if provided with a numpy array
x = _cast_tensor_to_floatx(x)
return x
开发者ID:LiuCKind,项目名称:tensorflow,代码行数:9,代码来源:keras.py
示例7: from_sparse
def from_sparse(st_input, name=None):
"""Converts a 2D `SparseTensor` to a `RaggedTensor`.
Each row of the `output` `RaggedTensor` will contain the explicit values from
the same row in `st_input`. `st_input` must be ragged-right. If not it is
not ragged-right, then an error will be generated.
Example:
```python
>>> st = SparseTensor(indices=[[0, 1], [0, 2], [0, 3], [1, 0], [3, 0]],
... values=[1, 2, 3, 4, 5],
... dense_shape=[4, 3])
>>> ragged.from_sparse(st).eval().tolist()
[[1, 2, 3], [4], [], [5]]
```
Currently, only two-dimensional `SparseTensors` are supported.
Args:
st_input: The sparse tensor to convert. Must have rank 2.
name: A name prefix for the returned tensors (optional).
Returns:
A `RaggedTensor` with the same values as `st_input`.
`output.ragged_rank = rank(st_input) - 1`.
`output.shape = [st_input.dense_shape[0], None]`.
Raises:
ValueError: If the number of dimensions in `st_input` is not known
statically, or is not two.
"""
if not sparse_tensor.is_sparse(st_input):
raise TypeError('Expected SparseTensor, got %s' % type(st_input).__name__)
with ops.name_scope(name, 'RaggedFromSparse', [st_input]):
st_input = sparse_tensor.convert_to_tensor_or_sparse_tensor(
st_input, name='rt_input')
static_rank_from_dense_shape = (
None if st_input.dense_shape.shape.ndims is None
else st_input.dense_shape.shape.dims[0].value)
static_rank_from_indices = (
None if st_input.indices.shape.ndims is None
else st_input.indices.shape.dims[1].value)
if static_rank_from_dense_shape != 2 and static_rank_from_indices != 2:
raise ValueError('rank(st_input) must be 2')
with ops.control_dependencies(
_assert_sparse_indices_are_ragged_right(st_input.indices)):
# Treat sparse row indices as segment ids to generate a splits tensor that
# we can pair with the sparse tensor values. (Ignore sparse column
# indices.)
segment_ids = st_input.indices[:, 0]
num_segments = st_input.dense_shape[0]
return ragged_factory_ops.from_value_rowids(st_input.values, segment_ids,
num_segments)
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:56,代码来源:ragged_conversion_ops.py
示例8: _convert_feature_to_tensor
def _convert_feature_to_tensor(self, name, value):
"""Casts features to the correct dtype based on their name."""
if name in [
feature_keys.TrainEvalFeatures.TIMES,
feature_keys.PredictionFeatures.TIMES
]:
return math_ops.cast(value, dtypes.int64)
if name == feature_keys.TrainEvalFeatures.VALUES:
return math_ops.cast(value, self.model.dtype)
if name == feature_keys.PredictionFeatures.STATE_TUPLE:
return value # Correct dtypes are model-dependent
return sparse_tensor.convert_to_tensor_or_sparse_tensor(value)
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:12,代码来源:head.py
示例9: _maybe_expand_dim
def _maybe_expand_dim(tensor):
"""Expand the dim of `tensor` with static rank 1."""
with ops.name_scope(None, 'maybe_expand_dim', (tensor,)):
tensor = sparse_tensor.convert_to_tensor_or_sparse_tensor(tensor)
if isinstance(tensor, sparse_tensor.SparseTensor):
raise ValueError('SparseTensor labels are not supported.')
static_shape = tensor.shape
if static_shape is None:
return tensor
return (array_ops.expand_dims(tensor, -1) if static_shape.ndims == 1
else tensor)
开发者ID:Dr4KK,项目名称:tensorflow,代码行数:12,代码来源:head.py
示例10: _convert_to_tensors_or_sparse_tensors
def _convert_to_tensors_or_sparse_tensors(a, b):
"""Convert to tensor types, and flip order if necessary.
Args:
a: `Tensor` or `SparseTensor` of the same type as `b`.
b: `Tensor` or `SparseTensor` of the same type as `a`.
Returns:
Tuple of `(a, b, flipped)`, where `a` and `b` have been converted to
`Tensor` or `SparseTensor`, and `flipped` indicates whether the order has
been flipped to make it dense,sparse instead of sparse,dense (since the set
ops do not support the latter).
"""
a = sparse_tensor.convert_to_tensor_or_sparse_tensor(a, name="a")
if a.dtype.base_dtype not in _VALID_DTYPES:
raise TypeError("'a' invalid dtype %s." % a.dtype)
b = sparse_tensor.convert_to_tensor_or_sparse_tensor(b, name="b")
if b.dtype.base_dtype != a.dtype.base_dtype:
raise TypeError("Types don't match, %s vs %s." % (a.dtype, b.dtype))
if (isinstance(a, sparse_tensor.SparseTensor) and
not isinstance(b, sparse_tensor.SparseTensor)):
return b, a, True
return a, b, False
开发者ID:curtiszimmerman,项目名称:tensorflow,代码行数:23,代码来源:sets.py
示例11: _check_and_reshape_dense_labels
def _check_and_reshape_dense_labels(labels, expected_labels_dimension):
"""Checks dense labels type and shape and reshapes to 2D Tensor."""
if labels is None:
raise ValueError(
'You must provide a labels Tensor. Given: None. '
'Suggested troubleshooting steps: Check that your data contain '
'your label feature. Check that your input_fn properly parses and '
'returns labels.')
with ops.name_scope(None, 'labels', (labels,)) as scope:
labels = sparse_tensor.convert_to_tensor_or_sparse_tensor(labels)
if isinstance(labels, sparse_tensor.SparseTensor):
raise ValueError(
'SparseTensor labels are not supported. '
'labels must be a Tensor of shape [batch_size, %s]. '
'Suggested Fix (1): Check the label feature in your data. '
'Each example must contain %s value(s). If not, your choice of label '
'was probably incorrect. '
'Suggested Fix (2): In your input_fn, use '
'tf.sparse_tensor_to_dense() to turn labels into a Tensor.'
'' % (expected_labels_dimension, expected_labels_dimension))
labels = _maybe_expand_dim(labels)
labels_shape = array_ops.shape(labels)
err_msg = 'labels shape must be [batch_size, {}]'.format(
expected_labels_dimension)
assert_rank = check_ops.assert_rank(labels, 2, message=err_msg)
with ops.control_dependencies([assert_rank]):
static_shape = labels.shape
if static_shape is not None:
dim1 = static_shape[1]
if (dim1 is not None) and (dim1 != expected_labels_dimension):
raise ValueError(
'Mismatched label shape. '
'Classifier configured with n_classes=%s. Received %s. '
'Suggested Fix: check your n_classes argument to the estimator '
'and/or the shape of your label.' %
(expected_labels_dimension, dim1))
assert_dimension = check_ops.assert_equal(
expected_labels_dimension, labels_shape[1], message=err_msg)
with ops.control_dependencies([assert_dimension]):
return array_ops.identity(labels, name=scope)
开发者ID:rajeev921,项目名称:tensorflow,代码行数:40,代码来源:head.py
示例12: _check_labels
def _check_labels(labels, expected_labels_dimension):
"""Check labels type and shape."""
with ops.name_scope(None, 'labels', (labels,)) as scope:
labels = sparse_tensor.convert_to_tensor_or_sparse_tensor(labels)
if isinstance(labels, sparse_tensor.SparseTensor):
raise ValueError('SparseTensor labels are not supported.')
labels_shape = array_ops.shape(labels)
err_msg = 'labels shape must be [batch_size, {}]'.format(
expected_labels_dimension)
assert_rank = check_ops.assert_rank(labels, 2, message=err_msg)
with ops.control_dependencies([assert_rank]):
static_shape = labels.shape
if static_shape is not None:
dim1 = static_shape[1]
if (dim1 is not None) and (dim1 != expected_labels_dimension):
raise ValueError(
'labels shape must be [batch_size, labels_dimension], got %s.' %
(static_shape,))
assert_dimension = check_ops.assert_equal(
expected_labels_dimension, labels_shape[1], message=err_msg)
with ops.control_dependencies([assert_dimension]):
return array_ops.identity(labels, name=scope)
开发者ID:vaccine,项目名称:tensorflow,代码行数:22,代码来源:head.py
示例13: set_size
def set_size(a, validate_indices=True):
"""Compute number of unique elements along last dimension of `a`.
Args:
a: `SparseTensor`, with indices sorted in row-major order.
validate_indices: Whether to validate the order and range of sparse indices
in `a`.
Returns:
`int32` `Tensor` of set sizes. For `a` ranked `n`, this is a `Tensor` with
rank `n-1`, and the same 1st `n-1` dimensions as `a`. Each value is the
number of unique elements in the corresponding `[0...n-1]` dimension of `a`.
Raises:
TypeError: If `a` is an invalid types.
"""
a = sparse_tensor.convert_to_tensor_or_sparse_tensor(a, name="a")
if not isinstance(a, sparse_tensor.SparseTensor):
raise TypeError("Expected `SparseTensor`, got %s." % a)
if a.values.dtype.base_dtype not in _VALID_DTYPES:
raise TypeError("Invalid dtype %s." % a.values.dtype)
# pylint: disable=protected-access
return gen_set_ops.set_size(a.indices, a.values, a.shape, validate_indices)
开发者ID:Hwhitetooth,项目名称:tensorflow,代码行数:23,代码来源:sets.py
示例14: test_convert_dense
def test_convert_dense(self):
with self.test_session():
value = [42, 43]
from_value = sparse_tensor.convert_to_tensor_or_sparse_tensor(
value)
self.assertAllEqual(value, from_value.eval())
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:6,代码来源:sparse_tensor_test.py
示例15: _check_dense_labels_match_logits_and_reshape
def _check_dense_labels_match_logits_and_reshape(
labels, logits, expected_labels_dimension):
"""Checks that labels shape matches logits and reshapes if needed.
Consider logits of shape [D0, D1, ... DN, logits_dimension]. Then labels
shape must be [D0, D1, ... DN, expected_labels_dimension].
If expected_labels_dimension=1, labels could be [D0, D1, ... DN] and this
method reshapes them to [D0, D1, ... DN, 1].
Args:
labels: labels Tensor.
logits: logits Tensor.
expected_labels_dimension: Integer.
Returns:
Validated and reshaped labels Tensor.
Raises:
ValueError: If labels is a SparseTensor.
ValueError: If labels shape is statically defined and fails validation.
OpError: If labels shape is not statically defined and fails validation.
"""
if labels is None:
raise ValueError(
'You must provide a labels Tensor. Given: None. '
'Suggested troubleshooting steps: Check that your data contain '
'your label feature. Check that your input_fn properly parses and '
'returns labels.')
with ops.name_scope(None, 'labels', (labels, logits)) as scope:
labels = sparse_tensor.convert_to_tensor_or_sparse_tensor(labels)
if isinstance(labels, sparse_tensor.SparseTensor):
raise ValueError(
'SparseTensor labels are not supported. '
'labels must be a Tensor of shape [D0, D1, ..., DN, %s], '
'e.g. [batch_size, %s]. '
'Suggested Fix (1): Check the label feature in your data. '
'Each example must contain %s value(s). If not, your choice of label '
'was probably incorrect. '
'Suggested Fix (2): In your input_fn, use '
'tf.sparse_tensor_to_dense() to turn labels into a Tensor.'
'' % (expected_labels_dimension, expected_labels_dimension,
expected_labels_dimension))
if (labels.shape.ndims is not None and logits.shape.ndims is not None and
labels.shape.ndims == logits.shape.ndims - 1):
labels = array_ops.expand_dims(labels, -1)
labels_shape = array_ops.shape(labels)
logits_shape = array_ops.shape(logits)
err_msg = (
'labels shape must be [D0, D1, ... DN, {}]. '
'Suggested Fix: check your n_classes argument to the estimator '
'and/or the shape of your label.'.format(expected_labels_dimension))
assert_rank = check_ops.assert_rank_at_least(labels, 2, message=err_msg)
with ops.control_dependencies([assert_rank]):
static_shape = labels.shape
if static_shape.ndims is not None:
dim1 = static_shape[-1]
if (dim1 is not None) and (dim1 != expected_labels_dimension):
raise ValueError(
'Mismatched label shape. '
'Classifier configured with n_classes=%s. Received %s. '
'Suggested Fix: check your n_classes argument to the estimator '
'and/or the shape of your label.' %
(expected_labels_dimension, dim1))
expected_labels_shape = array_ops.concat(
[logits_shape[:-1], [expected_labels_dimension]], axis=0)
assert_dimension = check_ops.assert_equal(
expected_labels_shape, labels_shape, message=err_msg,
data=['expected_labels_shape: ', expected_labels_shape,
'labels_shape: ', labels_shape])
with ops.control_dependencies([assert_dimension]):
return array_ops.identity(labels, name=scope)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:69,代码来源:head.py
示例16: __new__
def __new__(cls,
mode,
predictions=None,
loss=None,
train_op=None,
eval_metric_ops=None,
output_alternatives=None,
training_chief_hooks=None,
training_hooks=None,
scaffold=None):
"""Creates a validated `ModelFnOps` instance.
For a multi-headed model, the predictions dict here will contain the outputs
of all of the heads. However: at serving time, requests will be made
specifically for one or more heads, and the RPCs used for these requests may
differ by problem type (i.e., regression, classification, other). The
purpose of the output_alternatives dict is to aid in exporting a SavedModel
from which such head-specific queries can be served. These
output_alternatives will be combined with input_alternatives (see
`saved_model_export_utils`) to produce a set of `SignatureDef`s specifying
the valid requests that can be served from this model.
For a single-headed model, it is still adviseable to provide
output_alternatives with a single entry, because this is how the problem
type is communicated for export and serving. If output_alternatives is not
given, the resulting SavedModel will support only one head of unspecified
type.
Args:
mode: One of `ModeKeys`. Specifies if this training, evaluation or
prediction.
predictions: Predictions `Tensor` or dict of `Tensor`.
loss: Training loss `Tensor`.
train_op: Op for the training step.
eval_metric_ops: Dict of metric results keyed by name. The values of the
dict are the results of calling a metric function, such as `Tensor`.
output_alternatives: a dict of
`{submodel_name: (problem_type, {tensor_name: Tensor})}`, where
`submodel_name` is a submodel identifier that should be consistent
across the pipeline (here likely taken from the name of each `Head`,
for models that use them), `problem_type` is a `ProblemType`,
`tensor_name` is a symbolic name for an output Tensor possibly but not
necessarily taken from `PredictionKey`, and `Tensor` is the
corresponding output Tensor itself.
training_chief_hooks: A list of `SessionRunHook` objects that will be
run on the chief worker during training.
training_hooks: A list of `SessionRunHook` objects that will be run on
all workers during training.
scaffold: A `tf.train.Scaffold` object that can be used to set
initialization, saver, and more to be used in training.
Returns:
A validated `ModelFnOps` object.
Raises:
ValueError: If validation fails.
"""
ModeKeys.validate(mode)
# Assert all ops are from the same graph.
get_graph_from_inputs((predictions, loss, train_op))
# Validate train_op.
if train_op is None:
if mode == ModeKeys.TRAIN:
raise ValueError('Missing train_op.')
elif not isinstance(train_op, ops.Operation):
# TODO(ptucker): Should this be allowed? Consider raising error.
train_op = ops.convert_to_tensor(train_op).op
# Validate loss.
if loss is None:
if mode in (ModeKeys.TRAIN, ModeKeys.EVAL):
raise ValueError('Missing loss.')
else:
loss = ops.convert_to_tensor(loss)
loss_shape = loss.get_shape()
if loss_shape.num_elements() not in (None, 1):
raise ValueError('Loss must be scalar: %s.' % loss)
if not loss_shape.is_compatible_with(tensor_shape.scalar()):
loss = array_ops.reshape(loss, [])
# Validate predictions.
if predictions is None:
if mode == ModeKeys.INFER or mode == ModeKeys.EVAL:
raise ValueError('Missing predictions.')
else:
if isinstance(predictions, dict):
predictions = {
k: sparse_tensor.convert_to_tensor_or_sparse_tensor(v)
for k, v in six.iteritems(predictions)
}
else:
predictions = sparse_tensor.convert_to_tensor_or_sparse_tensor(
predictions)
# Validate eval_metric_ops
if eval_metric_ops is None:
eval_metric_ops = {}
else:
#.........这里部分代码省略.........
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:101,代码来源:model_fn.py
注:本文中的tensorflow.python.framework.sparse_tensor.convert_to_tensor_or_sparse_tensor函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论