本文整理汇总了Python中tensorflow.python.framework.ops.strip_name_scope函数的典型用法代码示例。如果您正苦于以下问题:Python strip_name_scope函数的具体用法?Python strip_name_scope怎么用?Python strip_name_scope使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了strip_name_scope函数的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: to_proto
def to_proto(self, export_scope=None):
"""Converts this `QueueRunner` to a `QueueRunnerDef` protocol buffer.
Args:
export_scope: Optional `string`. Name scope to remove.
Returns:
A `QueueRunnerDef` protocol buffer, or `None` if the `Variable` is not in
the specified name scope.
"""
if (export_scope is None or
self.queue.name.startswith(export_scope)):
queue_runner_def = queue_runner_pb2.QueueRunnerDef()
queue_runner_def.queue_name = ops.strip_name_scope(
self.queue.name, export_scope)
for enqueue_op in self.enqueue_ops:
queue_runner_def.enqueue_op_name.append(
ops.strip_name_scope(enqueue_op.name, export_scope))
queue_runner_def.close_op_name = ops.strip_name_scope(
self.close_op.name, export_scope)
queue_runner_def.cancel_op_name = ops.strip_name_scope(
self.cancel_op.name, export_scope)
queue_runner_def.queue_closed_exception_types.extend([
errors.error_code_from_exception_type(cls)
for cls in self._queue_closed_exception_types])
return queue_runner_def
else:
return None
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:28,代码来源:queue_runner_impl.py
示例2: to_proto
def to_proto(self, export_scope=None):
"""Converts a `ResourceVariable` to a `VariableDef` protocol buffer.
Args:
export_scope: Optional `string`. Name scope to remove.
Returns:
A `VariableDef` protocol buffer, or `None` if the `Variable` is not
in the specified name scope.
"""
if (export_scope is None or
self.handle.name.startswith(export_scope)):
var_def = variable_pb2.VariableDef()
var_def.variable_name = ops.strip_name_scope(
self.handle.name, export_scope)
var_def.initializer_name = ops.strip_name_scope(
self.initializer.name, export_scope)
if self._cached_value is not None:
var_def.snapshot_name = ops.strip_name_scope(
self._cached_value.name, export_scope)
var_def.is_resource = True
if self._save_slice_info:
var_def.save_slice_info_def.MergeFrom(self._save_slice_info.to_proto(
export_scope=export_scope))
return var_def
else:
return None
开发者ID:chenjun0210,项目名称:tensorflow,代码行数:27,代码来源:resource_variable_ops.py
示例3: add_collection_def
def add_collection_def(meta_graph_def, key, graph=None,
export_scope=None):
"""Adds a collection to MetaGraphDef protocol buffer.
Args:
meta_graph_def: MetaGraphDef protocol buffer.
key: One of the GraphKeys or user-defined string.
graph: The `Graph` from which to get collections.
export_scope: Optional `string`. Name scope to remove.
"""
if graph and not isinstance(graph, ops.Graph):
raise TypeError("graph must be of type Graph, not %s", type(graph))
if not isinstance(key, six.string_types) and not isinstance(key, bytes):
logging.warning("Only collections with string type keys will be "
"serialized. This key has %s", type(key))
return
# Sets graph to default graph if it's not passed in.
graph = graph or ops.get_default_graph()
collection_list = graph.get_collection(key)
if not collection_list:
return
try:
col_def = meta_graph_def.collection_def[key]
to_proto = ops.get_to_proto_function(key)
proto_type = ops.get_collection_proto_type(key)
if to_proto:
kind = "bytes_list"
for x in collection_list:
# Additional type check to make sure the returned proto is indeed
# what we expect.
proto = to_proto(x, export_scope=export_scope)
if proto:
assert isinstance(proto, proto_type)
getattr(col_def, kind).value.append(proto.SerializeToString())
else:
kind = _get_kind_name(collection_list[0])
if kind == "node_list":
for x in collection_list:
if not export_scope or x.name.startswith(export_scope):
getattr(col_def, kind).value.append(
ops.strip_name_scope(x.name, export_scope))
elif kind == "bytes_list":
# NOTE(opensource): This force conversion is to work around the fact
# that Python3 distinguishes between bytes and strings.
getattr(col_def, kind).value.extend(
[compat.as_bytes(x) for x in collection_list])
else:
getattr(col_def, kind).value.extend([x for x in collection_list])
except Exception as e: # pylint: disable=broad-except
logging.warning("Error encountered when serializing %s.\n"
"Type is unsupported, or the types of the items don't "
"match field type in CollectionDef.\n%s", key, str(e))
if key in meta_graph_def.collection_def:
del meta_graph_def.collection_def[key]
return
开发者ID:821760408-sp,项目名称:tensorflow,代码行数:59,代码来源:meta_graph.py
示例4: _node_def
def _node_def(from_node_def, export_scope, unbound_inputs, clear_devices=False):
"""Create a `NodeDef` proto with export_scope stripped.
Args:
from_node_def: A `node_def_pb2.NodeDef` protocol buffer.
export_scope: A `string` representing the name scope to remove.
unbound_inputs: An array of unbound input names if they exist.
clear_devices: Boolean which controls whether to clear device information
from node_def. Default false.
Returns:
A `node_def_pb2.NodeDef` protocol buffer.
"""
node_def = copy.deepcopy(from_node_def)
for i, v in enumerate(node_def.input):
if (export_scope and
not node_def.input[i].lstrip("^").startswith(export_scope)):
# Adds "$unbound_inputs_" prefix to the unbound name so they are easily
# identifiable.
node_def.input[i] = re.sub(r"([\^]|^)(.*)",
r"\1" + _UNBOUND_INPUT_PREFIX + r"\2",
compat.as_str(v))
unbound_inputs.append(node_def.input[i])
else:
node_def.input[i] = ops.strip_name_scope(v, export_scope)
node_def.name = compat.as_bytes(
ops.strip_name_scope(from_node_def.name, export_scope))
for k, v in six.iteritems(from_node_def.attr):
if k == "_class":
new_s = [compat.as_bytes(
ops.strip_name_scope(s, export_scope)) for s in v.list.s
if not export_scope or
compat.as_str(s).split("@")[1].startswith(export_scope)]
node_def.attr[k].CopyFrom(attr_value_pb2.AttrValue(
list=attr_value_pb2.AttrValue.ListValue(s=new_s)))
elif node_def.op in ("Enter", "RefEnter") and k == "frame_name":
if not export_scope or compat.as_str(v.s).startswith(export_scope):
new_s = compat.as_bytes(ops.strip_name_scope(v.s, export_scope))
node_def.attr[k].CopyFrom(attr_value_pb2.AttrValue(s=new_s))
else:
node_def.attr[k].CopyFrom(v)
if clear_devices:
node_def.device = ""
return node_def
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:46,代码来源:meta_graph.py
示例5: to_proto
def to_proto(self, export_scope=None):
"""Converts a `ResourceVariable` to a `VariableDef` protocol buffer.
Args:
export_scope: Optional `string`. Name scope to remove.
Raises:
RuntimeError: If run in EAGER mode.
Returns:
A `VariableDef` protocol buffer, or `None` if the `Variable` is not
in the specified name scope.
"""
if context.executing_eagerly():
raise RuntimeError("to_proto not supported in EAGER mode.")
if export_scope is None or self.handle.name.startswith(export_scope):
var_def = variable_pb2.VariableDef()
var_def.variable_name = ops.strip_name_scope(self.handle.name,
export_scope)
if self._initial_value is not None:
# This is inside an if-statement for backwards compatibility, since
# self._initial_value might be None for variables constructed from old
# protos.
var_def.initial_value_name = ops.strip_name_scope(
self._initial_value.name, export_scope)
var_def.initializer_name = ops.strip_name_scope(self.initializer.name,
export_scope)
if self._cached_value is not None:
var_def.snapshot_name = ops.strip_name_scope(self._cached_value.name,
export_scope)
else:
# Store the graph_element here
var_def.snapshot_name = ops.strip_name_scope(self._graph_element.name,
export_scope)
var_def.is_resource = True
var_def.trainable = self.trainable
if self._save_slice_info:
var_def.save_slice_info_def.MergeFrom(
self._save_slice_info.to_proto(export_scope=export_scope))
return var_def
else:
return None
开发者ID:LiuCKind,项目名称:tensorflow,代码行数:42,代码来源:resource_variable_ops.py
示例6: _node_def
def _node_def(from_node_def, export_scope, unbound_inputs):
"""Create a `NodeDef` proto with export_scope stripped.
Args:
from_node_def: A `node_def_pb2.NodeDef` protocol buffer.
export_scope: A `string` representing the name scope to remove.
unbound_inputs: An array of unbound input names if they exist.
Returns:
A `node_def_pb2.NodeDef` protocol buffer.
"""
node_def = copy.deepcopy(from_node_def)
for i, v in enumerate(node_def.input):
if (export_scope and
not node_def.input[i].lstrip("^").startswith(export_scope)):
# Adds "$unbound_inputs_" prefix to the unbound name so they are easily
# identifiable.
node_def.input[i] = re.sub(r"([\^]|^)(.*)", r"\1$unbound_inputs_\2",
compat.as_str(v))
unbound_inputs.append(node_def.input[i])
else:
node_def.input[i] = ops.strip_name_scope(v, export_scope)
node_def.name = compat.as_bytes(
ops.strip_name_scope(from_node_def.name, export_scope))
for k, v in six.iteritems(from_node_def.attr):
if k == "_class":
new_s = [compat.as_bytes(
ops.strip_name_scope(s, export_scope)) for s in v.list.s
if not export_scope or
compat.as_str(s).split("@")[1].startswith(export_scope)]
node_def.attr[k].CopyFrom(attr_value_pb2.AttrValue(
list=attr_value_pb2.AttrValue.ListValue(s=new_s)))
else:
node_def.attr[k].CopyFrom(v)
return node_def
开发者ID:821760408-sp,项目名称:tensorflow,代码行数:36,代码来源:meta_graph.py
示例7: to_proto
def to_proto(self, export_scope=None):
"""Returns a SaveSliceInfoDef() proto.
Args:
export_scope: Optional `string`. Name scope to remove.
Returns:
A `SaveSliceInfoDef` protocol buffer, or None if the `Variable` is not
in the specified name scope.
"""
if export_scope is None or self.full_name.startswith(export_scope):
save_slice_info_def = variable_pb2.SaveSliceInfoDef()
save_slice_info_def.full_name = ops.strip_name_scope(self.full_name, export_scope)
for i in self.full_shape:
save_slice_info_def.full_shape.append(i)
for i in self.var_offset:
save_slice_info_def.var_offset.append(i)
for i in self.var_shape:
save_slice_info_def.var_shape.append(i)
return save_slice_info_def
else:
return None
开发者ID:shakamunyi,项目名称:tensorflow,代码行数:22,代码来源:variables.py
示例8: export_scoped_meta_graph
#.........这里部分代码省略.........
graph (both Save/Restore ops and SaverDefs) that are not associated
with the provided SaverDef.
strip_default_attrs: Set to true if default valued attributes must be
removed while exporting the GraphDef.
**kwargs: Optional keyed arguments, including meta_info_def and
collection_list.
Returns:
A `MetaGraphDef` proto and dictionary of `Variables` in the exported
name scope.
Raises:
ValueError: When the `GraphDef` is larger than 2GB.
"""
if context.executing_eagerly():
raise ValueError("Exporting/importing meta graphs is not supported when "
"Eager Execution is enabled.")
graph = graph or ops.get_default_graph()
exclude_nodes = None
unbound_inputs = []
if export_scope or clear_extraneous_savers or clear_devices:
if graph_def:
new_graph_def = graph_pb2.GraphDef()
new_graph_def.versions.CopyFrom(graph_def.versions)
new_graph_def.library.CopyFrom(graph_def.library)
if clear_extraneous_savers:
exclude_nodes = _find_extraneous_saver_nodes(graph_def, saver_def)
for node_def in graph_def.node:
if _should_include_node(node_def.name, export_scope, exclude_nodes):
new_node_def = _node_def(node_def, export_scope, unbound_inputs,
clear_devices=clear_devices)
new_graph_def.node.extend([new_node_def])
graph_def = new_graph_def
else:
# Only do this complicated work if we want to remove a name scope.
graph_def = graph_pb2.GraphDef()
# pylint: disable=protected-access
graph_def.versions.CopyFrom(graph.graph_def_versions)
bytesize = 0
if clear_extraneous_savers:
exclude_nodes = _find_extraneous_saver_nodes(graph.as_graph_def(),
saver_def)
for key in sorted(graph._nodes_by_id):
if _should_include_node(graph._nodes_by_id[key].name,
export_scope,
exclude_nodes):
value = graph._nodes_by_id[key]
# pylint: enable=protected-access
node_def = _node_def(value.node_def, export_scope, unbound_inputs,
clear_devices=clear_devices)
graph_def.node.extend([node_def])
if value.outputs:
assert "_output_shapes" not in graph_def.node[-1].attr
graph_def.node[-1].attr["_output_shapes"].list.shape.extend([
output.get_shape().as_proto() for output in value.outputs])
bytesize += value.node_def.ByteSize()
if bytesize >= (1 << 31) or bytesize < 0:
raise ValueError("GraphDef cannot be larger than 2GB.")
graph._copy_functions_to_graph_def(graph_def, bytesize) # pylint: disable=protected-access
# It's possible that not all the inputs are in the export_scope.
# If we would like such information included in the exported meta_graph,
# add them to a special unbound_inputs collection.
if unbound_inputs_col_name:
# Clears the unbound_inputs collections.
graph.clear_collection(unbound_inputs_col_name)
for k in unbound_inputs:
graph.add_to_collection(unbound_inputs_col_name, k)
var_list = {}
variables = graph.get_collection(ops.GraphKeys.GLOBAL_VARIABLES,
scope=export_scope)
for v in variables:
if _should_include_node(v, export_scope, exclude_nodes):
var_list[ops.strip_name_scope(v.name, export_scope)] = v
scoped_meta_graph_def = create_meta_graph_def(
graph_def=graph_def,
graph=graph,
export_scope=export_scope,
exclude_nodes=exclude_nodes,
clear_extraneous_savers=clear_extraneous_savers,
saver_def=saver_def,
strip_default_attrs=strip_default_attrs,
**kwargs)
if filename:
graph_io.write_graph(
scoped_meta_graph_def,
os.path.dirname(filename),
os.path.basename(filename),
as_text=as_text)
return scoped_meta_graph_def, var_list
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:101,代码来源:meta_graph.py
示例9: import_scoped_meta_graph
#.........这里部分代码省略.........
kind = col_def.WhichOneof("kind")
field = getattr(col_def, kind)
if field.value and (
not input_map or
sorted([compat.as_str(v) for v in field.value]) !=
sorted(input_map)):
raise ValueError("Graph contains unbound inputs: %s. Must "
"provide these inputs through input_map." %
",".join([compat.as_str(v) for v in field.value
if not input_map or v not in input_map]))
break
# Sets graph to default graph if it's not passed in.
graph = graph or ops.get_default_graph()
# Gathers the list of nodes we are interested in.
with graph.as_default():
producer_op_list = None
if meta_graph_def.meta_info_def.HasField("stripped_op_list"):
producer_op_list = meta_graph_def.meta_info_def.stripped_op_list
input_graph_def = meta_graph_def.graph_def
# Remove all the explicit device specifications for this node. This helps to
# make the graph more portable.
if clear_devices:
for node in input_graph_def.node:
node.device = ""
scope_to_prepend_to_names = graph.unique_name(
import_scope or "", mark_as_used=False)
importer.import_graph_def(
input_graph_def,
name=(import_scope or scope_to_prepend_to_names),
input_map=input_map,
producer_op_list=producer_op_list)
# Restores all the other collections.
variable_objects = {}
for key, col_def in sorted(meta_graph_def.collection_def.items()):
# Don't add unbound_inputs to the new graph.
if key == unbound_inputs_col_name:
continue
if not restore_collections_predicate(key):
continue
kind = col_def.WhichOneof("kind")
if kind is None:
logging.error("Cannot identify data type for collection %s. Skipping.",
key)
continue
from_proto = ops.get_from_proto_function(key)
if from_proto and kind == "bytes_list":
proto_type = ops.get_collection_proto_type(key)
if key in ops.GraphKeys._VARIABLE_COLLECTIONS: # pylint: disable=protected-access
for value in col_def.bytes_list.value:
variable = variable_objects.get(value, None)
if variable is None:
proto = proto_type()
proto.ParseFromString(value)
variable = from_proto(
proto, import_scope=scope_to_prepend_to_names)
variable_objects[value] = variable
graph.add_to_collection(key, variable)
else:
for value in col_def.bytes_list.value:
proto = proto_type()
proto.ParseFromString(value)
graph.add_to_collection(
key, from_proto(
proto, import_scope=scope_to_prepend_to_names))
else:
field = getattr(col_def, kind)
if key in _COMPAT_COLLECTION_LIST:
logging.warning(
"The saved meta_graph is possibly from an older release:\n"
"'%s' collection should be of type 'byte_list', but instead "
"is of type '%s'.", key, kind)
if kind == "node_list":
for value in field.value:
col_op = graph.as_graph_element(
ops.prepend_name_scope(value, scope_to_prepend_to_names))
graph.add_to_collection(key, col_op)
elif kind == "int64_list":
# NOTE(opensource): This force conversion is to work around the fact
# that Python2 distinguishes between int and long, while Python3 has
# only int.
for value in field.value:
graph.add_to_collection(key, int(value))
else:
for value in field.value:
graph.add_to_collection(
key, ops.prepend_name_scope(value, scope_to_prepend_to_names))
var_list = {}
variables = graph.get_collection(ops.GraphKeys.GLOBAL_VARIABLES,
scope=scope_to_prepend_to_names)
for v in variables:
var_list[ops.strip_name_scope(v.name, scope_to_prepend_to_names)] = v
return var_list
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:101,代码来源:meta_graph.py
示例10: import_scoped_meta_graph
#.........这里部分代码省略.........
meta_graph_or_file: `MetaGraphDef` protocol buffer or filename (including
the path) containing a `MetaGraphDef`.
clear_devices: Boolean which controls whether to clear device information
from graph_def. Default false.
graph: The `Graph` to import into. If `None`, use the default graph.
import_scope: Optional `string`. Name scope into which to import the
subgraph. If `None`, the graph is imported to the root name scope.
input_map: A dictionary mapping input names (as strings) in `graph_def` to
`Tensor` objects. The values of the named input tensors in the imported
graph will be re-mapped to the respective `Tensor` values.
unbound_inputs_col_name: Collection name for looking up unbound inputs.
Returns:
A dictionary of all the `Variables` imported into the name scope.
Raises:
ValueError: If the graph_def contains unbound inputs.
"""
if isinstance(meta_graph_or_file, meta_graph_pb2.MetaGraphDef):
meta_graph_def = meta_graph_or_file
else:
meta_graph_def = read_meta_graph_file(meta_graph_or_file)
if unbound_inputs_col_name:
for key, col_def in meta_graph_def.collection_def.items():
if key == unbound_inputs_col_name:
kind = col_def.WhichOneof("kind")
field = getattr(col_def, kind)
if field.value and (
not input_map or
sorted([compat.as_str(v) for v in field.value]) !=
sorted(input_map)):
raise ValueError("Graph contains unbound inputs: %s. Must "
"provide these inputs through input_map." %
",".join([compat.as_str(v) for v in field.value]))
break
# Sets graph to default graph if it's not passed in.
graph = graph or ops.get_default_graph()
# Gathers the list of nodes we are interested in.
with graph.as_default():
producer_op_list = None
if meta_graph_def.meta_info_def.HasField("stripped_op_list"):
producer_op_list = meta_graph_def.meta_info_def.stripped_op_list
input_graph_def = meta_graph_def.graph_def
# Remove all the explicit device specifications for this node. This helps to
# make the graph more portable.
if clear_devices:
for node in input_graph_def.node:
node.device = ""
importer.import_graph_def(
input_graph_def, name=(import_scope or ""), input_map=input_map,
producer_op_list=producer_op_list)
# Restores all the other collections.
for key, col_def in meta_graph_def.collection_def.items():
# Don't add unbound_inputs to the new graph.
if key == unbound_inputs_col_name:
continue
kind = col_def.WhichOneof("kind")
if kind is None:
logging.error("Cannot identify data type for collection %s. Skipping.",
key)
continue
from_proto = ops.get_from_proto_function(key)
if from_proto:
assert kind == "bytes_list"
proto_type = ops.get_collection_proto_type(key)
for value in col_def.bytes_list.value:
proto = proto_type()
proto.ParseFromString(value)
graph.add_to_collection(
key, from_proto(proto, import_scope=import_scope))
else:
field = getattr(col_def, kind)
if kind == "node_list":
for value in field.value:
col_op = graph.as_graph_element(
ops.prepend_name_scope(value, import_scope))
graph.add_to_collection(key, col_op)
elif kind == "int64_list":
# NOTE(opensource): This force conversion is to work around the fact
# that Python2 distinguishes between int and long, while Python3 has
# only int.
for value in field.value:
graph.add_to_collection(key, int(value))
else:
for value in field.value:
graph.add_to_collection(
key, ops.prepend_name_scope(value, import_scope))
var_list = {}
variables = graph.get_collection(ops.GraphKeys.VARIABLES,
scope=import_scope)
for v in variables:
var_list[ops.strip_name_scope(v.name, import_scope)] = v
return var_list
开发者ID:DavidNemeskey,项目名称:tensorflow,代码行数:101,代码来源:meta_graph.py
示例11: export_scoped_meta_graph
def export_scoped_meta_graph(filename=None,
graph_def=None,
graph=None,
export_scope=None,
as_text=False,
unbound_inputs_col_name="unbound_inputs",
**kwargs):
"""Returns `MetaGraphDef` proto. Optionally writes it to filename.
This function exports the graph, saver, and collection objects into
`MetaGraphDef` protocol buffer with the intention of it being imported
at a later time or location to restart training, run inference, or be
a subgraph.
Args:
filename: Optional filename including the path for writing the
generated `MetaGraphDef` protocol buffer.
graph_def: `GraphDef` protocol buffer.
graph: The `Graph` to import into. If `None`, use the default graph.
export_scope: Optional `string`. Name scope under which to extract
the subgraph. The scope name will be striped from the node definitions
for easy import later into new name scopes. If `None`, the whole graph
is exported. graph_def and export_scope cannot both be specified.
as_text: If `True`, writes the `MetaGraphDef` as an ASCII proto.
unbound_inputs_col_name: Optional `string`. If provided, a string collection
with the given name will be added to the returned `MetaGraphDef`,
containing the names of tensors that must be remapped when importing the
`MetaGraphDef`.
**kwargs: Optional keyed arguments, including meta_info_def,
saver_def, collection_list.
Returns:
A `MetaGraphDef` proto and dictionary of `Variables` in the exported
name scope.
Raises:
ValueError: When the `GraphDef` is larger than 2GB.
"""
graph = graph or ops.get_default_graph()
if graph_def and export_scope:
raise ValueError("graph_def and export_scope cannot both "
"be specified.")
if graph_def is None and export_scope:
unbound_inputs = []
# Only do this complicated work if we want to remove a name scope.
graph_def = graph_pb2.GraphDef()
# pylint: disable=protected-access
graph_def.versions.CopyFrom(graph._graph_def_versions)
bytesize = 0
for key in sorted(graph._nodes_by_name):
if _should_include_node(key, export_scope):
value = graph._nodes_by_name[key]
# pylint: enable=protected-access
graph_def.node.extend([_node_def(value.node_def, export_scope,
unbound_inputs)])
if value.outputs:
assert "_output_shapes" not in graph_def.node[-1].attr
graph_def.node[-1].attr["_output_shapes"].list.shape.extend([
output.get_shape().as_proto() for output in value.outputs])
bytesize += value.node_def.ByteSize()
if bytesize >= (1 << 31) or bytesize < 0:
raise ValueError("GraphDef cannot be larger than 2GB.")
# It's possible that not all the inputs are in the export_scope.
# If we would like such information included in the exported meta_graph,
# add them to a special unbound_inputs collection.
if unbound_inputs_col_name:
# Clears the unbound_inputs collections.
graph.clear_collection(unbound_inputs_col_name)
for k in unbound_inputs:
graph.add_to_collection(unbound_inputs_col_name, k)
var_list = {}
variables = graph.get_collection(ops.GraphKeys.VARIABLES,
scope=export_scope)
for v in variables:
if _should_include_node(v, export_scope):
var_list[ops.strip_name_scope(v.name, export_scope)] = v
scoped_meta_graph_def = create_meta_graph_def(
graph_def=graph_def,
graph=graph,
export_scope=export_scope,
**kwargs)
if filename:
training_util.write_graph(
scoped_meta_graph_def,
os.path.dirname(filename),
os.path.basename(filename),
as_text=as_text)
return scoped_meta_graph_def, var_list
开发者ID:rahimkanji,项目名称:tensorflow,代码行数:94,代码来源:meta_graph.py
注:本文中的tensorflow.python.framework.ops.strip_name_scope函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论