本文整理汇总了Python中tensorflow.python.framework.ops.op_scope函数的典型用法代码示例。如果您正苦于以下问题:Python op_scope函数的具体用法?Python op_scope怎么用?Python op_scope使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了op_scope函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: rnn_decoder
def rnn_decoder(decoder_inputs, initial_state, cell, scope=None):
"""RNN Decoder that creates training and sampling sub-graphs.
Args:
decoder_inputs: Inputs for decoder, list of tensors.
This is used only in training sub-graph.
initial_state: Initial state for the decoder.
cell: RNN cell to use for decoder.
scope: Scope to use, if None new will be produced.
Returns:
List of tensors for outputs and states for training and sampling sub-graphs.
"""
with vs.variable_scope(scope or "dnn_decoder"):
states, sampling_states = [initial_state], [initial_state]
outputs, sampling_outputs = [], []
with ops.op_scope([decoder_inputs, initial_state], "training"):
for i, inp in enumerate(decoder_inputs):
if i > 0:
vs.get_variable_scope().reuse_variables()
output, new_state = cell(inp, states[-1])
outputs.append(output)
states.append(new_state)
with ops.op_scope([initial_state], "sampling"):
for i, _ in enumerate(decoder_inputs):
if i == 0:
sampling_outputs.append(outputs[i])
sampling_states.append(states[i])
else:
sampling_output, sampling_state = cell(sampling_outputs[-1],
sampling_states[-1])
sampling_outputs.append(sampling_output)
sampling_states.append(sampling_state)
return outputs, states, sampling_outputs, sampling_states
开发者ID:0ruben,项目名称:tensorflow,代码行数:34,代码来源:seq2seq_ops.py
示例2: __init__
def __init__(self, example_indices, feature_indices, feature_values):
"""Creates a `SparseFeatureColumn` representation.
Args:
example_indices: A 1-D int64 tensor of shape `[N]`. Also, accepts
python lists, or numpy arrays.
feature_indices: A 1-D int64 tensor of shape `[N]`. Also, accepts
python lists, or numpy arrays.
feature_values: An optional 1-D tensor float tensor of shape `[N]`. Also,
accepts python lists, or numpy arrays.
Returns:
A `SparseFeatureColumn`
"""
with op_scope([example_indices, feature_indices], None,
'SparseFeatureColumn'):
self._example_indices = convert_to_tensor(example_indices,
name='example_indices',
dtype=dtypes.int64)
self._feature_indices = convert_to_tensor(feature_indices,
name='feature_indices',
dtype=dtypes.int64)
self._feature_values = None
if feature_values is not None:
with op_scope([feature_values], None, 'SparseFeatureColumn'):
self._feature_values = convert_to_tensor(feature_values,
name='feature_values',
dtype=dtypes.float32)
开发者ID:10imaging,项目名称:tensorflow,代码行数:28,代码来源:sdca_ops.py
示例3: _testGraphElements
def _testGraphElements(self, graph_elements):
scope_name = "my_scope"
with ops.op_scope(graph_elements, scope_name) as scope:
self.assertEqual("%s/" % scope_name, scope)
self.assertEqual(graph_elements[0].graph, ops.get_default_graph())
g1 = ops.Graph()
c = g1.create_op("c", [], [dtypes.float32])
with self.assertRaises(ValueError):
with ops.op_scope(graph_elements + [c], scope_name):
pass
开发者ID:4chin,项目名称:tensorflow,代码行数:10,代码来源:ops_test.py
示例4: testEmptyScopeName
def testEmptyScopeName(self):
g0 = ops.Graph()
a = g0.create_op("a", [], [dtypes.float32])
b = g0.create_op("b", [], [dtypes.float32])
with ops.op_scope([a, b], "") as scope:
self.assertEqual("", scope)
self.assertEqual(g0, ops.get_default_graph())
with ops.op_scope([a, b], "", "my_default_scope") as scope:
self.assertEqual("", scope)
self.assertEqual(g0, ops.get_default_graph())
开发者ID:4chin,项目名称:tensorflow,代码行数:10,代码来源:ops_test.py
示例5: testNoScopeName
def testNoScopeName(self):
g0 = ops.Graph()
values = [
g0.create_op("a", [], [dtypes.float32]),
g0.create_op("b", [], [dtypes.float32])]
with self.assertRaises(ValueError):
with ops.op_scope(values, None):
pass
with self.assertRaises(ValueError):
with ops.op_scope(values, None, None):
pass
开发者ID:4chin,项目名称:tensorflow,代码行数:11,代码来源:ops_test.py
示例6: testDefaultScopeName
def testDefaultScopeName(self):
g0 = ops.Graph()
a = g0.create_op("a", [], [dtypes.float32])
b = g0.create_op("b", [], [dtypes.float32])
scope_name = "my_scope"
default_scope_name = "my_default_scope"
with ops.op_scope([a, b], scope_name, default_scope_name) as scope:
self.assertEqual("%s/" % scope_name, scope)
self.assertEqual(g0, ops.get_default_graph())
with ops.op_scope([a, b], None, default_scope_name) as scope:
self.assertEqual("%s/" % default_scope_name, scope)
self.assertEqual(g0, ops.get_default_graph())
开发者ID:4chin,项目名称:tensorflow,代码行数:12,代码来源:ops_test.py
示例7: one_hot_encoding
def one_hot_encoding(labels,
num_classes,
on_value=1.0,
off_value=0.0,
outputs_collections=None,
scope=None):
"""Transform numeric labels into onehot_labels using tf.one_hot.
Args:
labels: [batch_size] target labels.
num_classes: total number of classes.
on_value: A scalar defining the on-value.
off_value: A scalar defining the off-value.
outputs_collections: collection to add the outputs.
scope: Optional scope for op_scope.
Returns:
one hot encoding of the labels.
"""
with ops.op_scope([labels, num_classes], scope, 'OneHotEncoding') as sc:
if labels.dtype == dtypes.int32:
labels = standard_ops.to_int64(labels)
outputs = standard_ops.one_hot(labels,
num_classes,
on_value=on_value,
off_value=off_value)
return utils.collect_named_outputs(outputs_collections, sc, outputs)
开发者ID:brando90,项目名称:tensor_flow_experiments,代码行数:25,代码来源:bn_official_excerp.py
示例8: ones
def ones(shape, dtype=dtypes.float32, name=None):
"""Creates a tensor with all elements set to 1.
This operation returns a tensor of type `dtype` with shape `shape` and all
elements set to 1.
For example:
```python
tf.ones([2, 3], int32) ==> [[1, 1, 1], [1, 1, 1]]
```
Args:
shape: Either a list of integers, or a 1-D `Tensor` of type `int32`.
dtype: The type of an element in the resulting `Tensor`.
name: A name for the operation (optional).
Returns:
A `Tensor` with all elements set to 1.
"""
with ops.op_scope([shape], name, "ones") as name:
if isinstance(shape, list):
output = constant(1, shape=shape, dtype=dtype, name=name)
else:
shape = ops.convert_to_tensor(shape, name="shape")
output = fill(shape, constant(1, dtype=dtype), name=name)
assert output.dtype.base_dtype == dtypes.as_dtype(dtype).base_dtype
return output
开发者ID:DapengLan,项目名称:tensorflow,代码行数:28,代码来源:array_ops.py
示例9: dropout
def dropout(inputs,
keep_prob=0.5,
noise_shape=None,
is_training=True,
outputs_collections=None,
scope=None):
"""Returns a dropout op applied to the input.
With probability `keep_prob`, outputs the input element scaled up by
`1 / keep_prob`, otherwise outputs `0`. The scaling is so that the expected
sum is unchanged.
Args:
inputs: the tensor to pass to the nn.dropout op.
keep_prob: A scalar `Tensor` with the same type as x. The probability
that each element is kept.
noise_shape: A 1-D `Tensor` of type `int32`, representing the
shape for randomly generated keep/drop flags.
is_training: A bool `Tensor` indicating whether or not the model
is in training mode. If so, dropout is applied and values scaled.
Otherwise, inputs is returned.
outputs_collections: collection to add the outputs.
scope: Optional scope for op_scope.
Returns:
a tensor representing the output of the operation.
"""
with ops.op_scope([inputs], scope, 'Dropout') as sc:
is_training = ops.convert_to_tensor(is_training)
outputs = control_flow_ops.cond(
is_training,
lambda: nn.dropout(inputs, keep_prob, noise_shape),
lambda: inputs)
return utils.collect_named_outputs(outputs_collections, sc, outputs)
开发者ID:brando90,项目名称:tensor_flow_experiments,代码行数:31,代码来源:bn_official_excerp.py
示例10: range_input_producer
def range_input_producer(limit, num_epochs=None, shuffle=True, seed=None,
capacity=32, name=None):
"""Produces the integers from 0 to limit-1 in a queue.
Args:
limit: An int32 scalar tensor.
num_epochs: An integer (optional). If specified, `range_input_producer`
produces each integer `num_epochs` times before generating an
OutOfRange error. If not specified, `range_input_producer` can cycle
through the integers an unlimited number of times.
shuffle: Boolean. If true, the integers are randomly shuffled within each
epoch.
seed: An integer (optional). Seed used if shuffle == True.
capacity: An integer. Sets the queue capacity.
name: A name for the operations (optional).
Returns:
A Queue with the output integers. A `QueueRunner` for the Queue
is added to the current `Graph`'s `QUEUE_RUNNER` collection.
"""
with ops.op_scope([limit], name, "input_producer") as name:
range_tensor = math_ops.range(limit)
return _input_producer(
range_tensor, dtypes.int32, num_epochs, shuffle, seed, capacity, name,
"fraction_of_%d_full" % capacity)
开发者ID:adam-erickson,项目名称:tensorflow,代码行数:25,代码来源:input.py
示例11: rgb_to_grayscale
def rgb_to_grayscale(images, name=None):
"""Converts one or more images from RGB to Grayscale.
Outputs a tensor of the same `DType` and rank as `images`. The size of the
last dimension of the output is 1, containing the Grayscale value of the
pixels.
Args:
images: The RGB tensor to convert. Last dimension must have size 3 and
should contain RGB values.
name: A name for the operation (optional).
Returns:
The converted grayscale image(s).
"""
with ops.op_scope([images], name, 'rgb_to_grayscale') as name:
images = ops.convert_to_tensor(images, name='images')
# Remember original dtype to so we can convert back if needed
orig_dtype = images.dtype
flt_image = convert_image_dtype(images, dtypes.float32)
# Reference for converting between RGB and grayscale.
# https://en.wikipedia.org/wiki/Luma_%28video%29
rgb_weights = [0.2989, 0.5870, 0.1140]
rank_1 = array_ops.expand_dims(array_ops.rank(images) - 1, 0)
gray_float = math_ops.reduce_sum(flt_image * rgb_weights,
rank_1,
keep_dims=True)
gray_float.set_shape(images.get_shape()[:-1].concatenate([1]))
return convert_image_dtype(gray_float, orig_dtype, name=name)
开发者ID:31H0B1eV,项目名称:tensorflow,代码行数:30,代码来源:image_ops.py
示例12: enqueue_many
def enqueue_many(self, vals, name=None):
"""Enqueues zero or elements to this queue.
This operation slices each component tensor along the 0th dimension to
make multiple queue elements. All of the tensors in `vals` must have the
same size in the 0th dimension.
If the queue is full when this operation executes, it will block
until all of the elements have been enqueued.
Args:
vals: The tensor or tuple of tensors from which the queue elements
are taken.
name: A name for the operation (optional).
Returns:
The operation that enqueues a batch of tuples of tensors to the queue.
"""
if not isinstance(vals, (list, tuple)):
vals = [vals]
with ops.op_scope(vals, name, "%s_EnqueueMany" % self._name) as scope:
vals = self._check_enqueue_dtypes(vals)
# NOTE(mrry): Not using a shape function because we need access to
# the `QueueBase` object.
batch_dim = vals[0].get_shape().with_rank_at_least(1)[0]
for val, shape in zip(vals, self._shapes):
batch_dim = batch_dim.merge_with(
val.get_shape().with_rank_at_least(1)[0])
val.get_shape()[1:].assert_is_compatible_with(shape)
return gen_data_flow_ops._queue_enqueue_many(
self._queue_ref, vals, name=scope)
开发者ID:DapengLan,项目名称:tensorflow,代码行数:34,代码来源:data_flow_ops.py
示例13: pdf
def pdf(self, x, name="pdf"):
"""The PDF of observations in `x` under these Uniform distribution(s).
Args:
x: tensor of dtype `dtype`, must be broadcastable with `a` and `b`.
name: The name to give this op.
Returns:
pdf: tensor of dtype `dtype`, the pdf values of `x`. If `x` is `nan`, will
return `nan`.
"""
with ops.name_scope(self.name):
with ops.op_scope([self.a, self.b, x], name):
x = ops.convert_to_tensor(x, name="x")
if x.dtype != self.dtype:
raise TypeError("Input x dtype does not match dtype: %s vs. %s" %
(x.dtype, self.dtype))
broadcasted_x = x * self._ones()
return math_ops.select(
math_ops.is_nan(broadcasted_x), broadcasted_x, math_ops.select(
math_ops.logical_or(broadcasted_x < self.a,
broadcasted_x > self.b),
array_ops.zeros_like(broadcasted_x),
(1.0 / self.range()) * array_ops.ones_like(broadcasted_x)))
开发者ID:0ruben,项目名称:tensorflow,代码行数:25,代码来源:uniform.py
示例14: log_prob
def log_prob(self, x, name="log_prob"):
"""Log prob of observations in `x` under these Gamma distribution(s).
Args:
x: tensor of dtype `dtype`, must be broadcastable with `alpha` and `beta`.
name: The name to give this op.
Returns:
log_prob: tensor of dtype `dtype`, the log-PDFs of `x`.
Raises:
TypeError: if `x` and `alpha` are different dtypes.
"""
with ops.name_scope(self.name):
with ops.op_scope([self._alpha, self._beta, x], name):
alpha = self._alpha
beta = self._beta
x = ops.convert_to_tensor(x)
x = control_flow_ops.with_dependencies(
[check_ops.assert_positive(x)] if self.strict else [],
x)
contrib_tensor_util.assert_same_float_dtype(tensors=[x,],
dtype=self.dtype)
return (alpha * math_ops.log(beta) + (alpha - 1) * math_ops.log(x) -
beta * x - math_ops.lgamma(self._alpha))
开发者ID:31H0B1eV,项目名称:tensorflow,代码行数:26,代码来源:gamma.py
示例15: floordiv
def floordiv(x, y, name=None):
"""Divides `x / y` elementwise, rounding down for floating point.
The same as `tf.div(x,y)` for integers, but uses `tf.floor(tf.div(x,y))` for
floating point arguments so that the result is always an integer (though
possibly an integer represented as floating point). This op is generated by
`x // y` floor division in Python 3 and in Python 2.7 with
`from __future__ import division`.
Note that for efficiency, `floordiv` uses C semantics for negative numbers
(unlike Python and Numpy).
`x` and `y` must have the same type, and the result will have the same type
as well.
Args:
x: `Tensor` numerator of real numeric type.
y: `Tensor` denominator of real numeric type.
name: A name for the operation (optional).
Returns:
`x / y` rounded down (except possibly towards zero for negative integers).
Raises:
TypeError: If the inputs are complex.
"""
with ops.op_scope([x, y], name, "floordiv") as name:
x = ops.convert_to_tensor(x, name="x")
dtype = x.dtype
if dtype.is_floating:
return floor(div(x, y), name=name)
else:
if not dtype.is_integer:
raise TypeError("Expected floating point or integer, got %r" % dtype)
return div(x, y, name=name)
开发者ID:13331151,项目名称:tensorflow,代码行数:35,代码来源:math_ops.py
示例16: sequence_loss
def sequence_loss(logits, targets, weights, num_decoder_symbols,
average_across_timesteps=True, average_across_batch=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits, batch-collapsed.
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
num_decoder_symbols: Integer, number of decoder symbols (output classes).
average_across_timesteps: If set, divide the returned cost by the total
label weight.
average_across_batch: If set, divide the returned cost by the batch size.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, defaults to "sequence_loss".
Returns:
A scalar float Tensor: The average log-perplexity per symbol (weighted).
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
with ops.op_scope(logits + targets + weights, name, "sequence_loss"):
cost = math_ops.reduce_sum(sequence_loss_by_example(
logits, targets, weights, num_decoder_symbols,
average_across_timesteps=average_across_timesteps,
softmax_loss_function=softmax_loss_function))
if average_across_batch:
batch_size = array_ops.shape(targets[0])[0]
return cost / math_ops.cast(batch_size, dtypes.float32)
else:
return cost
开发者ID:maxkarlovitz,项目名称:tensorflow,代码行数:33,代码来源:seq2seq.py
示例17: mode
def mode(self, name="mode"):
"""Mode of each batch member.
The mode of a gamma distribution is `(alpha - 1) / beta` when `alpha > 1`,
and `NaN` otherwise. If `self.strict_statistics` is `True`, an exception
will be raised rather than returning `NaN`.
Args:
name: A name to give this op.
Returns:
The mode for every batch member, a `Tensor` with same `dtype` as self.
"""
alpha = self._alpha
beta = self._beta
with ops.name_scope(self.name):
with ops.op_scope([alpha, beta], name):
mode_if_defined = (alpha - 1.0) / beta
if self.strict_statistics:
one = ops.convert_to_tensor(1.0, dtype=self.dtype)
return control_flow_ops.with_dependencies(
[check_ops.assert_less(one, alpha)], mode_if_defined)
else:
alpha_ge_1 = alpha >= 1.0
nan = np.nan * self._ones()
return math_ops.select(alpha_ge_1, mode_if_defined, nan)
开发者ID:31H0B1eV,项目名称:tensorflow,代码行数:26,代码来源:gamma.py
示例18: _check_labels_and_scores
def _check_labels_and_scores(boolean_labels, scores, check_shape):
"""Check the rank of labels/scores, return tensor versions."""
with ops.op_scope([boolean_labels, scores], '_check_labels_and_scores'):
boolean_labels = ops.convert_to_tensor(boolean_labels,
name='boolean_labels')
scores = ops.convert_to_tensor(scores, name='scores')
if boolean_labels.dtype != dtypes.bool:
raise ValueError(
'Argument boolean_labels should have dtype bool. Found: %s',
boolean_labels.dtype)
if check_shape:
labels_rank_1 = logging_ops.Assert(
math_ops.equal(1, array_ops.rank(boolean_labels)),
['Argument boolean_labels should have rank 1. Found: ',
boolean_labels.name, array_ops.shape(boolean_labels)])
scores_rank_1 = logging_ops.Assert(
math_ops.equal(1, array_ops.rank(scores)),
['Argument scores should have rank 1. Found: ', scores.name,
array_ops.shape(scores)])
with ops.control_dependencies([labels_rank_1, scores_rank_1]):
return boolean_labels, scores
else:
return boolean_labels, scores
开发者ID:285219011,项目名称:hello-world,代码行数:27,代码来源:histogram_ops.py
示例19: _strict_conv1d
def _strict_conv1d(x, h):
"""Return x * h for rank 1 tensors x and h."""
with ops.op_scope([x, h], 'strict_conv1d'):
x = array_ops.reshape(x, (1, -1, 1, 1))
h = array_ops.reshape(h, (-1, 1, 1, 1))
result = nn_ops.conv2d(x, h, [1, 1, 1, 1], 'SAME')
return array_ops.reshape(result, [-1])
开发者ID:285219011,项目名称:hello-world,代码行数:7,代码来源:histogram_ops.py
示例20: adjust_brightness
def adjust_brightness(image, delta):
"""Adjust the brightness of RGB or Grayscale images.
This is a convenience method that converts an RGB image to float
representation, adjusts its brightness, and then converts it back to the
original data type. If several adjustments are chained it is advisable to
minimize the number of redundant conversions.
The value `delta` is added to all components of the tensor `image`. Both
`image` and `delta` are converted to `float` before adding (and `image` is
scaled appropriately if it is in fixed-point representation). For regular
images, `delta` should be in the range `[0,1)`, as it is added to the image in
floating point representation, where pixel values are in the `[0,1)` range.
Args:
image: A tensor.
delta: A scalar. Amount to add to the pixel values.
Returns:
A brightness-adjusted tensor of the same shape and type as `image`.
"""
with ops.op_scope([image, delta], None, 'adjust_brightness') as name:
image = ops.convert_to_tensor(image, name='image')
# Remember original dtype to so we can convert back if needed
orig_dtype = image.dtype
flt_image = convert_image_dtype(image, dtypes.float32)
adjusted = math_ops.add(flt_image,
math_ops.cast(delta, dtypes.float32),
name=name)
return convert_image_dtype(adjusted, orig_dtype, saturate=True)
开发者ID:31H0B1eV,项目名称:tensorflow,代码行数:32,代码来源:image_ops.py
注:本文中的tensorflow.python.framework.ops.op_scope函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论