本文整理汇总了Python中tensorflow.python.framework.ops._name_from_scope_name函数的典型用法代码示例。如果您正苦于以下问题:Python _name_from_scope_name函数的具体用法?Python _name_from_scope_name怎么用?Python _name_from_scope_name使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了_name_from_scope_name函数的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: _init_from_args
def _init_from_args(self, name):
"""Initialize the CriticalSection from constructor arguments."""
with ops.name_scope(name, "CriticalSection", []) as name:
with ops.control_dependencies(None):
# pylint: disable=protected-access
handle_name = ops._name_from_scope_name(name)
container = ops.get_default_graph()._container
# pylint: enable=protected-access
if container is None:
container = ""
self._handle = gen_resource_variable_ops.critical_section_op(
shared_name=handle_name, name=name)
if context.in_graph_mode():
ops.add_to_collections(CRITICAL_SECTIONS, self)
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:14,代码来源:critical_section_ops.py
示例2: __init__
def __init__(self, # pylint: disable=super-init-not-called
initial_value=None,
trainable=True,
name=None,
dtype=None,
constraint=None,
initialize=True,
**unused_kwargs):
"""Creates a variable.
Args:
initial_value: A `Tensor`, or Python object convertible to a `Tensor`,
which is the initial value for the Variable. The initial value must have
a shape specified unless `validate_shape` is set to False. Can also be a
callable with no argument that returns the initial value when called.
(Note that initializer functions from init_ops.py must first be bound
to a shape before being used here.)
trainable: If `True`, automatically watches this variable on GradientTape
whenever it's used.
name: Optional name for the variable. Defaults to `'Variable'` and gets
uniquified automatically.
dtype: If set, initial_value will be converted to the given type.
If None, either the datatype will be kept (if initial_value is
a Tensor) or float32 will be used (if it is a Python object convertible
to a Tensor).
constraint: An optional projection function to be applied to the variable
after being updated by an `Optimizer` (e.g. used to implement norm
constraints or value constraints for layer weights). The function must
take as input the unprojected Tensor representing the value of the
variable and return the Tensor for the projected value
(which must have the same shape). Constraints are not safe to
use when doing asynchronous distributed training.
initialize: if True, runs initialization in eager execution; leaves the
variable uninitialized otherwise.
Raises:
ValueError: If the initial value is not specified, or does not have a
shape and `validate_shape` is `True`.
"""
if initial_value is None:
raise ValueError("initial_value must be specified.")
init_from_fn = callable(initial_value)
if isinstance(initial_value, ops.Tensor) and hasattr(
initial_value, "graph") and initial_value.graph.building_function:
raise ValueError("Tensor-typed variable initializers must either be "
"wrapped in an init_scope or callable "
"(e.g., `tf.Variable(lambda : "
"tf.truncated_normal([10, 40]))`) when building "
"functions. Please file a feature request if this "
"restriction inconveniences you.")
if constraint is not None and not callable(constraint):
raise ValueError("The `constraint` argument must be a callable.")
if isinstance(initial_value, checkpointable.CheckpointInitialValue):
self._maybe_initialize_checkpointable()
self._update_uid = initial_value.checkpoint_position.restore_uid
initial_value = initial_value.wrapped_value
self._trainable = trainable
self._save_slice_info = None
# Store the graph key so optimizers know how to only retrieve variables from
# this graph.
self._graph_key = ops.get_default_graph()._graph_key # pylint: disable=protected-access
with ops.init_scope():
self._in_graph_mode = not context.executing_eagerly()
with ops.name_scope(name, "Variable", []
if init_from_fn else [initial_value]) as name:
# pylint: disable=protected-access
handle_name = ops._name_from_scope_name(name)
shared_name = handle_name
if init_from_fn:
# Use attr_scope and device(None) to simulate the behavior of
# colocate_with when the variable we want to colocate with doesn't
# yet exist.
if self._in_graph_mode:
with ops.name_scope("Initializer"), ops.device(None):
initial_value = ops.convert_to_tensor(
initial_value(), name="initial_value", dtype=dtype)
self._handle = _eager_safe_variable_handle(
shape=initial_value.get_shape(),
dtype=initial_value.dtype.base_dtype,
shared_name=shared_name,
name=name,
graph_mode=self._in_graph_mode)
self._shape = initial_value.get_shape()
else:
initial_value = initial_value()
with ops.name_scope("Initializer"):
initial_value = ops.convert_to_tensor(
initial_value, name="initial_value", dtype=dtype)
self._handle = _eager_safe_variable_handle(
shape=initial_value.get_shape(),
dtype=initial_value.dtype.base_dtype,
shared_name=shared_name,
name=name,
graph_mode=False)
self._shape = initial_value.get_shape()
# pylint: enable=protected-access
#.........这里部分代码省略.........
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:101,代码来源:parameter_server.py
示例3: _init_from_args
def _init_from_args(self,
initial_value=None,
trainable=True,
collections=None,
validate_shape=True,
caching_device=None,
name=None,
dtype=None,
constraint=None):
"""Creates a variable.
Args:
initial_value: A `Tensor`, or Python object convertible to a `Tensor`,
which is the initial value for the Variable. The initial value must have
a shape specified unless `validate_shape` is set to False. Can also be a
callable with no argument that returns the initial value when called.
(Note that initializer functions from init_ops.py must first be bound
to a shape before being used here.)
trainable: If `True`, the default, also adds the variable to the graph
collection `GraphKeys.TRAINABLE_VARIABLES`. This collection is used as
the default list of variables to use by the `Optimizer` classes.
collections: List of graph collections keys. The new variable is added to
these collections. Defaults to `[GraphKeys.GLOBAL_VARIABLES]`.
validate_shape: Ignored. Provided for compatibility with tf.Variable.
caching_device: Optional device string or function describing where the
Variable should be cached for reading. Defaults to the Variable's
device. If not `None`, caches on another device. Typical use is to
cache on the device where the Ops using the Variable reside, to
deduplicate copying through `Switch` and other conditional statements.
name: Optional name for the variable. Defaults to `'Variable'` and gets
uniquified automatically.
dtype: If set, initial_value will be converted to the given type.
If None, either the datatype will be kept (if initial_value is
a Tensor) or float32 will be used (if it is a Python object convertible
to a Tensor).
constraint: An optional projection function to be applied to the variable
after being updated by an `Optimizer` (e.g. used to implement norm
constraints or value constraints for layer weights). The function must
take as input the unprojected Tensor representing the value of the
variable and return the Tensor for the projected value
(which must have the same shape). Constraints are not safe to
use when doing asynchronous distributed training.
Raises:
ValueError: If the initial value is not specified, or does not have a
shape and `validate_shape` is `True`.
@compatibility(eager)
When Eager Execution is enabled, variables are never added to collections.
It is not implicitly added to the `GLOBAL_VARIABLES` or
`TRAINABLE_VARIABLES` collections, and the `collections` argument is
ignored.
@end_compatibility
"""
if initial_value is None:
raise ValueError("initial_value must be specified.")
init_from_fn = callable(initial_value)
if collections is None:
collections = [ops.GraphKeys.GLOBAL_VARIABLES]
if not isinstance(collections, (list, tuple, set)):
raise ValueError(
"collections argument to Variable constructor must be a list, tuple, "
"or set. Got %s of type %s" % (collections, type(collections)))
if constraint is not None and not callable(constraint):
raise ValueError("The `constraint` argument must be a callable.")
if isinstance(initial_value, checkpointable.CheckpointInitialValue):
self._maybe_initialize_checkpointable()
self._update_uid = initial_value.checkpoint_position.restore_uid
initial_value = initial_value.wrapped_value
self._trainable = trainable
if trainable and ops.GraphKeys.TRAINABLE_VARIABLES not in collections:
collections = list(collections) + [ops.GraphKeys.TRAINABLE_VARIABLES]
self._save_slice_info = None
# Store the graph key so optimizers know how to only retrieve variables from
# this graph.
self._graph_key = ops.get_default_graph()._graph_key # pylint: disable=protected-access
with ops.init_scope():
self._in_graph_mode = context.in_graph_mode()
with ops.name_scope(name, "Variable", []
if init_from_fn else [initial_value]) as name:
# pylint: disable=protected-access
handle_name = ops._name_from_scope_name(name)
if init_from_fn:
# Use attr_scope and device(None) to simulate the behavior of
# colocate_with when the variable we want to colocate with doesn't
# yet exist.
if self._in_graph_mode:
attr = attr_value_pb2.AttrValue(
list=attr_value_pb2.AttrValue.ListValue(
s=[compat.as_bytes("loc:@%s" % handle_name)]))
with ops.get_default_graph()._attr_scope({"_class": attr}):
with ops.name_scope("Initializer"), ops.device(None):
initial_value = ops.convert_to_tensor(
initial_value(), name="initial_value", dtype=dtype)
self._handle = _eager_safe_variable_handle(
shape=initial_value.get_shape(),
dtype=initial_value.dtype.base_dtype,
#.........这里部分代码省略.........
开发者ID:keithc61,项目名称:tensorflow,代码行数:101,代码来源:resource_variable_ops.py
示例4: _init_from_args
def _init_from_args(self,
initial_value=None,
trainable=True,
collections=None,
validate_shape=True,
caching_device=None,
name=None,
dtype=None):
"""Creates a variable.
Args:
initial_value: A `Tensor`, or Python object convertible to a `Tensor`,
which is the initial value for the Variable. The initial value must have
a shape specified unless `validate_shape` is set to False. Can also be a
callable with no argument that returns the initial value when called.
(Note that initializer functions from init_ops.py must first be bound
to a shape before being used here.)
trainable: If `True`, the default, also adds the variable to the graph
collection `GraphKeys.TRAINABLE_VARIABLES`. This collection is used as
the default list of variables to use by the `Optimizer` classes.
collections: List of graph collections keys. The new variable is added to
these collections. Defaults to `[GraphKeys.GLOBAL_VARIABLES]`.
validate_shape: Ignored. Provided for compatibility with tf.Variable.
caching_device: Optional device string or function describing where the
Variable should be cached for reading. Defaults to the Variable's
device. If not `None`, caches on another device. Typical use is to
cache on the device where the Ops using the Variable reside, to
deduplicate copying through `Switch` and other conditional statements.
name: Optional name for the variable. Defaults to `'Variable'` and gets
uniquified automatically.
dtype: If set, initial_value will be converted to the given type.
If None, either the datatype will be kept (if initial_value is
a Tensor) or float32 will be used (if it is a Python object convertible
to a Tensor).
Raises:
ValueError: If the initial value is not specified, or does not have a
shape and `validate_shape` is `True`.
"""
if initial_value is None:
raise ValueError("initial_value must be specified.")
init_from_fn = callable(initial_value)
if collections is None:
collections = [ops.GraphKeys.GLOBAL_VARIABLES]
if not isinstance(collections, (list, tuple, set)):
raise ValueError(
"collections argument to Variable constructor must be a list, tuple, "
"or set. Got %s of type %s" % (collections, type(collections)))
if trainable and ops.GraphKeys.TRAINABLE_VARIABLES not in collections:
collections = list(collections) + [ops.GraphKeys.TRAINABLE_VARIABLES]
self._save_slice_info = None
with ops.control_dependencies(None):
with ops.name_scope(name, "Variable", [] if init_from_fn else
[initial_value]) as name:
# pylint: disable=protected-access
true_name = ops._name_from_scope_name(name)
if init_from_fn:
# Use attr_scope and device(None) to simulate the behavior of
# colocate_with when the variable we want to colocate with doesn't
# yet exist.
attr = attr_value_pb2.AttrValue(
list=attr_value_pb2.AttrValue.ListValue(
s=[compat.as_bytes("loc:@%s" % true_name)]))
with ops.get_default_graph()._attr_scope({"_class": attr}):
with ops.name_scope("Initializer"), ops.device(None):
self._initial_value = ops.convert_to_tensor(
initial_value(), name="initial_value", dtype=dtype)
self._handle = gen_resource_variable_ops.var_handle_op(
shape=self._initial_value.get_shape(),
dtype=self._initial_value.dtype.base_dtype,
shared_name=true_name, name=name)
# pylint: enable=protected-access
# Or get the initial value from a Tensor or Python object.
else:
self._initial_value = ops.convert_to_tensor(
initial_value, name="initial_value", dtype=dtype)
self._handle = gen_resource_variable_ops.var_handle_op(
shape=self._initial_value.get_shape(),
dtype=self._initial_value.dtype.base_dtype,
shared_name=true_name, name=name)
self._dtype = self._initial_value.dtype.base_dtype
with ops.name_scope("IsInitialized"):
self._is_initialized_op = (
gen_resource_variable_ops.var_is_initialized_op(self._handle))
if initial_value is not None:
with ops.name_scope("Assign") as n, ops.colocate_with(self._handle):
self._initialize_op = gen_resource_variable_ops.assign_variable_op(
self._handle, self._initial_value, name=n)
with ops.name_scope("Read"), ops.colocate_with(self._handle):
# Manually assign reads to the handle's device to avoid log messages.
with ops.device(self._handle.device):
value = gen_resource_variable_ops.read_variable_op(
self._handle, dtype=self._dtype)
self._graph_element = value
if caching_device is not None:
#.........这里部分代码省略.........
开发者ID:chenjun0210,项目名称:tensorflow,代码行数:101,代码来源:resource_variable_ops.py
示例5: _init_from_args
def _init_from_args(self,
initial_value=None,
trainable=True,
collections=None,
validate_shape=True,
caching_device=None,
name=None,
dtype=None,
expected_shape=None):
"""Creates a new variable from arguments.
Args:
initial_value: A `Tensor`, or Python object convertible to a `Tensor`,
which is the initial value for the Variable. The initial value must have
a shape specified unless `validate_shape` is set to False. Can also be a
callable with no argument that returns the initial value when called.
(Note that initializer functions from init_ops.py must first be bound
to a shape before being used here.)
trainable: If `True`, the default, also adds the variable to the graph
collection `GraphKeys.TRAINABLE_VARIABLES`. This collection is used as
the default list of variables to use by the `Optimizer` classes.
collections: List of graph collections keys. The new variable is added to
these collections. Defaults to `[GraphKeys.GLOBAL_VARIABLES]`.
validate_shape: If `False`, allows the variable to be initialized with a
value of unknown shape. If `True`, the default, the shape of
`initial_value` must be known.
caching_device: Optional device string or function describing where the
Variable should be cached for reading. Defaults to the Variable's
device. If not `None`, caches on another device. Typical use is to
cache on the device where the Ops using the Variable reside, to
deduplicate copying through `Switch` and other conditional statements.
name: Optional name for the variable. Defaults to `'Variable'` and gets
uniquified automatically.
dtype: If set, initial_value will be converted to the given type.
If None, either the datatype will be kept (if initial_value is
a Tensor) or float32 will be used (if it is a Python object convertible
to a Tensor).
expected_shape: Deprecated. Ignored.
Raises:
ValueError: If the initial value is not specified, or does not have a
shape and `validate_shape` is `True`.
"""
_ = expected_shape
if initial_value is None:
raise ValueError("initial_value must be specified.")
init_from_fn = callable(initial_value)
if collections is None:
collections = [ops.GraphKeys.GLOBAL_VARIABLES]
if not isinstance(collections, (list, tuple, set)):
raise ValueError(
"collections argument to Variable constructor must be a list, tuple, "
"or set. Got %s of type %s" % (collections, type(collections)))
if trainable and ops.GraphKeys.TRAINABLE_VARIABLES not in collections:
collections = list(collections) + [ops.GraphKeys.TRAINABLE_VARIABLES]
with ops.control_dependencies(None):
with ops.name_scope(name, "Variable", [] if init_from_fn else
[initial_value]) as name:
if init_from_fn:
# Use attr_scope and device(None) to simulate the behavior of
# colocate_with when the variable we want to colocate with doesn't
# yet exist.
true_name = ops._name_from_scope_name(name)
attr = attr_value_pb2.AttrValue(
list=attr_value_pb2.AttrValue.ListValue(
s=[compat.as_bytes("loc:@%s" % true_name)]))
# pylint: disable=protected-access
with ops.get_default_graph()._attr_scope({"_class": attr}):
with ops.name_scope("Initializer"), ops.device(None):
self._initial_value = ops.convert_to_tensor(
initial_value(), name="initial_value", dtype=dtype)
shape = (self._initial_value.get_shape()
if validate_shape else tensor_shape.unknown_shape())
self._variable = state_ops.variable_op_v2(
shape,
self._initial_value.dtype.base_dtype,
name=name)
# Or get the initial value from a Tensor or Python object.
else:
self._initial_value = ops.convert_to_tensor(
initial_value, name="initial_value", dtype=dtype)
shape = (self._initial_value.get_shape()
if validate_shape else tensor_shape.unknown_shape())
# In this case, the variable op can't be created until after the
# initial_value has been converted to a Tensor with a known type.
self._variable = state_ops.variable_op_v2(
shape,
self._initial_value.dtype.base_dtype,
name=name)
# Manually overrides the variable's shape with the initial value's.
if validate_shape:
initial_value_shape = self._initial_value.get_shape()
if not initial_value_shape.is_fully_defined():
raise ValueError("initial_value must have a shape specified: %s" %
self._initial_value)
#.........这里部分代码省略.........
开发者ID:LugarkPirog,项目名称:tensorflow,代码行数:101,代码来源:variables.py
示例6: __init__
def __init__(self, # pylint: disable=super-init-not-called
initial_value=None,
trainable=None,
caching_device=None,
name=None,
dtype=None,
constraint=None,
add_initializers_to=None,
lifted_initializer_graph=None,
**unused_kwargs):
"""Creates a variable.
Args:
initial_value: A `Tensor`, or Python object convertible to a `Tensor`,
which is the initial value for the Variable. The initial value must have
a shape specified unless `validate_shape` is set to False. Can also be a
callable with no argument that returns the initial value when called.
(Note that initializer functions from init_ops.py must first be bound
to a shape before being used here.)
trainable: If `True`, GradientTapes automatically watch uses of this
Variable.
caching_device: Optional device string or function describing where the
Variable should be cached for reading. Defaults to the Variable's
device. If not `None`, caches on another device. Typical use is to
cache on the device where the Ops using the Variable reside, to
deduplicate copying through `Switch` and other conditional statements.
name: Optional name for the variable. Defaults to `'Variable'` and gets
uniquified automatically.
dtype: If set, initial_value will be converted to the given type.
If None, either the datatype will be kept (if initial_value is
a Tensor) or float32 will be used (if it is a Python object convertible
to a Tensor).
constraint: An optional projection function to be applied to the variable
after being updated by an `Optimizer` (e.g. used to implement norm
constraints or value constraints for layer weights). The function must
take as input the unprojected Tensor representing the value of the
variable and return the Tensor for the projected value
(which must have the same shape). Constraints are not safe to
use when doing asynchronous distributed training.
add_initializers_to: if not None and not in legacy graph mode, the
initializer tensor will be added to this map in addition to adding the
assignment to the function.
lifted_initializer_graph: FuncGraph to try to lift initializers to.
Raises:
ValueError: If the initial value is not specified, or does not have a
shape and `validate_shape` is `True`.
RuntimeError: If called outside of a function definition.
"""
if not ops.inside_function():
# If we've been init_scope()d out of the function definition nothing to do
# here; we can't really do the capturing or conditional logic.
resource_variable_ops.ResourceVariable.__init__(
self, initial_value=initial_value, trainable=trainable,
caching_device=caching_device, name=name, dtype=dtype,
constraint=constraint)
return
with ops.init_scope():
self._in_graph_mode = not context.executing_eagerly()
if initial_value is None:
raise ValueError("initial_value must be specified.")
init_from_fn = callable(initial_value)
if constraint is not None and not callable(constraint):
raise ValueError("The `constraint` argument must be a callable.")
if isinstance(initial_value, trackable.CheckpointInitialValue):
self._maybe_initialize_trackable()
self._update_uid = initial_value.checkpoint_position.restore_uid
initial_value = initial_value.wrapped_value
if trainable is None:
trainable = True
self._trainable = trainable
self._save_slice_info = None
self._initial_value = None
self._initializer_op = None
self._is_initialized_op = None
self._graph_element = None
self._cached_value = None
# Store the graph key so optimizers know how to only retrieve variables from
# this graph. Guaranteed to be the same as the eager graph_key.
self._graph_key = ops.get_default_graph()._graph_key # pylint: disable=protected-access
with ops.name_scope(name, "Variable", []
if init_from_fn else [initial_value]) as name:
# pylint: disable=protected-access
with ops.init_scope():
handle_name = ops._name_from_scope_name(name)
unique_id = "%s_%d" % (handle_name, ops.uid())
shared_name = context.shared_name(unique_id)
with ops.name_scope("Initializer"), ops.device(None):
initial_value = ops.convert_to_tensor(
initial_value() if init_from_fn else initial_value,
name="initial_value", dtype=dtype)
with ops.init_scope():
self._handle = resource_variable_ops.eager_safe_variable_handle(
initial_value=initial_value,
shared_name=shared_name,
name=name,
graph_mode=self._in_graph_mode)
#.........这里部分代码省略.........
开发者ID:kylin9872,项目名称:tensorflow,代码行数:101,代码来源:def_function.py
示例7: __init__
def __init__(self, # pylint: disable=super-init-not-called
initial_value=None,
trainable=True,
caching_device=None,
name=None,
dtype=None,
constraint=None,
**unused_kwargs):
"""Creates a variable.
Args:
initial_value: A `Tensor`, or Python object convertible to a `Tensor`,
which is the initial value for the Variable. The initial value must have
a shape specified unless `validate_shape` is set to False. Can also be a
callable with no argument that returns the initial value when called.
(Note that initializer functions from init_ops.py must first be bound
to a shape before being used here.)
trainable: If `True`, GradientTapes automatically watch uses of this
Variable.
caching_device: Optional device string or function describing where the
Variable should be cached for reading. Defaults to the Variable's
device. If not `None`, caches on another device. Typical use is to
cache on the device where the Ops using the Variable reside, to
deduplicate copying through `Switch` and other conditional statements.
name: Optional name for the variable. Defaults to `'Variable'` and gets
uniquified automatically.
dtype: If set, initial_value will be converted to the given type.
If None, either the datatype will be kept (if initial_value is
a Tensor) or float32 will be used (if it is a Python object convertible
to a Tensor).
constraint: An optional projection function to be applied to the variable
after being updated by an `Optimizer` (e.g. used to implement norm
constraints or value constraints for layer weights). The function must
take as input the unprojected Tensor representing the value of the
variable and return the Tensor for the projected value
(which must have the same shape). Constraints are not safe to
use when doing asynchronous distributed training.
Raises:
ValueError: If the initial value is not specified, or does not have a
shape and `validate_shape` is `True`.
RuntimeError: If called outside of a function definition.
"""
if context.executing_eagerly():
raise RuntimeError(
"UnliftedInitializerVariable should not be created "
"outside of functions.")
with ops.init_scope():
if not context.executing_eagerly():
raise RuntimeError(
"UnliftedInitializerVariable does not support legacy graph mode.")
self._in_graph_mode = False
if initial_value is None:
raise ValueError("initial_value must be specified.")
init_from_fn = callable(initial_value)
if constraint is not None and not callable(constraint):
raise ValueError("The `constraint` argument must be a callable.")
if isinstance(initial_value, checkpointable.CheckpointInitialValue):
self._maybe_initialize_checkpointable()
self._update_uid = initial_value.checkpoint_position.restore_uid
initial_value = initial_value.wrapped_value
self._trainable = trainable
self._save_slice_info = None
self._initial_value = None
self._initializer_op = None
self._is_initialized_op = None
self._graph_element = None
self._cached_value = None
# Store the graph key so optimizers know how to only retrieve variables from
# this graph. Guaranteed to be the same as the eager graph_key.
self._graph_key = ops.get_default_graph()._graph_key # pylint: disable=protected-access
with ops.name_scope(name, "Variable", []
if init_from_fn else [initial_value]) as name:
# pylint: disable=protected-access
with ops.init_scope():
assert context.executing_eagerly()
shared_name = ops._name_from_scope_name(name)
shared_name = "%s_%d" % (shared_name, ops.uid())
# Use attr_scope and device(None) to simulate the behavior of
# colocate_with when the variable we want to colocate with doesn't
# yet exist.
with ops.name_scope("Initializer"), ops.device(None):
initial_value = ops.convert_to_tensor(
initial_value() if init_from_fn else initial_value,
name="initial_value", dtype=dtype)
with ops.init_scope():
self._handle = resource_variable_ops.eager_safe_variable_handle(
shape=initial_value.get_shape(),
dtype=initial_value.dtype.base_dtype,
shared_name=shared_name,
name=name,
graph_mode=False)
self._shape = initial_value.shape
self._unique_id = shared_name
self._handle_name = shared_name + ":0"
self._dtype = initial_value.dtype.base_dtype
self._constraint = constraint
#.........这里部分代码省略.........
开发者ID:ThunderQi,项目名称:tensorflow,代码行数:101,代码来源:def_function.py
注:本文中的tensorflow.python.framework.ops._name_from_scope_name函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论