• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python dtypes.as_dtype函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.framework.dtypes.as_dtype函数的典型用法代码示例。如果您正苦于以下问题:Python as_dtype函数的具体用法?Python as_dtype怎么用?Python as_dtype使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了as_dtype函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _compute_gradient

def _compute_gradient(x,
                      x_shape,
                      dx,
                      y,
                      y_shape,
                      dy,
                      x_init_value=None,
                      delta=1e-3):
  """Computes the theoretical and numerical jacobian."""
  t = dtypes.as_dtype(x.dtype)
  allowed_types = [dtypes.float32, dtypes.float64, dtypes.complex64]
  assert t.base_dtype in allowed_types, "Don't support type %s for x" % t.name
  t2 = dtypes.as_dtype(y.dtype)
  assert t2.base_dtype in allowed_types, "Don't support type %s for y" % t2.name

  if x_init_value is not None:
    i_shape = list(x_init_value.shape)
    assert(list(x_shape) == i_shape), "x_shape = %s, init_data shape = %s" % (
        x_shape, i_shape)
    x_data = x_init_value
  else:
    if t == dtypes.float32:
      dtype = np.float32
    else:
      dtype = np.float64
    x_data = np.asfarray(np.random.random_sample(x_shape), dtype=dtype)

  jacob_t = _compute_theoretical_jacobian(x, x_shape, x_data, dy, y_shape, dx)
  jacob_n = _compute_numeric_jacobian(x, x_shape, x_data, y, y_shape, delta)
  return jacob_t, jacob_n
开发者ID:13683116633,项目名称:tensorflow,代码行数:30,代码来源:gradient_checker.py


示例2: _compute_gradient

def _compute_gradient(x,
                      x_shape,
                      dx,
                      y,
                      y_shape,
                      dy,
                      x_init_value=None,
                      delta=1e-3,
                      extra_feed_dict=None):
  """Computes the theoretical and numerical jacobian."""
  t = dtypes.as_dtype(x.dtype)
  allowed_types = [dtypes.float16, dtypes.bfloat16, dtypes.float32,
                   dtypes.float64, dtypes.complex64, dtypes.complex128]
  assert t.base_dtype in allowed_types, "Don't support type %s for x" % t.name
  t2 = dtypes.as_dtype(y.dtype)
  assert t2.base_dtype in allowed_types, "Don't support type %s for y" % t2.name

  if x_init_value is not None:
    i_shape = list(x_init_value.shape)
    assert(list(x_shape) == i_shape), "x_shape = %s, init_data shape = %s" % (
        x_shape, i_shape)
    x_data = x_init_value
  else:
    x_data = np.random.random_sample(x_shape).astype(t.as_numpy_dtype)
    if t.is_complex:
      x_data.imag = np.random.random_sample(x_shape)

  jacob_t = _compute_theoretical_jacobian(
      x, x_shape, x_data, dy, y_shape, dx, extra_feed_dict=extra_feed_dict)
  jacob_n = _compute_numeric_jacobian(
      x, x_shape, x_data, y, y_shape, delta, extra_feed_dict=extra_feed_dict)
  return jacob_t, jacob_n
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:32,代码来源:gradient_checker.py


示例3: _verifySolve

 def _verifySolve(self, x, y, batch_dims=None):
   for np_type in [np.float32, np.float64, np.complex64, np.complex128]:
     if np_type == np.float32 or np_type == np.complex64:
       tol = 1e-5
     else:
       tol = 1e-12
     for adjoint in False, True:
       if np_type is [np.float32, np.float64]:
         a = x.real().astype(np_type)
         b = y.real().astype(np_type)
       else:
         a = x.astype(np_type)
         b = y.astype(np_type)
         a_np = np.conj(np.transpose(a)) if adjoint else a
       if batch_dims is not None:
         a = np.tile(a, batch_dims + [1, 1])
         a_np = np.tile(a_np, batch_dims + [1, 1])
         b = np.tile(b, batch_dims + [1, 1])
       np_ans = np.linalg.solve(a_np, b)
       for use_placeholder in False, True:
         with self.test_session(use_gpu=True) as sess:
           if use_placeholder:
             a_ph = array_ops.placeholder(dtypes.as_dtype(np_type))
             b_ph = array_ops.placeholder(dtypes.as_dtype(np_type))
             tf_ans = linalg_ops.matrix_solve(a_ph, b_ph, adjoint=adjoint)
             out = sess.run(tf_ans, {a_ph: a, b_ph: b})
           else:
             tf_ans = linalg_ops.matrix_solve(a, b, adjoint=adjoint)
             out = tf_ans.eval()
             self.assertEqual(tf_ans.get_shape(), out.shape)
           self.assertEqual(np_ans.shape, out.shape)
           self.assertAllClose(np_ans, out, atol=tol, rtol=tol)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:32,代码来源:matrix_solve_op_test.py


示例4: testUnsortedSegmentOps1DIndices1DDataNegativeIndices

  def testUnsortedSegmentOps1DIndices1DDataNegativeIndices(self):
    """Tests for min, max, and prod ops.

    These share most of their implementation with sum, so we only test basic
    functionality.
    """
    for dtype in self.numeric_types:
      self.assertAllClose(
          np.array([8, 3, 1, 0], dtype=dtype),
          self._unsortedSegmentProd(
              np.array([0, 1, 2, 3, 4, 5, 6], dtype=dtype),
              np.array([3, -1, 0, 1, 0, -1, 3], dtype=np.int32), 4))

    for dtype in self.int_types | self.float_types:
      minval = dtypes.as_dtype(dtype).min
      maxval = dtypes.as_dtype(dtype).max

      self.assertAllClose(
          np.array([2, 3, maxval, 0], dtype=dtype),
          self._unsortedSegmentMin(
              np.array([0, 1, 2, 3, 4, 5, 6], dtype=dtype),
              np.array([3, -1, 0, 1, 0, -1, 3], dtype=np.int32), 4))
      self.assertAllClose(
          np.array([4, 3, minval, 6], dtype=dtype),
          self._unsortedSegmentMax(
              np.array([0, 1, 2, 3, 4, 5, 6], dtype=dtype),
              np.array([3, -1, 0, 1, 0, -1, 3], dtype=np.int32), 4))
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:27,代码来源:segment_reduction_ops_test.py


示例5: remote_fused_graph_execute

def remote_fused_graph_execute(inputs,
                               output_types,
                               graph_def,
                               graph_input_node_names,
                               graph_output_node_names,
                               executor_name,
                               serialized_executor_parameters,
                               default_graph_input_tensor_type_shapes=None,
                               default_graph_output_tensor_type_shapes=None):
  """A wrapper for remote_fused_graph_execute."""
  info_proto = info_pb2.RemoteFusedGraphExecuteInfo()
  info_proto.remote_graph.CopyFrom(graph_def)
  info_proto.graph_input_node_name.extend(graph_input_node_names)
  info_proto.graph_output_node_name.extend(graph_output_node_names)
  info_proto.executor_name = executor_name
  info_proto.serialized_executor_parameters = serialized_executor_parameters
  if default_graph_input_tensor_type_shapes:
    for type_shape in default_graph_input_tensor_type_shapes:
      type_shape_proto = info_proto.default_graph_input_tensor_shape.add()
      type_shape_proto.dtype = dtypes.as_dtype(type_shape[0]).as_datatype_enum
      for dim in type_shape[1]:
        type_shape_proto.shape.dim.add().size = dim
  if default_graph_output_tensor_type_shapes:
    for type_shape in default_graph_output_tensor_type_shapes:
      type_shape_proto = info_proto.default_graph_output_tensor_shape.add()
      type_shape_proto.dtype = dtypes.as_dtype(type_shape[0]).as_datatype_enum
      for dim in type_shape[1]:
        type_shape_proto.shape.dim.add().size = dim

  serialized_info = info_proto.SerializeToString()

  return gen_remote_fused_graph_ops.remote_fused_graph_execute(
      inputs, output_types, serialized_info)
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:33,代码来源:remote_fused_graph_ops.py


示例6: _DefaultGradYs

def _DefaultGradYs(grad_ys, ys, colocate_gradients_with_ops):
  """Fill in default values for grad_ys.

  Args:
    grad_ys: List of gradients, can contain None.
    ys: List of tensors.
    colocate_gradients_with_ops: If True, try colocating gradients with
      the corresponding op.

  Returns:
    A list of gradients to use, without None.

  Raises:
    ValueError: If one of the grad_ys is invalid.
  """
  if len(grad_ys) != len(ys):
    raise ValueError("Passed %d grad_ys for %d ys" % (len(grad_ys), len(ys)))
  grad_ys = ops.convert_n_to_tensor_or_indexed_slices(grad_ys, name="grad_y")
  for i in xrange(len(grad_ys)):
    grad_y = grad_ys[i]
    y = ys[i]
    if grad_y is None:
      with _maybe_colocate_with(y.op, colocate_gradients_with_ops):
        grad_ys[i] = array_ops.fill(
            array_ops.shape(y), constant_op.constant(
                1, dtype=y.dtype))
    else:
      if grad_y.dtype != y.dtype:
        raise ValueError("Y and ys_grad must be of the same type, "
                         "not y: %s, ys_grad: %s " %
                         (dtypes.as_dtype(y.dtype).name,
                          dtypes.as_dtype(grad_y.dtype).name))
  return grad_ys
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:33,代码来源:gradients_impl.py


示例7: _SatisfiesTypeConstraint

def _SatisfiesTypeConstraint(dtype, attr_def):
  if attr_def.HasField("allowed_values"):
    allowed_list = attr_def.allowed_values.list.type
    if dtype not in allowed_list:
      raise TypeError(
          "DataType %s for attr '%s' not in list of allowed values: %s" %
          (dtypes.as_dtype(dtype).name, attr_def.name,
           ", ".join(dtypes.as_dtype(x).name for x in allowed_list)))
开发者ID:821760408-sp,项目名称:tensorflow,代码行数:8,代码来源:op_def_library.py


示例8: _testTernary

 def _testTernary(self, op, a, b, c, expected):
   with self.test_session() as session:
     with self.test_scope():
       pa = array_ops.placeholder(dtypes.as_dtype(a.dtype), a.shape, name="a")
       pb = array_ops.placeholder(dtypes.as_dtype(b.dtype), b.shape, name="b")
       pc = array_ops.placeholder(dtypes.as_dtype(c.dtype), c.shape, name="c")
       output = op(pa, pb, pc)
     result = session.run(output, {pa: a, pb: b, pc: c})
     self.assertAllClose(result, expected, rtol=1e-3)
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:9,代码来源:ternary_ops_test.py


示例9: _SatisfiesTypeConstraint

def _SatisfiesTypeConstraint(dtype, attr_def, param_name):
  if attr_def.HasField("allowed_values"):
    allowed_list = attr_def.allowed_values.list.type
    if dtype not in allowed_list:
      raise TypeError(
          "Value passed to parameter '%s' has DataType %s not in list of "
          "allowed values: %s" %
          (param_name, dtypes.as_dtype(dtype).name,
           ", ".join(dtypes.as_dtype(x).name for x in allowed_list)))
开发者ID:cancan101,项目名称:tensorflow,代码行数:9,代码来源:op_def_library.py


示例10: input_builder

 def input_builder(self):
     """Builds inputs in the graph."""
     input_shape = [None] + self.input_shape[1:]
     output_shape = [None] + self.output_shape[1:]
     self._input_placeholder = array_ops.placeholder(dtypes.as_dtype(self.input_dtype), input_shape,
         name="input")
     self._output_placeholder = array_ops.placeholder(dtypes.as_dtype(self.output_dtype), output_shape,
         name="output")
     return self._input_placeholder, self._output_placeholder
开发者ID:August520,项目名称:tensorflow,代码行数:9,代码来源:data_feeder.py


示例11: __init__

  def __init__(self, key_dtype, value_dtype):
    """Construct a table initializer object.

    Args:
      key_dtype: Type of the table keys.
      value_dtype: Type of the table values.
    """
    self._key_dtype = dtypes.as_dtype(key_dtype)
    self._value_dtype = dtypes.as_dtype(value_dtype)
开发者ID:andrewharp,项目名称:tensorflow,代码行数:9,代码来源:lookup_ops.py


示例12: _verifySolve

  def _verifySolve(self,
                   x,
                   y,
                   dtype,
                   use_placeholder,
                   fast,
                   l2_regularizer,
                   batch_shape=()):
    if not fast and l2_regularizer != 0:
      # The slow path does not support regularization.
      return
    maxdim = np.max(x.shape)
    if dtype == np.float32 or dtype == np.complex64:
      tol = maxdim * 5e-4
    else:
      tol = maxdim * 5e-7
      a = x.astype(dtype)
      b = y.astype(dtype)
      if dtype in [np.complex64, np.complex128]:
        a.imag = a.real
        b.imag = b.real
      # numpy.linalg.lstqr does not batching, so we just solve a single system
      # and replicate the solution. and residual norm.
      np_ans = _SolveWithNumpy(x, y, l2_regularizer=l2_regularizer)
      np_r = np.dot(np.conj(a.T), b - np.dot(a, np_ans))
      np_r_norm = np.sqrt(np.sum(np.conj(np_r) * np_r))
      if batch_shape is not ():
        a = np.tile(a, batch_shape + (1, 1))
        b = np.tile(b, batch_shape + (1, 1))
        np_ans = np.tile(np_ans, batch_shape + (1, 1))
        np_r_norm = np.tile(np_r_norm, batch_shape)
      with self.cached_session(use_gpu=fast) as sess:
        if use_placeholder:
          a_ph = array_ops.placeholder(dtypes.as_dtype(dtype))
          b_ph = array_ops.placeholder(dtypes.as_dtype(dtype))
          feed_dict = {a_ph: a, b_ph: b}
          tf_ans = linalg_ops.matrix_solve_ls(
              a_ph, b_ph, fast=fast, l2_regularizer=l2_regularizer)
        else:
          tf_ans = linalg_ops.matrix_solve_ls(
              a, b, fast=fast, l2_regularizer=l2_regularizer)
          feed_dict = {}
          self.assertEqual(np_ans.shape, tf_ans.get_shape())
        if l2_regularizer == 0:
          # The least squares solution should satisfy A^H * (b - A*x) = 0.
          tf_r = b - math_ops.matmul(a, tf_ans)
          tf_r = math_ops.matmul(a, tf_r, adjoint_a=True)
          tf_r_norm = linalg_ops.norm(tf_r, ord="fro", axis=[-2, -1])
          tf_ans_val, tf_r_norm_val = sess.run(
              [tf_ans, tf_r_norm], feed_dict=feed_dict)
          self.assertAllClose(np_r_norm, tf_r_norm_val, atol=tol, rtol=tol)
        else:
          tf_ans_val = sess.run(tf_ans, feed_dict=feed_dict)

      self.assertEqual(np_ans.shape, tf_ans_val.shape)
      self.assertAllClose(np_ans, tf_ans_val, atol=2 * tol, rtol=2 * tol)
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:56,代码来源:matrix_solve_ls_op_test.py


示例13: _testBinary

 def _testBinary(self, op, a, b, expected, equality_test=None):
   with self.test_session() as session:
     with self.test_scope():
       pa = array_ops.placeholder(dtypes.as_dtype(a.dtype), a.shape, name="a")
       pb = array_ops.placeholder(dtypes.as_dtype(b.dtype), b.shape, name="b")
       output = op(pa, pb)
     result = session.run(output, {pa: a, pb: b})
     if equality_test is None:
       equality_test = self.assertAllCloseAccordingToType
     equality_test(result, expected, rtol=1e-3)
开发者ID:craffel,项目名称:tensorflow,代码行数:10,代码来源:binary_ops_test.py


示例14: __init__

  def __init__(self, key_dtype, value_dtype):
    """Construct a lookup table interface.

    Args:
      key_dtype: The table key type.
      value_dtype: The table value type.
    """
    self._key_dtype = dtypes.as_dtype(key_dtype)
    self._value_dtype = dtypes.as_dtype(value_dtype)
    super(LookupInterface, self).__init__()
开发者ID:aeverall,项目名称:tensorflow,代码行数:10,代码来源:lookup_ops.py


示例15: make_attr

def make_attr(attr_type, value):
  if attr_type == pywrap_tensorflow.TF_ATTR_TYPE:
    return dtypes.as_dtype(value)
  elif attr_type == [pywrap_tensorflow.TF_ATTR_TYPE]:
    return [dtypes.as_dtype(v) for v in value]
  elif attr_type == pywrap_tensorflow.TF_ATTR_SHAPE:
    return tensor_shape.as_shape(value).as_proto()
  elif attr_type == [pywrap_tensorflow.TF_ATTR_SHAPE]:
    return [tensor_shape.as_shape(v).as_proto() for v in value]
  return value
开发者ID:andrewharp,项目名称:tensorflow,代码行数:10,代码来源:backprop.py


示例16: testAllTypesConvertibleToNumpyDtype

 def testAllTypesConvertibleToNumpyDtype(self):
   for datatype_enum in types_pb2.DataType.values():
     if not _is_numeric_dtype_enum(datatype_enum):
       continue
     dtype = dtypes.as_dtype(datatype_enum)
     numpy_dtype = dtype.as_numpy_dtype
     _ = np.empty((1, 1, 1, 1), dtype=numpy_dtype)
     if dtype.base_dtype != dtypes.bfloat16:
       # NOTE(touts): Intentionally no way to feed a DT_BFLOAT16.
       self.assertEqual(
           dtypes.as_dtype(datatype_enum).base_dtype,
           dtypes.as_dtype(numpy_dtype))
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:12,代码来源:dtypes_test.py


示例17: get_placeholder

 def get_placeholder(shape, dtype, name_prepend):
   if shape is None:
     return None
   if isinstance(shape, dict):
     placeholder = {}
     for key in list(shape.keys()):
       placeholder[key] = array_ops.placeholder(
           dtypes.as_dtype(dtype[key]), [None] + shape[key][1:],
           name=name_prepend + '_' + key)
   else:
     placeholder = array_ops.placeholder(
         dtypes.as_dtype(dtype), [None] + shape[1:], name=name_prepend)
   return placeholder
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:13,代码来源:data_feeder.py


示例18: _DefaultGradYs

def _DefaultGradYs(grad_ys, ys, colocate_gradients_with_ops):
  """Fill in default values for grad_ys.

  Args:
    grad_ys: List of gradients, can contain None.
    ys: List of tensors.
    colocate_gradients_with_ops: If True, try colocating gradients with
      the corresponding op.

  Returns:
    A list of gradients to use, without None.

  Raises:
    ValueError: If sizes of gradients and inputs don't match
    TypeError: If type of any gradient is not valid for its input.
  """
  if len(grad_ys) != len(ys):
    raise ValueError("Passed %d grad_ys for %d ys" % (len(grad_ys), len(ys)))
  grad_ys = ops.convert_n_to_tensor_or_indexed_slices(grad_ys, name="grad_y")
  for i in xrange(len(grad_ys)):
    grad_y = grad_ys[i]
    y = ys[i]
    if grad_y is None:
      if y.dtype.is_complex:
        raise TypeError(
            "Gradients of complex tensors must set grad_ys (y.dtype = %r)" %
            y.dtype)
      with _maybe_colocate_with(y.op, colocate_gradients_with_ops):
        grad_ys[i] = array_ops.fill(
            array_ops.shape(y), constant_op.constant(
                1, dtype=y.dtype))
      continue
    if y.dtype.is_floating or y.dtype.is_integer:
      if not grad_y.dtype.is_floating and not grad_y.dtype.is_integer:
        raise TypeError("Gradient type %s generated for real or "
                         "integer-valued tensor %s with type %s must be "
                         "real or integer" %
                         (dtypes.as_dtype(grad_y.dtype).name, y,
                          dtypes.as_dtype(y.dtype).name))
    elif y.dtype.is_complex:
      if not grad_y.dtype.is_complex:
        raise TypeError("Gradient type %s generated for complex-valued "
                         "tensor %s with type %s must be real" %
                         (dtypes.as_dtype(grad_y.dtype).name, y,
                          dtypes.as_dtype(y.dtype).name))
    else:
      raise TypeError("Tensor %s with type %s must be numeric "
                      "to obtain a default gradient" %
                      (y, dtypes.as_dtype(y.dtype).name))
  return grad_ys
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:50,代码来源:gradients_impl.py


示例19: _ones

def _ones(shape, dtype):
  if dtypes.as_dtype(dtype) == dtypes.string:
    return None

  if not context.context().executing_eagerly():
    return array_ops.ones(shape, dtype)

  if dtypes.as_dtype(dtype).is_bool:
    value = True
  else:
    value = 1

  if shape == ():  # pylint: disable=g-explicit-bool-comparison
    return constant_op.constant(value, dtype=dtype)
  return _fast_fill(value, shape, dtype)
开发者ID:kylin9872,项目名称:tensorflow,代码行数:15,代码来源:backprop.py


示例20: __init__

  def __init__(self,  images, labels, fake_data=False, one_hot=False, dtype=dtypes.float32, reshape=True):
    """Construct a DataSet.
    one_hot arg is used only if fake_data is true.  `dtype` can be either
    `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
    `[0, 1]`.
    """
    dtype = dtypes.as_dtype(dtype).base_dtype
    if dtype not in (dtypes.uint8, dtypes.float32):
      raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                      dtype)
    if fake_data:
      self._num_examples = 10000
      self.one_hot = one_hot
    else:
      assert images.shape[0] == labels.shape[0], (
          'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
      self._num_examples = images.shape[0]

      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)
      if reshape:
        assert images.shape[3] == 1
        images = images.reshape(images.shape[0],
                                images.shape[1] * images.shape[2])
      if dtype == dtypes.float32:
        # Convert from [0, 255] -> [0.0, 1.0].
        images = images.astype(numpy.float32)
        images = numpy.multiply(images, 1.0 / 255.0)
    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0
开发者ID:muratcancicek,项目名称:Assignment-Projects,代码行数:32,代码来源:myOldMnistHandler.py



注:本文中的tensorflow.python.framework.dtypes.as_dtype函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python error_interpolation.interpolate函数代码示例发布时间:2022-05-27
下一篇:
Python device.merge_device函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap