• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python feature_column_lib.numeric_column函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.feature_column.feature_column_lib.numeric_column函数的典型用法代码示例。如果您正苦于以下问题:Python numeric_column函数的具体用法?Python numeric_column怎么用?Python numeric_column使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了numeric_column函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: testTrainEvaluateInferDoesNotThrowErrorWithNoDnnInput

  def testTrainEvaluateInferDoesNotThrowErrorWithNoDnnInput(self):
    head_fn = head_lib._binary_logistic_head_with_sigmoid_cross_entropy_loss(
        loss_reduction=losses.Reduction.SUM_OVER_NONZERO_WEIGHTS)

    learner_config = learner_pb2.LearnerConfig()
    learner_config.num_classes = 2
    learner_config.constraints.max_tree_depth = 3
    model_dir = tempfile.mkdtemp()
    config = run_config.RunConfig()

    est = estimator.CoreDNNBoostedTreeCombinedEstimator(
        head=head_fn,
        dnn_hidden_units=[1],
        dnn_feature_columns=[core_feature_column.numeric_column("x")],
        tree_learner_config=learner_config,
        num_trees=1,
        tree_examples_per_layer=3,
        model_dir=model_dir,
        config=config,
        dnn_steps_to_train=10,
        dnn_input_layer_to_tree=False,
        tree_feature_columns=[core_feature_column.numeric_column("x")])

    # Train for a few steps.
    est.train(input_fn=_train_input_fn, steps=1000)
    # 10 steps for dnn, 3  for 1 tree of depth 3 + 1 after the tree finished
    self._assert_checkpoint(est.model_dir, global_step=15)
    res = est.evaluate(input_fn=_eval_input_fn, steps=1)
    self.assertLess(0.5, res["auc"])
    est.predict(input_fn=_eval_input_fn)
开发者ID:baojianzhou,项目名称:tensorflow,代码行数:30,代码来源:dnn_tree_combined_estimator_test.py


示例2: testRankingDontThrowExceptionForForEstimator

  def testRankingDontThrowExceptionForForEstimator(self):
    learner_config = learner_pb2.LearnerConfig()
    learner_config.num_classes = 2
    learner_config.constraints.max_tree_depth = 1
    model_dir = tempfile.mkdtemp()
    config = run_config.RunConfig()

    head_fn = head_lib._binary_logistic_head_with_sigmoid_cross_entropy_loss(
        loss_reduction=losses.Reduction.SUM_OVER_NONZERO_WEIGHTS)

    est = estimator.CoreGradientBoostedDecisionTreeRanker(
        head=head_fn,
        learner_config=learner_config,
        num_trees=1,
        examples_per_layer=3,
        model_dir=model_dir,
        config=config,
        feature_columns=[
            core_feature_column.numeric_column("f1"),
            core_feature_column.numeric_column("f2")
        ],
        ranking_model_pair_keys=("a", "b"))

    # Train for a few steps.
    est.train(input_fn=_ranking_train_input_fn, steps=1000)
    est.evaluate(input_fn=_ranking_train_input_fn, steps=1)
    est.predict(input_fn=_infer_ranking_train_input_fn)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:27,代码来源:estimator_test.py


示例3: test_parse_features

  def test_parse_features(self):
    """Tests the various behaviours of kmeans._parse_features_if_necessary."""

    # No-op if a tensor is passed in.
    features = constant_op.constant(self.points)
    parsed_features = kmeans_lib._parse_features_if_necessary(features, None)
    self.assertAllEqual(features, parsed_features)

    # All values from a feature dict are transformed into a tensor.
    feature_dict = {
        'x': [[point[0]] for point in self.points],
        'y': [[point[1]] for point in self.points]
    }
    parsed_feature_dict = kmeans_lib._parse_features_if_necessary(
        feature_dict, None)
    self._parse_feature_dict_helper(features, parsed_feature_dict)

    # Only the feature_columns of a feature dict are transformed into a tensor.
    feature_dict_with_extras = {
        'foo': 'bar',
        'x': [[point[0]] for point in self.points],
        'baz': {'fizz': 'buzz'},
        'y': [[point[1]] for point in self.points]
    }
    feature_columns = [fc.numeric_column(key='x'), fc.numeric_column(key='y')]
    parsed_feature_dict = kmeans_lib._parse_features_if_necessary(
        feature_dict_with_extras, feature_columns)
    self._parse_feature_dict_helper(features, parsed_feature_dict)
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:28,代码来源:kmeans_test.py


示例4: _get_estimator

  def _get_estimator(self,
                     train_distribute,
                     eval_distribute,
                     remote_cluster=None):
    input_dimension = LABEL_DIMENSION
    linear_feature_columns = [
        feature_column.numeric_column("x", shape=(input_dimension,))
    ]
    dnn_feature_columns = [
        feature_column.numeric_column("x", shape=(input_dimension,))
    ]

    return dnn_linear_combined.DNNLinearCombinedRegressor(
        linear_feature_columns=linear_feature_columns,
        dnn_hidden_units=(2, 2),
        dnn_feature_columns=dnn_feature_columns,
        label_dimension=LABEL_DIMENSION,
        model_dir=self._model_dir,
        dnn_optimizer=adagrad.AdagradOptimizer(0.001),
        linear_optimizer=adagrad.AdagradOptimizer(0.001),
        config=run_config_lib.RunConfig(
            experimental_distribute=DistributeConfig(
                train_distribute=train_distribute,
                eval_distribute=eval_distribute,
                remote_cluster=remote_cluster)))
开发者ID:kylin9872,项目名称:tensorflow,代码行数:25,代码来源:estimator_training_test.py


示例5: test_linear_model_numpy_input_fn

  def test_linear_model_numpy_input_fn(self):
    price = fc.numeric_column('price')
    price_buckets = fc.bucketized_column(price, boundaries=[0., 10., 100.,])
    body_style = fc.categorical_column_with_vocabulary_list(
        'body-style', vocabulary_list=['hardtop', 'wagon', 'sedan'])

    input_fn = numpy_io.numpy_input_fn(
        x={
            'price': np.array([-1., 2., 13., 104.]),
            'body-style': np.array(['sedan', 'hardtop', 'wagon', 'sedan']),
        },
        batch_size=2,
        shuffle=False)
    features = input_fn()
    net = fc.linear_model(features, [price_buckets, body_style])
    # self.assertEqual(1 + 3 + 5, net.shape[1])
    with self._initialized_session() as sess:
      coord = coordinator.Coordinator()
      threads = queue_runner_impl.start_queue_runners(sess, coord=coord)

      bias = self._get_linear_model_bias()
      price_buckets_var = self._get_linear_model_column_var(price_buckets)
      body_style_var = self._get_linear_model_column_var(body_style)

      sess.run(price_buckets_var.assign([[10.], [100.], [1000.], [10000.]]))
      sess.run(body_style_var.assign([[-10.], [-100.], [-1000.]]))
      sess.run(bias.assign([5.]))

      self.assertAllClose([[10 - 1000 + 5.], [100 - 10 + 5.]], sess.run(net))

      coord.request_stop()
      coord.join(threads)
开发者ID:ZhangXinNan,项目名称:tensorflow,代码行数:32,代码来源:numpy_io_test.py


示例6: testWithFeatureColumns

  def testWithFeatureColumns(self):
    head_fn = head_lib._multi_class_head_with_softmax_cross_entropy_loss(
        n_classes=3, loss_reduction=losses.Reduction.SUM_OVER_NONZERO_WEIGHTS)

    hparams = tensor_forest.ForestHParams(
        num_trees=3,
        max_nodes=1000,
        num_classes=3,
        num_features=4,
        split_after_samples=20,
        inference_tree_paths=True)

    est = random_forest.CoreTensorForestEstimator(
        hparams.fill(),
        head=head_fn,
        feature_columns=[core_feature_column.numeric_column('x')])

    iris = base.load_iris()
    data = {'x': iris.data.astype(np.float32)}
    labels = iris.target.astype(np.int32)

    input_fn = numpy_io.numpy_input_fn(
        x=data, y=labels, batch_size=150, num_epochs=None, shuffle=False)

    est.train(input_fn=input_fn, steps=100)
    res = est.evaluate(input_fn=input_fn, steps=1)

    self.assertEqual(1.0, res['accuracy'])
    self.assertAllClose(0.55144483, res['loss'])
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:29,代码来源:random_forest_test.py


示例7: testFitAndEvaluateMultiClassFullDontThrowException

  def testFitAndEvaluateMultiClassFullDontThrowException(self):
    n_classes = 3
    learner_config = learner_pb2.LearnerConfig()
    learner_config.num_classes = n_classes
    learner_config.constraints.max_tree_depth = 1
    learner_config.multi_class_strategy = (
        learner_pb2.LearnerConfig.FULL_HESSIAN)

    head_fn = estimator.core_multiclass_head(n_classes=n_classes)

    model_dir = tempfile.mkdtemp()
    config = run_config.RunConfig()

    classifier = estimator.CoreGradientBoostedDecisionTreeEstimator(
        learner_config=learner_config,
        head=head_fn,
        num_trees=1,
        center_bias=False,
        examples_per_layer=7,
        model_dir=model_dir,
        config=config,
        feature_columns=[core_feature_column.numeric_column("x")])

    classifier.train(input_fn=_multiclass_train_input_fn, steps=100)
    classifier.evaluate(input_fn=_multiclass_train_input_fn, steps=1)
    classifier.predict(input_fn=_eval_input_fn)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:26,代码来源:estimator_test.py


示例8: testFitAndEvaluateDontThrowExceptionWithCore

  def testFitAndEvaluateDontThrowExceptionWithCore(self):
    learner_config = learner_pb2.LearnerConfig()
    learner_config.num_classes = 2
    learner_config.constraints.max_tree_depth = 1
    model_dir = tempfile.mkdtemp()
    config = run_config.RunConfig()

    # Use core head
    head_fn = head_lib._binary_logistic_head_with_sigmoid_cross_entropy_loss(
        loss_reduction=losses.Reduction.SUM_OVER_BATCH_SIZE)

    classifier = estimator.DNNBoostedTreeCombinedEstimator(
        head=head_fn,
        dnn_hidden_units=[1],
        # Use core feature columns
        dnn_feature_columns=[core_feature_column.numeric_column("x")],
        tree_learner_config=learner_config,
        num_trees=1,
        tree_examples_per_layer=3,
        model_dir=model_dir,
        config=config,
        dnn_steps_to_train=10,
        dnn_input_layer_to_tree=True,
        tree_feature_columns=[],
        use_core_versions=True)

    classifier.fit(input_fn=_train_input_fn, steps=15)
    classifier.evaluate(input_fn=_eval_input_fn, steps=1)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:28,代码来源:dnn_tree_combined_estimator_test.py


示例9: test_ar_lstm_regressor

 def test_ar_lstm_regressor(self):
   dtype = dtypes.float32
   model_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
   exogenous_feature_columns = (
       feature_column.numeric_column("exogenous"),
   )
   estimator = estimators.LSTMAutoRegressor(
       periodicities=10,
       input_window_size=10,
       output_window_size=6,
       model_dir=model_dir,
       num_features=1,
       extra_feature_columns=exogenous_feature_columns,
       num_units=10,
       config=_SeedRunConfig())
   times = numpy.arange(20, dtype=numpy.int64)
   values = numpy.arange(20, dtype=dtype.as_numpy_dtype)
   exogenous = numpy.arange(20, dtype=dtype.as_numpy_dtype)
   features = {
       feature_keys.TrainEvalFeatures.TIMES: times,
       feature_keys.TrainEvalFeatures.VALUES: values,
       "exogenous": exogenous
   }
   train_input_fn = input_pipeline.RandomWindowInputFn(
       input_pipeline.NumpyReader(features), shuffle_seed=2, num_threads=1,
       batch_size=16, window_size=16)
   eval_input_fn = input_pipeline.RandomWindowInputFn(
       input_pipeline.NumpyReader(features), shuffle_seed=3, num_threads=1,
       batch_size=16, window_size=16)
   estimator.train(input_fn=train_input_fn, steps=1)
   evaluation = estimator.evaluate(
       input_fn=eval_input_fn, steps=1)
   self.assertAllEqual(evaluation["loss"], evaluation["average_loss"])
   self.assertAllEqual([], evaluation["loss"].shape)
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:34,代码来源:estimators_test.py


示例10: _serving_input_receiver_fn

 def _serving_input_receiver_fn():
   """A receiver function to be passed to export_savedmodel."""
   times_column = feature_column.numeric_column(
       key=feature_keys.TrainEvalFeatures.TIMES, dtype=dtypes.int64)
   values_column = feature_column.numeric_column(
       key=feature_keys.TrainEvalFeatures.VALUES, dtype=values_input_dtype,
       shape=(self._model.num_features,))
   parsed_features_no_sequence = (
       feature_column.make_parse_example_spec(
           list(self._model.exogenous_feature_columns)
           + [times_column, values_column]))
   parsed_features = {}
   for key, feature_spec in parsed_features_no_sequence.items():
     if isinstance(feature_spec, parsing_ops.FixedLenFeature):
       if key == feature_keys.TrainEvalFeatures.VALUES:
         parsed_features[key] = feature_spec._replace(
             shape=((values_proto_length,)
                    + feature_spec.shape))
       else:
         parsed_features[key] = feature_spec._replace(
             shape=((filtering_length + prediction_length,)
                    + feature_spec.shape))
     elif feature_spec.dtype == dtypes.string:
       parsed_features[key] = parsing_ops.FixedLenFeature(
           shape=(filtering_length + prediction_length,),
           dtype=dtypes.string)
     else:  # VarLenFeature
       raise ValueError("VarLenFeatures not supported, got %s for key %s"
                        % (feature_spec, key))
   tfexamples = array_ops.placeholder(
       shape=[default_batch_size], dtype=dtypes.string, name="input")
   features = parsing_ops.parse_example(
       serialized=tfexamples,
       features=parsed_features)
   features[feature_keys.TrainEvalFeatures.TIMES] = array_ops.squeeze(
       features[feature_keys.TrainEvalFeatures.TIMES], axis=-1)
   features[feature_keys.TrainEvalFeatures.VALUES] = math_ops.cast(
       features[feature_keys.TrainEvalFeatures.VALUES],
       dtype=self._model.dtype)[:, :filtering_length]
   features.update(
       self._model_start_state_placeholders(
           batch_size_tensor=array_ops.shape(
               features[feature_keys.TrainEvalFeatures.TIMES])[0],
           static_batch_size=default_batch_size))
   return export_lib.ServingInputReceiver(
       features, {"examples": tfexamples})
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:46,代码来源:estimators.py


示例11: test_subclassed_model_with_feature_columns

  def test_subclassed_model_with_feature_columns(self):
    col_a = fc.numeric_column('a')
    col_b = fc.numeric_column('b')

    dnn_model = TestDNNModel([col_a, col_b], 20)

    dnn_model.compile(
        optimizer='rmsprop',
        loss='categorical_crossentropy',
        metrics=['accuracy'],
        run_eagerly=testing_utils.should_run_eagerly())

    x = {'a': np.random.random((10, 1)), 'b': np.random.random((10, 1))}
    y = np.random.randint(20, size=(10, 1))
    y = keras.utils.to_categorical(y, num_classes=20)
    dnn_model.fit(x=x, y=y, epochs=1, batch_size=5)
    dnn_model.fit(x=x, y=y, epochs=1, batch_size=5)
    dnn_model.evaluate(x=x, y=y, batch_size=5)
    dnn_model.predict(x=x, batch_size=5)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:19,代码来源:feature_columns_integration_test.py


示例12: test_subclassed_model_with_feature_columns_with_ds_input

  def test_subclassed_model_with_feature_columns_with_ds_input(self):
    col_a = fc.numeric_column('a')
    col_b = fc.numeric_column('b')

    dnn_model = TestDNNModel([col_a, col_b], 20)

    dnn_model.compile(
        optimizer='rmsprop',
        loss='categorical_crossentropy',
        metrics=['accuracy'],
        run_eagerly=testing_utils.should_run_eagerly())

    y = np.random.randint(20, size=(100, 1))
    y = keras.utils.to_categorical(y, num_classes=20)
    x = {'a': np.random.random((100, 1)), 'b': np.random.random((100, 1))}
    ds1 = dataset_ops.Dataset.from_tensor_slices(x)
    ds2 = dataset_ops.Dataset.from_tensor_slices(y)
    ds = dataset_ops.Dataset.zip((ds1, ds2)).batch(5)
    dnn_model.fit(ds, steps_per_epoch=1)
    dnn_model.fit(ds, steps_per_epoch=1)
    dnn_model.evaluate(ds, steps=1)
    dnn_model.predict(ds, steps=1)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:22,代码来源:feature_columns_integration_test.py


示例13: DISABLED_test_function_model_feature_layer_input

  def DISABLED_test_function_model_feature_layer_input(self):
    col_a = fc.numeric_column('a')
    col_b = fc.numeric_column('b')

    feature_layer = fc.DenseFeatures([col_a, col_b], name='fc')
    dense = keras.layers.Dense(4)

    # This seems problematic.... We probably need something for DenseFeatures
    # the way Input is for InputLayer.
    output = dense(feature_layer)

    model = keras.models.Model([feature_layer], [output])

    optimizer = 'rmsprop'
    loss = 'mse'
    loss_weights = [1., 0.5]
    model.compile(
        optimizer,
        loss,
        metrics=[metrics_module.CategoricalAccuracy(), 'mae'],
        loss_weights=loss_weights)

    data = ({'a': np.arange(10), 'b': np.arange(10)}, np.arange(10, 20))
    print(model.fit(*data, epochs=1))
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:24,代码来源:feature_columns_integration_test.py


示例14: testTrainEvaluateWithDnnForInputAndTreeForPredict

  def testTrainEvaluateWithDnnForInputAndTreeForPredict(self):
    head_fn = head_lib._binary_logistic_head_with_sigmoid_cross_entropy_loss(
        loss_reduction=losses.Reduction.SUM_OVER_NONZERO_WEIGHTS)

    learner_config = learner_pb2.LearnerConfig()
    learner_config.num_classes = 2
    learner_config.constraints.max_tree_depth = 3
    model_dir = tempfile.mkdtemp()
    config = run_config.RunConfig()

    est = estimator.CoreDNNBoostedTreeCombinedEstimator(
        head=head_fn,
        dnn_hidden_units=[1],
        dnn_feature_columns=[core_feature_column.numeric_column("x")],
        tree_learner_config=learner_config,
        num_trees=1,
        tree_examples_per_layer=3,
        model_dir=model_dir,
        config=config,
        dnn_steps_to_train=10,
        dnn_input_layer_to_tree=True,
        predict_with_tree_only=True,
        dnn_to_tree_distillation_param=(0.5, None),
        tree_feature_columns=[])

    # Train for a few steps.
    est.train(input_fn=_train_input_fn, steps=1000)
    res = est.evaluate(input_fn=_eval_input_fn, steps=1)
    self.assertLess(0.5, res["auc"])
    est.predict(input_fn=_eval_input_fn)
    serving_input_fn = (
        export.build_parsing_serving_input_receiver_fn(
            feature_spec={"x": parsing_ops.FixedLenFeature(
                [1], dtype=dtypes.float32)}))
    base_exporter = exporter.FinalExporter(
        name="Servo",
        serving_input_receiver_fn=serving_input_fn,
        assets_extra=None)
    export_path = os.path.join(model_dir, "export")
    base_exporter.export(
        est,
        export_path=export_path,
        checkpoint_path=None,
        eval_result={},
        is_the_final_export=True)
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:45,代码来源:dnn_tree_combined_estimator_test.py


示例15: test_functional_input_layer_with_numpy_input_fn

  def test_functional_input_layer_with_numpy_input_fn(self):
    embedding_values = (
        (1., 2., 3., 4., 5.),  # id 0
        (6., 7., 8., 9., 10.),  # id 1
        (11., 12., 13., 14., 15.)  # id 2
    )
    def _initializer(shape, dtype, partition_info):
      del shape, dtype, partition_info
      return embedding_values

    # price has 1 dimension in input_layer
    price = fc.numeric_column('price')
    body_style = fc.categorical_column_with_vocabulary_list(
        'body-style', vocabulary_list=['hardtop', 'wagon', 'sedan'])
    # one_hot_body_style has 3 dims in input_layer.
    one_hot_body_style = fc.indicator_column(body_style)
    # embedded_body_style has 5 dims in input_layer.
    embedded_body_style = fc.embedding_column(body_style, dimension=5,
                                              initializer=_initializer)

    input_fn = numpy_io.numpy_input_fn(
        x={
            'price': np.array([11., 12., 13., 14.]),
            'body-style': np.array(['sedan', 'hardtop', 'wagon', 'sedan']),
        },
        batch_size=2,
        shuffle=False)
    features = input_fn()
    net = fc.input_layer(features,
                         [price, one_hot_body_style, embedded_body_style])
    self.assertEqual(1 + 3 + 5, net.shape[1])
    with self._initialized_session() as sess:
      coord = coordinator.Coordinator()
      threads = queue_runner_impl.start_queue_runners(sess, coord=coord)

      # Each row is formed by concatenating `embedded_body_style`,
      # `one_hot_body_style`, and `price` in order.
      self.assertAllEqual(
          [[11., 12., 13., 14., 15., 0., 0., 1., 11.],
           [1., 2., 3., 4., 5., 1., 0., 0., 12]],
          sess.run(net))

      coord.request_stop()
      coord.join(threads)
开发者ID:ZhangXinNan,项目名称:tensorflow,代码行数:44,代码来源:numpy_io_test.py


示例16: testFitAndEvaluateDontThrowExceptionWithCoreForClassifier

  def testFitAndEvaluateDontThrowExceptionWithCoreForClassifier(self):
    learner_config = learner_pb2.LearnerConfig()
    learner_config.num_classes = 2
    learner_config.constraints.max_tree_depth = 1
    model_dir = tempfile.mkdtemp()
    config = run_config.RunConfig()

    classifier = estimator.GradientBoostedDecisionTreeClassifier(
        learner_config=learner_config,
        num_trees=1,
        examples_per_layer=3,
        model_dir=model_dir,
        config=config,
        feature_columns=[core_feature_column.numeric_column("x")],
        use_core_libs=True)

    classifier.fit(input_fn=_train_input_fn, steps=15)
    classifier.evaluate(input_fn=_eval_input_fn, steps=1)
    classifier.export(self._export_dir_base)
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:19,代码来源:estimator_test.py


示例17: test_sequential_model

  def test_sequential_model(self):
    columns = [fc.numeric_column('a')]
    model = keras.models.Sequential([
        fc.DenseFeatures(columns),
        keras.layers.Dense(64, activation='relu'),
        keras.layers.Dense(20, activation='softmax')
    ])
    model.compile(
        optimizer='rmsprop',
        loss='categorical_crossentropy',
        metrics=['accuracy'],
        run_eagerly=testing_utils.should_run_eagerly())

    x = {'a': np.random.random((10, 1))}
    y = np.random.randint(20, size=(10, 1))
    y = keras.utils.to_categorical(y, num_classes=20)
    model.fit(x, y, epochs=1, batch_size=5)
    model.fit(x, y, epochs=1, batch_size=5)
    model.evaluate(x, y, batch_size=5)
    model.predict(x, batch_size=5)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:20,代码来源:feature_columns_integration_test.py


示例18: test_sequential_model_with_ds_input

  def test_sequential_model_with_ds_input(self):
    columns = [fc.numeric_column('a')]
    model = keras.models.Sequential([
        fc.DenseFeatures(columns),
        keras.layers.Dense(64, activation='relu'),
        keras.layers.Dense(20, activation='softmax')
    ])
    model.compile(
        optimizer='rmsprop',
        loss='categorical_crossentropy',
        metrics=['accuracy'],
        run_eagerly=testing_utils.should_run_eagerly())

    y = np.random.randint(20, size=(100, 1))
    y = keras.utils.to_categorical(y, num_classes=20)
    x = {'a': np.random.random((100, 1))}
    ds1 = dataset_ops.Dataset.from_tensor_slices(x)
    ds2 = dataset_ops.Dataset.from_tensor_slices(y)
    ds = dataset_ops.Dataset.zip((ds1, ds2)).batch(5)
    model.fit(ds, steps_per_epoch=1)
    model.fit(ds, steps_per_epoch=1)
    model.evaluate(ds, steps=1)
    model.predict(ds, steps=1)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:23,代码来源:feature_columns_integration_test.py


示例19: testTrainEvaluateInferDoesNotThrowError

  def testTrainEvaluateInferDoesNotThrowError(self):
    head_fn = head_lib._binary_logistic_head_with_sigmoid_cross_entropy_loss(
        loss_reduction=losses.Reduction.SUM_OVER_NONZERO_WEIGHTS)

    learner_config = learner_pb2.LearnerConfig()
    learner_config.num_classes = 2
    learner_config.constraints.max_tree_depth = 1
    model_dir = tempfile.mkdtemp()
    config = run_config.RunConfig()

    est = estimator.CoreGradientBoostedDecisionTreeEstimator(
        head=head_fn,
        learner_config=learner_config,
        num_trees=1,
        examples_per_layer=3,
        model_dir=model_dir,
        config=config,
        feature_columns=[core_feature_column.numeric_column("x")])

    # Train for a few steps.
    est.train(input_fn=_train_input_fn, steps=1000)
    est.evaluate(input_fn=_eval_input_fn, steps=1)
    est.predict(input_fn=_eval_input_fn)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:23,代码来源:estimator_test.py


示例20: testFitAndEvaluateDontThrowExceptionWithCoreForEstimator

  def testFitAndEvaluateDontThrowExceptionWithCoreForEstimator(self):
    learner_config = learner_pb2.LearnerConfig()
    learner_config.num_classes = 2
    learner_config.constraints.max_tree_depth = 1
    model_dir = tempfile.mkdtemp()
    config = run_config.RunConfig()

    # Use core head
    head_fn = head_lib._binary_logistic_head_with_sigmoid_cross_entropy_loss(
        loss_reduction=losses.Reduction.SUM_OVER_BATCH_SIZE)

    model = estimator.GradientBoostedDecisionTreeEstimator(
        head=head_fn,
        learner_config=learner_config,
        num_trees=1,
        examples_per_layer=3,
        model_dir=model_dir,
        config=config,
        feature_columns=[core_feature_column.numeric_column("x")],
        use_core_libs=True)

    model.fit(input_fn=_train_input_fn, steps=15)
    model.evaluate(input_fn=_eval_input_fn, steps=1)
    model.export(self._export_dir_base)
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:24,代码来源:estimator_test.py



注:本文中的tensorflow.python.feature_column.feature_column_lib.numeric_column函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python c_api_util.tf_buffer函数代码示例发布时间:2022-05-27
下一篇:
Python feature_column.numeric_column函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap