• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python function.defun函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.eager.function.defun函数的典型用法代码示例。如果您正苦于以下问题:Python defun函数的具体用法?Python defun怎么用?Python defun使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了defun函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _defun_with_scope

  def _defun_with_scope(self, scope):
    """Creates a defun wrapped inside a variable creator scope."""

    weak_wrapped_fn = None
    def wrapped_fn(*args, **kwds):
      """Wraps `self._python_function` in a variable creator scope."""
      # We register a variable creator with reduced priority. If an outer
      # variable creator is just modifying keyword arguments to the variable
      # constructor, this will work harmoniously. Since the `scope` registered
      # here actually creates the variable, it taking priority would otherwise
      # ignore the outer creator.
      #
      # If an outer variable creator calls the variable constructor manually,
      # for example creating a MirroredVariable, then they won't call our
      # creator. This means we won't be able to trace the initialization graph,
      # and so variable initializers can't depend on function arguments. This is
      # better than the alternative, tracing the initialization graph but giving
      # the user a variable type they didn't want.
      with ops.get_default_graph()._variable_creator_scope(scope, priority=50):  # pylint: disable=protected-access
        # __wrapped__ allows AutoGraph to swap in a converted function. We give
        # the function a weak reference to itself to avoid a reference cycle.
        return weak_wrapped_fn().__wrapped__(*args, **kwds)
    weak_wrapped_fn = weakref.ref(wrapped_fn)

    # TODO(mdan): Pipe self._experimental_autograph_options through.
    return function_lib.defun(
        tf_decorator.make_decorator(self._python_function, wrapped_fn),
        input_signature=self._input_signature,
        autograph=self._autograph,
        experimental_autograph_options=self._experimental_autograph_options)
开发者ID:kylin9872,项目名称:tensorflow,代码行数:30,代码来源:def_function.py


示例2: testBasic

 def testBasic(self):
   matmul = function.defun(math_ops.matmul)
   t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]])
   sq = matmul(t, t, transpose_a=True)
   sq2 = matmul(sq, t, transpose_a=True)
   self.assertAllEqual(sq.numpy().reshape(-1), [10, 14, 14, 20])
   self.assertAllEqual(sq2.numpy().reshape(-1), [52, 76, 74, 108])
开发者ID:StephenOman,项目名称:tensorflow,代码行数:7,代码来源:function_test.py


示例3: __init__

  def __init__(self, name=None, use_global_variables=False):
    self._built = False
    self._vars = []
    self._initial_values = {}
    self._updates = []
    self._use_global_variables = use_global_variables
    name = name or self.__class__.__name__
    # Replace things like spaces in name to create a valid scope name.
    scope_name = _to_replace.sub("_", name)
    # We create the variable scope now to get the unique name that will
    # be used as a variable prefix when build() calls add_variable().
    with variable_scope.variable_scope(
        scope_name, use_resource=True, reuse=False) as scope:
      pos = scope.name.rfind(scope_name)
      self._name = name + scope.name[pos + len(scope_name):]
      self._scope = scope

    # Ensures that if the user calls build directly we still set self._built to
    # True to prevent variables from being recreated.
    self._build = self.build

    def actual_build(*args, **kwargs):
      self._build(*args, **kwargs)
      self._built = True
    self.build = actual_build
    self.build.__doc__ = self._build.__doc__

    # Captures construction scope for proper initialization.
    if context.executing_eagerly():
      self._construction_scope = context.eager_mode
    else:
      # We make self.call() into a graph callable here, so that we can
      # return a single op that performs all of the variable updates.
      self._construction_scope = ops.get_default_graph().as_default
      self.call = function.defun(self.call)
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:35,代码来源:metrics_impl.py


示例4: _defun_with_scope

def _defun_with_scope(scope, fn, input_signature):

  def wrapped_fn(*args, **kwds):
    with variable_scope.variable_creator_scope(scope):
      return fn(*args, **kwds)

  return function_lib.defun(wrapped_fn, input_signature=input_signature)
开发者ID:ThunderQi,项目名称:tensorflow,代码行数:7,代码来源:def_function.py


示例5: __call__

  def __call__(self, *args, **kwds):
    """Calls the graph function."""
    if self._created_variables:
      # In this case we have created variables on the first call, so we run the
      # defunned version which is guaranteed to never create variables.
      return self._stateless_fn(*args, **kwds)  # pylint: disable=not-callable
    elif self._stateful_fn is not None:
      # In this case we have not created variables on the first call. So we can
      # run the first trace but we should fail if variables are created.
      results = self._first_trace(*args, **kwds)
      if self._created_variables:
        raise ValueError("Creating variables on a non-first call to a function"
                         " decorated with tf.function.")
      return results

    self._initialize(args, kwds)

    if not self._created_variables:
      # If we did not create any variables the trace we have is good enough.
      return _call_concrete(self._concrete_stateful_fn, args, kwds)()

    def fn_with_cond(*inner_args, **inner_kwds):
      """Conditionally runs initialization if it's needed."""
      condition = True
      for variable in self._created_variables:
        condition = condition and resource_variable_ops.var_is_initialized_op(
            variable.handle)
      # We want to call stateless_fn if possible because it avoids recomputing
      # potentially expensive initializers.
      return control_flow_ops.cond(
          condition,
          lambda: self._stateless_fn(*inner_args, **inner_kwds),
          _call_concrete(self._concrete_stateful_fn, inner_args, inner_kwds))

    return function_lib.defun(fn_with_cond)(*args, **kwds)
开发者ID:ThunderQi,项目名称:tensorflow,代码行数:35,代码来源:def_function.py


示例6: _defun_with_scope

def _defun_with_scope(scope, fn):

  def wrapped_fn(*args, **kwds):
    with variable_scope.variable_creator_scope(scope):
      return fn(*args, **kwds)

  return function.defun(wrapped_fn)
开发者ID:daiwk,项目名称:tensorflow,代码行数:7,代码来源:def_function.py


示例7: testSequenceInputs

 def testSequenceInputs(self):
   clip_by_global_norm = function.defun(clip_ops.clip_by_global_norm)
   t_list = [tensor.Tensor(1.0), tensor.Tensor(2.0)]
   clipped_list, global_norm = clip_by_global_norm(t_list, tensor.Tensor(.2))
   for t in clipped_list:
     self.assertTrue(isinstance(t, tensor.Tensor))
   self.assertTrue(isinstance(global_norm, tensor.Tensor))
开发者ID:chdinh,项目名称:tensorflow,代码行数:7,代码来源:function_test.py


示例8: testFunctionOnDevice

  def testFunctionOnDevice(self):
    if not context.context().num_gpus():
      self.skipTest('No GPUs found')

    x = constant_op.constant([1.]).gpu()
    f = function.defun(math_ops.add)
    y = f(x, x).cpu()
    self.assertAllEqual(y, [2.])
开发者ID:StephenOman,项目名称:tensorflow,代码行数:8,代码来源:function_test.py


示例9: _benchmark_defun_matmul

 def _benchmark_defun_matmul(self,
                             m,
                             transpose_b,
                             num_iters,
                             execution_mode=None):
   f = function.defun(math_ops.matmul)
   func = lambda: f(m, m, transpose_b=transpose_b)
   self._run(func, num_iters, execution_mode=execution_mode)
开发者ID:becster,项目名称:tensorflow,代码行数:8,代码来源:benchmarks_test.py


示例10: _defun

 def _defun(self, fn):
   """Returns a defun generated from the input function."""
   # TODO(mdan): Pipe self._experimental_autograph_options through.
   return function_lib.defun(
       fn,
       input_signature=self.input_signature,
       autograph=self._autograph,
       experimental_autograph_options=self._experimental_autograph_options)
开发者ID:aritratony,项目名称:tensorflow,代码行数:8,代码来源:def_function.py


示例11: testFunctionOnDevice

  def testFunctionOnDevice(self):
    if not context.context().num_gpus():
      self.skipTest('No GPUs found')

    x = tensor.Tensor([1.]).as_gpu_tensor()
    f = function.defun(math_ops.add)
    y = f(x, x).as_cpu_tensor()
    self.assertAllEqual(y.numpy(), [2.])
开发者ID:chdinh,项目名称:tensorflow,代码行数:8,代码来源:function_test.py


示例12: testGradient

  def testGradient(self):
    matmul = function.defun(math_ops.matmul)

    def sq(x):
      return matmul(x, x, transpose_a=True)

    t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]])
    grad_t, = backprop.gradients_function(sq, [0])(t)
    self.assertAllEqual(grad_t, [[6, 6], [14, 14]])
开发者ID:StephenOman,项目名称:tensorflow,代码行数:9,代码来源:function_test.py


示例13: testGatherResourceWithDefun

  def testGatherResourceWithDefun(self):
    with ops.device('cpu:0'):
      v = resource_variable_ops.ResourceVariable([0.0, 1.0, 2.0])

    def sum_gather():
      return math_ops.reduce_sum(array_ops.gather(v, [1, 2]))

    defined = function.defun(sum_gather)
    self.assertAllEqual(sum_gather(), defined())
开发者ID:StephenOman,项目名称:tensorflow,代码行数:9,代码来源:function_test.py


示例14: testFunctionHandlesInputsPlacedOnTheWrongDeviceGracefully

  def testFunctionHandlesInputsPlacedOnTheWrongDeviceGracefully(self):
    if not context.context().num_gpus():
      self.skipTest('No GPUs found')

    # The Reshape op requires the shape tensor to be placed in host memory.
    reshape = function.defun(array_ops.reshape)
    value = constant_op.constant([1., 2.])
    shape = constant_op.constant([2, 1]).gpu()
    reshape(value, shape)  # No error is raised
开发者ID:StephenOman,项目名称:tensorflow,代码行数:9,代码来源:function_test.py


示例15: __init__

  def __init__(self, name, func, create_scope_now=False, unique_name=None,
               custom_getter=None, create_graph_function=False):
    """Creates a template for the given function.

    Args:
      name: A name for the scope created by this template. The
        name will be made unique by appending `_N` to the it (see how
        `tf.variable_scope` treats the `default_name` for details).
      func: The function to apply each time.
      create_scope_now: Whether to create the scope at Template construction
        time, rather than first call. Defaults to false. Creating the scope at
        construction time may be more convenient if the template is to passed
        through much lower level code, and you want to be sure of the scope
        name without knowing exactly where it will be first called. If set to
        True, the scope will be created in the constructor, and all subsequent
        times in `__call__`, leading to a trailing numeral being added to the
        names of all created Tensors. If set to False, the scope will be created
        at the first call location.
      unique_name: When used, it overrides `name` and is not made unique. If a
        template of the same scope/unique_name already exists and reuse is
        false, an error is raised. Defaults to None.
      custom_getter: optional custom getter to pass to `variable_scope()`
      create_graph_function: When True, `func` will be executed as a graph
        function. Enabling this flag gives the caller access to graph-function
        semantics, i.e., accesses to variables are totally ordered and
        side-effecting ops are not pruned.

    Raises:
      ValueError: if `name` is None.
    """
    if create_graph_function:
      self._func = function.defun(func)
    else:
      self._func = func
    self._stacktrace = traceback.format_stack()[:-2]
    self._name = name
    self._unique_name = unique_name
    self._custom_getter = custom_getter
    if name is None:
      raise ValueError("name cannot be None.")
    if create_scope_now:
      with variable_scope._pure_variable_scope(  # pylint:disable=protected-access
          (self._unique_name or
           variable_scope._get_unique_variable_scope(self._name)),  # pylint:disable=protected-access
          custom_getter=self._custom_getter) as vs:
        self._variable_scope = vs
    else:
      self._variable_scope = None
    # This variable keeps track of whether the template has been called to
    # completion, which is not the same as whether the scope has been created.
    self._variables_created = False
    # `MirroredStrategy` builds the graph with multiple threads. If a
    # `merge_call` happens within a template, multiple calls may be in progress
    # simultaneously. This variable keeps track of whether any call of the
    # template has started.
    self._first_call = True
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:56,代码来源:template.py


示例16: testFunctionHandlesInputsOnDifferentDevices

  def testFunctionHandlesInputsOnDifferentDevices(self):
    if not context.context().num_gpus():
      self.skipTest('No GPUs found')

    # The Reshape op requires the shape tensor to be placed in host memory.
    reshape = function.defun(array_ops.reshape)
    value = constant_op.constant([1., 2.]).gpu()
    shape = constant_op.constant([2, 1])
    reshaped = reshape(value, shape).cpu()
    self.assertAllEqual(reshaped, [[1], [2]])
开发者ID:StephenOman,项目名称:tensorflow,代码行数:10,代码来源:function_test.py


示例17: testEagerPyFuncInDefun

  def testEagerPyFuncInDefun(self):
    with test_util.device(use_gpu=True):
      def wrapper():
        a = array_ops.ones((3, 3), dtype=dtypes.float32)
        x = array_ops.ones((3, 1), dtype=dtypes.float32)
        return script_ops.eager_py_func(matmul, inp=[a, x], Tout=dtypes.float32)

      wrapped = function.defun(wrapper)
      ret = self.evaluate(wrapped())
      self.assertAllEqual(ret, [[3.0], [3.0], [3.0]])
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:10,代码来源:py_func_test.py


示例18: testBasicGraphMode

  def testBasicGraphMode(self):
    matmul = function.defun(math_ops.matmul)

    @function.defun
    def sq(a):
      return matmul(a, a)

    t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]])
    out = sq(t)
    self.assertAllEqual(out, math_ops.matmul(t, t).numpy())
开发者ID:StephenOman,项目名称:tensorflow,代码行数:10,代码来源:function_test.py


示例19: testDefunShapeInferenceWithCapturedResourceVariable

  def testDefunShapeInferenceWithCapturedResourceVariable(self):
    v = resource_variable_ops.ResourceVariable([[1, 2], [3, 4]])

    def f():
      x = constant_op.constant([[1, 2], [3, 4]])
      out = math_ops.matmul(v, x)
      self.assertEqual(out.get_shape(), tensor_shape.TensorShape([2, 2]))

    compiled = function.defun(f)
    compiled()
开发者ID:StephenOman,项目名称:tensorflow,代码行数:10,代码来源:function_test.py


示例20: benchmark_defun_without_signature

  def benchmark_defun_without_signature(self):

    def func(t1, t2, t3, t4, t5, t6, t7, t8):
      del t1, t2, t3, t4, t5, t6, t7, t8
      return None

    defined = function.defun(func)
    t = constant_op.constant(0.0)
    cache_computation = lambda: defined(t, t, t, t, t, t, t, t)
    self._run(cache_computation, 30000)
开发者ID:becster,项目名称:tensorflow,代码行数:10,代码来源:benchmarks_test.py



注:本文中的tensorflow.python.eager.function.defun函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python function.make_defun_op函数代码示例发布时间:2022-05-27
下一篇:
Python execute.execute函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap