• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python values.regroup函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.distribute.values.regroup函数的典型用法代码示例。如果您正苦于以下问题:Python regroup函数的具体用法?Python regroup怎么用?Python regroup使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了regroup函数的17个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: get_next

  def get_next(self, name=None):
    """Returns the next input from the iterator for all replicas."""
    if not self._enable_get_next_as_optional:
      replicas = []
      for i, worker in enumerate(self._input_workers.worker_devices):
        if name is not None:
          d = tf_device.DeviceSpec.from_string(worker)
          new_name = "%s_%s_%d" % (name, d.job, d.task)
        else:
          new_name = None
        with ops.device(worker):
          # Make `replicas` a flat list of values across all replicas.
          replicas.extend(
              self._iterators[i].get_next_as_list_deprecated(new_name))
      return values.regroup(self._input_workers.device_map, replicas)

    out_of_range_replicas = []
    def out_of_range_fn(worker_index, device):
      """This function will throw an OutOfRange error."""
      # As this will be only called when there is no data left, so calling
      # get_next() will trigger an OutOfRange error.
      data = self._iterators[worker_index].get_next(device)
      out_of_range_replicas.append(data)
      return data

    global_has_value, replicas = _get_next_as_optional(self, self._strategy)
    results = []
    for i, worker in enumerate(self._input_workers.worker_devices):
      with ops.device(worker):
        devices = self._input_workers.compute_devices_for_worker(i)
        for j, device in enumerate(devices):
          with ops.device(device):
            # pylint: disable=undefined-loop-variable
            # pylint: disable=cell-var-from-loop
            # It is fine for the lambda to capture variables from the loop as
            # the lambda is executed in the loop as well.
            result = control_flow_ops.cond(global_has_value,
                                           lambda: replicas[i][j],
                                           lambda: out_of_range_fn(i, device))
            # pylint: enable=cell-var-from-loop
            # pylint: enable=undefined-loop-variable
            results.append(result)
    replicas = results

    # Some dimensions in `replicas` will become unknown after we conditionally
    # return the real tensors or the dummy tensors. We fix the input shapes by
    # using the shapes from `out_of_range_replicas` because it is calling
    # get_next() inside.
    flattened_replicas = nest.flatten(replicas)
    for i, replica_data in enumerate(nest.flatten(out_of_range_replicas)):
      flattened_replicas[i].set_shape(replica_data.get_shape())
    replicas = nest.pack_sequence_as(replicas, flattened_replicas)

    return values.regroup(self._input_workers.device_map, replicas)
开发者ID:aritratony,项目名称:tensorflow,代码行数:54,代码来源:input_lib.py


示例2: testNested

  def testNested(self):
    device_map = values.ReplicaDeviceMap((_device_str(0), _device_str(1)))
    result = values.regroup(device_map,
                            (_nested_value("1"), _nested_value("2")))
    self.assertIsInstance(result, tuple)
    self.assertEqual(3, len(result))
    self._is_per_replica(result[0], ["a1", "a2"])
    self._is_per_replica(result[2], ["h1", "h2"])

    self.assertIsInstance(result[1], list)
    self.assertEqual(3, len(result[1]))
    self._is_per_replica(result[1][0], ["b1", "b2"])
    self._is_per_replica(result[1][2], ["g1", "g2"])

    self.assertIsInstance(result[1][1], dict)
    self.assertEqual(set(["c", "e"]), set(result[1][1].keys()))
    self._is_per_replica(result[1][1]["c"], ["d1", "d2"])
    self._is_per_replica(result[1][1]["e"], ["f1", "f2"])

    # Also test that we can undo the merge using select_replica()
    self.assertEqual(_nested_value("1"),
                     values.select_replica(0, result))
    self.assertEqual(_nested_value("2"),
                     values.select_replica(1, result))
    # select_device_mirrored() should fail due to non-mirrored values
    with self.assertRaises(TypeError):
      values.select_device_mirrored(_device_str(0), result)
    with self.assertRaises(TypeError):
      values.select_device_mirrored(_device_str(1), result)
开发者ID:kylin9872,项目名称:tensorflow,代码行数:29,代码来源:values_test.py


示例3: testWrapClass

  def testWrapClass(self):
    # Normally a mirrored value would be the same across devices, but
    # for a test it is convenient to be able to tell the values apart.
    device_map = values.ReplicaDeviceMap((_device_str(0), _device_str(1)))
    result = values.regroup(device_map,
                            (_nested_value("1"), _nested_value("2")),
                            values.Mirrored)
    self.assertIsInstance(result, tuple)
    self.assertEqual(3, len(result))
    self._is_per_replica(result[0], ["a1", "a2"], values.Mirrored)
    self._is_per_replica(result[2], ["h1", "h2"], values.Mirrored)

    self.assertIsInstance(result[1], list)
    self.assertEqual(3, len(result[1]))
    self._is_per_replica(result[1][0], ["b1", "b2"], values.Mirrored)
    self._is_per_replica(result[1][2], ["g1", "g2"], values.Mirrored)

    self.assertIsInstance(result[1][1], dict)
    self.assertEqual(set(["c", "e"]), set(result[1][1].keys()))
    self._is_per_replica(result[1][1]["c"], ["d1", "d2"], values.Mirrored)
    self._is_per_replica(result[1][1]["e"], ["f1", "f2"], values.Mirrored)

    # Also test that we can undo the merge using select_replica()
    self.assertEqual(_nested_value("1"),
                     values.select_replica(0, result))
    self.assertEqual(_nested_value("2"),
                     values.select_replica(1, result))
    # Values are marked as mirrored, so select_device_mirrored() is allowed.
    self.assertEqual(_nested_value("1"),
                     values.select_device_mirrored(_device_str(0), result))
    self.assertEqual(_nested_value("2"),
                     values.select_device_mirrored(_device_str(1), result))
开发者ID:kylin9872,项目名称:tensorflow,代码行数:32,代码来源:values_test.py


示例4: testNamedTupleEstimatorSpec

  def testNamedTupleEstimatorSpec(self):
    with context.graph_mode(), ops.Graph().as_default():
      devices = []
      created_estimator_specs = []

      for device_id in range(3):
        spec = model_fn_lib.EstimatorSpec(
            mode=model_fn_lib.ModeKeys.TRAIN,
            loss=constant_op.constant(device_id / 2),
            train_op=array_ops.identity(constant_op.constant(device_id)))
        devices.append(_device_str(device_id))
        created_estimator_specs.append(spec)

      device_map = values.ReplicaDeviceMap(devices)
      merged_estimator_spec = values.regroup(
          device_map, created_estimator_specs)

      self.assertTrue(
          isinstance(merged_estimator_spec, model_fn_lib.EstimatorSpec))
      self.assertEqual(model_fn_lib.ModeKeys.TRAIN, merged_estimator_spec.mode)
      for device_id in range(3):
        d = _device_str(device_id)
        self.assertEqual(created_estimator_specs[device_id].loss,
                         merged_estimator_spec.loss.get(d))
        self.assertEqual(created_estimator_specs[device_id].train_op,
                         merged_estimator_spec.train_op.get(d))
        # Scaffold is populated by `EstimatorSpec.__new__`.
        self.assertEqual(created_estimator_specs[device_id].scaffold,
                         merged_estimator_spec.scaffold.get(d))
        # Also test that we can undo the merge using select_replica()
        self.assertEqual(created_estimator_specs[device_id],
                         values.select_replica(device_id,
                                               merged_estimator_spec))
开发者ID:kylin9872,项目名称:tensorflow,代码行数:33,代码来源:values_test.py


示例5: testOneDevice

  def testOneDevice(self):
    result = values.regroup({_device_str(0): _nested_value("1")})
    # On one device regroup() and select_device() are basically identity.
    self.assertEqual(_nested_value("1"), result)
    self.assertEqual(_nested_value("1"),
                     values.select_device(_device_str(0), result))

    # The one exception has to do with MirroredVariables.
    d = "/device:CPU:0"
    with ops.device(d):
      v = variable_scope.get_variable(
          name="v", initializer=1., use_resource=True)
      index = {d: v}
    mirrored = values.MirroredVariable(index, v,
                                       variable_scope.VariableAggregation.SUM)
    result = values.regroup(index)
    self.assertIs(mirrored, result)
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:17,代码来源:values_test.py


示例6: _experimental_run_steps_on_iterator

  def _experimental_run_steps_on_iterator(self, fn, iterator, iterations,
                                          initial_loop_values=None):
    if initial_loop_values is None:
      initial_loop_values = {}
    initial_loop_values = nest.flatten(initial_loop_values)

    ctx = values.MultiStepContext()
    def body(i, *args):
      """A wrapper around `fn` to create the while loop body."""
      del args
      fn_inputs = iterator.get_next()
      if not isinstance(fn_inputs, tuple):
        fn_inputs = (fn_inputs,)
      fn_result = fn(ctx, fn_inputs)
      for (name, output) in ctx.last_step_outputs.items():
        # Convert all outputs to tensors, potentially from `DistributedValues`.
        ctx.last_step_outputs[name] = self._unwrap(output)
      flat_last_step_outputs = nest.flatten(ctx.last_step_outputs)
      with ops.control_dependencies([fn_result]):
        return [i + 1] + flat_last_step_outputs

    # We capture the control_flow_context at this point, before we run `fn`
    # inside a while_loop. This is useful in cases where we might need to exit
    # these contexts and get back to the outer context to do some things, for
    # e.g. create an op which should be evaluated only once at the end of the
    # loop on the host. One such usage is in creating metrics' value op.
    self._outer_control_flow_context = (
        ops.get_default_graph()._get_control_flow_context())  # pylint: disable=protected-access

    cond = lambda i, *args: i < iterations
    i = constant_op.constant(0)
    loop_result = control_flow_ops.while_loop(
        cond, body, [i] + initial_loop_values, name="",
        parallel_iterations=1, back_prop=False, swap_memory=False,
        return_same_structure=True)
    del self._outer_control_flow_context

    ctx.run_op = control_flow_ops.group(loop_result)

    # Convert the last_step_outputs from a list to the original dict structure
    # of last_step_outputs.
    last_step_tensor_outputs = loop_result[1:]
    last_step_tensor_outputs_dict = nest.pack_sequence_as(
        ctx.last_step_outputs, last_step_tensor_outputs)

    for name, reduce_op in ctx._last_step_outputs_reduce_ops.items():  # pylint: disable=protected-access
      output = last_step_tensor_outputs_dict[name]
      # For outputs that have already been reduced, wrap them in a Mirrored
      # container, else in a PerReplica container.
      if reduce_op is None:
        last_step_tensor_outputs_dict[name] = values.regroup(
            {d: t for d, t in zip(self._devices, output)}, values.PerReplica)
      else:
        assert len(output) == 1
        last_step_tensor_outputs_dict[name] = output[0]

    ctx._set_last_step_outputs(last_step_tensor_outputs_dict)  # pylint: disable=protected-access
    return ctx
开发者ID:aeverall,项目名称:tensorflow,代码行数:58,代码来源:mirrored_strategy.py


示例7: testOneDevice

  def testOneDevice(self):
    device_map = values.ReplicaDeviceMap((_device_str(0),))
    result = values.regroup(device_map, (_nested_value("1"),))
    # On one device regroup() and select_replica() are basically identity.
    self.assertEqual(_nested_value("1"), result)
    self.assertEqual(_nested_value("1"),
                     values.select_replica(0, result))

    # The one exception has to do with MirroredVariables.
    d = "/device:CPU:0"
    with ops.device(d):
      v = variable_scope.get_variable(
          name="v", initializer=1., use_resource=True)
      device_map = values.ReplicaDeviceMap((d,))
    mirrored = values.MirroredVariable(None, device_map, (v,),
                                       variable_scope.VariableAggregation.SUM)
    result = values.regroup(device_map, (v,))
    self.assertIs(mirrored, result)
开发者ID:kylin9872,项目名称:tensorflow,代码行数:18,代码来源:values_test.py


示例8: _tpu_run

def _tpu_run(strategy, fn, args, kwargs):
  """Common implementation of TPUStrategy.experimental_run_v2."""
  if context.executing_eagerly() and not ops.inside_function():
    raise NotImplementedError(
        "Eager mode not supported in TPUStrategy outside TF functions.")

  if kwargs is None:
    kwargs = {}

  # Used to re-structure flattened output tensors from `tpu.replicate()`
  # into a structured format.
  result = [[]]

  def replicated_fn(replica_id, replica_args, replica_kwargs):
    """Wraps user function to provide replica ID and `Tensor` inputs."""
    with _TPUReplicaContext(strategy, replica_id_in_sync_group=replica_id):
      result[0] = fn(*replica_args, **replica_kwargs)
    return result[0]

  replicate_inputs = []  # By replica.
  for i in range(strategy.num_replicas_in_sync):
    replicate_inputs.append(
        [constant_op.constant(i, dtype=dtypes.int32),
         values.select_replica(i, args),
         values.select_replica(i, kwargs)])

  # Construct and pass `maximum_shapes` so that we could support dynamic
  # shapes using dynamic padder.
  if replicate_inputs:
    maximum_shapes = []
    flattened_list = nest.flatten(replicate_inputs[0])
    for input_tensor in flattened_list:
      maximum_shapes.append(input_tensor.get_shape())
    maximum_shapes = nest.pack_sequence_as(replicate_inputs[0],
                                           maximum_shapes)
  else:
    maximum_shapes = None

  with strategy.scope():
    replicate_outputs = tpu.replicate(replicated_fn, replicate_inputs,
                                      maximum_shapes=maximum_shapes)

  # Remove all no ops that may have been added during 'tpu.replicate()'
  if isinstance(result[0], list):
    result[0] = [
        output for output in result[0] if tensor_util.is_tensor(output)
    ]

  # Workaround for `tpu.replicate` behaviour when single `Tensor` returned.
  replicate_outputs = [
      nest.pack_sequence_as(result[0], nest.flatten(replica_output))
      for replica_output in replicate_outputs
  ]

  device_map = strategy.extended._device_map  # pylint: disable=protected-access
  return values.regroup(device_map, replicate_outputs)
开发者ID:aritratony,项目名称:tensorflow,代码行数:56,代码来源:tpu_strategy.py


示例9: get_next

  def get_next(self, name=None):
    """Returns the next input from the iterator for all replicas."""
    replicas = []
    for i, worker in enumerate(self._input_workers.worker_devices):
      if name is not None:
        d = tf_device.DeviceSpec.from_string(worker)
        new_name = "%s_%s_%d" % (name, d.job, d.task)
      else:
        new_name = None
      with ops.device(worker):
        # Make `replicas` a flat list of values across all replicas.
        replicas.extend(self._iterators[i].get_next_as_list(new_name))

    return values.regroup(self._input_workers.device_map, replicas)
开发者ID:kylin9872,项目名称:tensorflow,代码行数:14,代码来源:input_lib.py


示例10: loop_body

 def loop_body(has_data, data, state):
   """Executes `reduce_fn` in a loop till the dataset is empty."""
   # data is list of lists here. where each list corresponds to one worker.
   # TODO(b/130570614): Add support for the multiworker and TPU pods use
   # case.
   if self._input_workers.num_workers == 1:
     data = data[0]
   else:
     raise ValueError("Dataset iteration within a tf.function is"
                      " not supported for multiple workers.")
   per_replica_data = values.regroup(self._input_workers.device_map, data)
   state = reduce_fn(state, per_replica_data)
   has_data, data = _get_next_as_optional(iterator, self._strategy)
   return has_data, data, state
开发者ID:aritratony,项目名称:tensorflow,代码行数:14,代码来源:input_lib.py


示例11: get_next

  def get_next(self, name=None):
    """Scatter the input across hosts and devices."""
    replicas = []
    for worker, iterator in zip(self._input_workers.worker_devices,
                                self._iterators):
      if name is not None:
        d = tf_device.DeviceSpec.from_string(worker)
        new_name = "%s_%s_%d" % (name, d.job, d.task)
      else:
        new_name = None
      with ops.device(worker):
        data_per_worker = iterator.get_next_as_list(name=new_name)
        # Append to replicas to get a flat list of values indexed by replica.
        replicas.extend(data_per_worker)

    return values.regroup(self._input_workers.device_map, replicas)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:16,代码来源:input_lib.py


示例12: experimental_run_v2

  def experimental_run_v2(self, fn, args=(), kwargs=None):
    """See base class."""
    if context.executing_eagerly() and not ops.inside_function():
      raise NotImplementedError(
          "Eager mode not supported in TPUStrategy outside TF functions.")

    if kwargs is None:
      kwargs = {}

    # Used to re-structure flattened output tensors from `tpu.replicate()`
    # into a structured format.
    result = [[]]

    def replicated_fn(replica_id, replica_args, replica_kwargs):
      """Wraps user function to provide replica ID and `Tensor` inputs."""
      with _TPUReplicaContext(self, replica_id_in_sync_group=replica_id):
        result[0] = fn(*replica_args, **replica_kwargs)
      return result[0]

    replicate_inputs = []  # By replica.
    for i in range(self.num_replicas_in_sync):
      replicate_inputs.append(
          [constant_op.constant(i, dtype=dtypes.int32),
           values.select_replica(i, args),
           values.select_replica(i, kwargs)])

    with self.scope():
      replicate_outputs = tpu.replicate(replicated_fn, replicate_inputs)

    # Remove all no ops that may have been added during 'tpu.replicate()'
    if isinstance(result[0], list):
      result[0] = [
          output for output in result[0] if tensor_util.is_tensor(output)
      ]

    # Workaround for `tpu.replicate` behaviour when single `Tensor` returned.
    replicate_outputs = [
        nest.pack_sequence_as(result[0], nest.flatten(replica_output))
        for replica_output in replicate_outputs
    ]

    device_map = self.extended._device_map  # pylint: disable=protected-access
    return values.regroup(device_map, replicate_outputs)
开发者ID:perfmjs,项目名称:tensorflow,代码行数:43,代码来源:tpu_strategy.py


示例13: testSameId

  def testSameId(self):
    foo = object()
    device_map = values.ReplicaDeviceMap((_device_str(0), _device_str(1)))
    result = values.regroup(device_map, (("a", foo), ("b", foo)))
    self.assertIsInstance(result, tuple)
    self.assertEqual(2, len(result))
    self._is_per_replica(result[0], ["a", "b"])
    self.assertIs(foo, result[1])

    # Test select_replica(), should undo the merge done by regroup().
    result_0 = values.select_replica(0, result)
    self.assertIsInstance(result_0, tuple)
    self.assertEqual(2, len(result_0))
    self.assertEqual("a", result_0[0])
    self.assertIs(foo, result_0[1])
    result_1 = values.select_replica(1, result)
    self.assertIsInstance(result_1, tuple)
    self.assertEqual(2, len(result_1))
    self.assertEqual("b", result_1[0])
    self.assertIs(foo, result_1[1])
开发者ID:kylin9872,项目名称:tensorflow,代码行数:20,代码来源:values_test.py


示例14: experimental_run

  def experimental_run(self, fn, input_iterator=None):
    """See base class."""
    if context.executing_eagerly():
      raise NotImplementedError("Eager mode not supported in TPUStrategy.")

    if self.extended._disable_training_loop_on_host:  # pylint: disable=protected-access
      raise NotImplementedError(
          "`experimental_run` is not compatible with "
          "`_disable_training_loop_on_host=True`")

    if input_iterator is None:
      inputs = []
    else:
      inputs = input_iterator.get_next()

    result = [None]
    def replicated_fn(replica_id, inputs):
      """Wraps user function to provide replica ID and `Tensor` inputs."""
      with _TPUReplicaContext(self, replica_id_in_sync_group=replica_id):
        if input_iterator is None:
          result[0] = fn()
        else:
          result[0] = fn(inputs)
      return result[0]

    replicate_inputs = []  # By replica.
    for i in range(self.num_replicas_in_sync):
      replicate_inputs.append(
          [constant_op.constant(i, dtype=dtypes.int32),
           values.select_replica(i, inputs)])

    with self.scope():
      replicate_outputs = tpu.replicate(replicated_fn, replicate_inputs)

    # Workaround for `tpu.replicate` behaviour when single `Tensor` returned.
    replicate_outputs = [
        nest.pack_sequence_as(result[0], nest.flatten(replica_outputs))
        for replica_outputs in replicate_outputs]

    device_map = self.extended._device_map  # pylint: disable=protected-access
    return values.regroup(device_map, replicate_outputs)
开发者ID:AndreasGocht,项目名称:tensorflow,代码行数:41,代码来源:tpu_strategy.py


示例15: get_next

  def get_next(self, name=None):
    """Returns the next input from the iterator for all replicas."""
    if not self._enable_get_next_as_optional:
      replicas = []
      for i, worker in enumerate(self._input_workers.worker_devices):
        if name is not None:
          d = tf_device.DeviceSpec.from_string(worker)
          new_name = "%s_%s_%d" % (name, d.job, d.task)
        else:
          new_name = None
        with ops.device(worker):
          # Make `replicas` a flat list of values across all replicas.
          replicas.extend(
              self._iterators[i].get_next_as_list_deprecated(new_name))
      return values.regroup(self._input_workers.device_map, replicas)

    replicas = []
    worker_has_values = []
    for i, worker in enumerate(self._input_workers.worker_devices):
      if name is not None:
        d = tf_device.DeviceSpec.from_string(worker)
        new_name = "%s_%s_%d" % (name, d.job, d.task)
      else:
        new_name = None
      with ops.device(worker):
        worker_has_value, next_element = (
            self._iterators[i].get_next_as_list(new_name))
        worker_has_values.append(worker_has_value)
        # Make `replicas` a flat list of values across all replicas.
        replicas.append(next_element)

    out_of_range_replicas = []

    def out_of_range_fn(worker_index, device):
      """This function will throw an OutOfRange error."""
      # As this will be only called when there is no data left, so calling
      # get_next() will trigger an OutOfRange error.
      data = self._iterators[worker_index].get_next(device)
      out_of_range_replicas.append(data)
      return data

    # `global_has_value` indicates whether there is data in this global batch.
    # We do a all-reduce across all the workers in the multi-worker case.
    # TODO(b/126259107): Do strategy.reduce for CollectiveAllReduceStrategy.
    if len(worker_has_values) > 1:
      with ops.device(self._input_workers.compute_devices_for_worker(0)[0]):
        # Place the tf.reduce_any op in device 0 to minimize communication
        # cost.
        # TODO(b/128545270): Investigate why placing it on worker 0 will cause
        # the entire data to copy back from device to host.
        global_has_value = math_ops.reduce_any(worker_has_values)
    else:
      global_has_value = worker_has_values[0]

    results = []
    for i, worker in enumerate(self._input_workers.worker_devices):
      with ops.device(worker):
        devices = self._input_workers.compute_devices_for_worker(i)
        for j, device in enumerate(devices):
          with ops.device(device):
            # pylint: disable=undefined-loop-variable
            # pylint: disable=cell-var-from-loop
            # It is fine for the lambda to capture variables from the loop as
            # the lambda is executed in the loop as well.
            result = control_flow_ops.cond(global_has_value,
                                           lambda: replicas[i][j],
                                           lambda: out_of_range_fn(i, device))
            # pylint: enable=cell-var-from-loop
            # pylint: enable=undefined-loop-variable
            results.append(result)
    replicas = results

    # Some dimensions in `replicas` will become unknown after we conditionally
    # return the real tensors or the dummy tensors. We fix the input shapes by
    # using the shapes from `out_of_range_replicas` because it is calling
    # get_next() inside.
    flattened_replicas = nest.flatten(replicas)
    for i, replica_data in enumerate(nest.flatten(out_of_range_replicas)):
      flattened_replicas[i].set_shape(replica_data.get_shape())
    replicas = nest.pack_sequence_as(replicas, flattened_replicas)

    return values.regroup(self._input_workers.device_map, replicas)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:82,代码来源:input_lib.py


示例16: testMirroredContainer

 def testMirroredContainer(self):
   if context.num_gpus() < 1 and context.executing_eagerly():
     self.skipTest("A GPU is not available for this test in eager mode.")
   v, device_map, mirrored = _make_mirrored()
   result = values.regroup(device_map, v)
   self.assertIs(mirrored, result)
开发者ID:kylin9872,项目名称:tensorflow,代码行数:6,代码来源:values_test.py


示例17: _call_for_each_replica

def _call_for_each_replica(distribution, fn, args, kwargs):
  """Run `fn` in separate threads, once per replica/worker device.

  Args:
    distribution: the DistributionStrategy object.
    fn: function to run (will be run once per device, each in its own thread).
    args: positional arguments for `fn`
    kwargs: keyword arguments for `fn`.

  Returns:
    Merged return value of `fn` across all replicas.

  Raises:
    RuntimeError: If fn() calls get_replica_context().merge_call() a different
        number of times from the available devices.
  """
  # TODO(josh11b): Add this option once we add synchronization to variable
  # creation. Until then, this is pretty unsafe to use.
  run_concurrently = False
  if not context.executing_eagerly():
    # Needed for per-thread device, etc. contexts in graph mode.
    ops.get_default_graph().switch_to_thread_local()

  coord = coordinator.Coordinator(clean_stop_exception_types=(_RequestedStop,))

  shared_variable_store = {}

  # TODO(isaprykin): Create these threads once instead of during every run()
  # call.
  threads = []
  for index, d in enumerate(distribution.extended.worker_devices):
    variable_creator_fn = shared_variable_creator.make_fn(
        shared_variable_store, index)
    t = MirroredExtended._MirroredReplicaThread(  # pylint: disable=protected-access
        distribution, coord, d, variable_creator_fn, fn,
        *values.select_device(d, args), **values.select_device(d, kwargs))
    threads.append(t)

  for t in threads:
    t.start()

  # When `fn` starts `should_run` event is set on _MirroredReplicaThread
  # (`MRT`) threads. The execution waits until
  # `MRT.has_paused` is set, which indicates that either `fn` is
  # complete or a `get_replica_context().merge_call()` is called.  If `fn` is
  # complete, then `MRT.done` is set to True.  Otherwise, arguments
  # of `get_replica_context().merge_call` from all paused threads are grouped
  # and the `merge_fn` is performed.  Results of the
  # `get_replica_context().merge_call` are then set to `MRT.merge_result`.
  # Each such `get_replica_context().merge_call` call returns the
  # `MRT.merge_result` for that thread when `MRT.should_run` event
  # is reset again. Execution of `fn` resumes.

  try:
    with coord.stop_on_exception():
      all_done = False
      while not all_done and not coord.should_stop():
        done = []
        if run_concurrently:
          for t in threads:
            t.should_run.set()
          for t in threads:
            t.has_paused.wait()
            t.has_paused.clear()
            if coord.should_stop():
              return None
            done.append(t.done)
        else:
          for t in threads:
            t.should_run.set()
            t.has_paused.wait()
            t.has_paused.clear()
            if coord.should_stop():
              return None
            done.append(t.done)
        if coord.should_stop():
          return None
        all_done = all(done)
        if not all_done:
          if any(done):
            raise RuntimeError("Some replicas made a different number of "
                               "replica_context().merge_call() calls.")
          # get_replica_context().merge_call() case
          merge_args = values.regroup({t.device: t.merge_args for t in threads})
          merge_kwargs = values.regroup(
              {t.device: t.merge_kwargs for t in threads})
          # We capture the name_scope of the MRT when we call merge_fn
          # to ensure that if we have opened a name scope in the MRT,
          # it will be respected when executing the merge function. We only
          # capture the name_scope from the first MRT and assume it is
          # the same for all other MRTs.
          mtt_captured_name_scope = threads[0].captured_name_scope
          with ops.name_scope(mtt_captured_name_scope):
            merge_result = threads[0].merge_fn(distribution, *merge_args,
                                               **merge_kwargs)
          for t in threads:
            t.merge_result = values.select_device(t.device, merge_result)
  finally:
    for t in threads:
      t.should_run.set()
#.........这里部分代码省略.........
开发者ID:aeverall,项目名称:tensorflow,代码行数:101,代码来源:mirrored_strategy.py



注:本文中的tensorflow.python.distribute.values.regroup函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python values.select_replica函数代码示例发布时间:2022-05-27
下一篇:
Python multi_worker_util.normalize_cluster_spec函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap