• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python debugger_cli_common.rich_text_lines_from_rich_line_list函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.debug.cli.debugger_cli_common.rich_text_lines_from_rich_line_list函数的典型用法代码示例。如果您正苦于以下问题:Python rich_text_lines_from_rich_line_list函数的具体用法?Python rich_text_lines_from_rich_line_list怎么用?Python rich_text_lines_from_rich_line_list使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了rich_text_lines_from_rich_line_list函数的18个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _node_status_label_legend

  def _node_status_label_legend(self):
    """Get legend for node-status labels.

    Returns:
      (debugger_cli_common.RichTextLines) Legend text.
    """

    return debugger_cli_common.rich_text_lines_from_rich_line_list([
        RL(""),
        RL("Legend:"),
        (RL("  ") +
         RL(self.STATE_IS_PLACEHOLDER,
            self._STATE_COLORS[self.STATE_IS_PLACEHOLDER]) +
         " - Placeholder"),
        (RL("  ") +
         RL(self.STATE_UNFEEDABLE,
            self._STATE_COLORS[self.STATE_UNFEEDABLE]) +
         " - Unfeedable"),
        (RL("  ") +
         RL(self.STATE_CONT,
            self._STATE_COLORS[self.STATE_CONT]) +
         " - Already continued-to; Tensor handle available from output "
         "slot(s)"),
        (RL("  ") +
         RL(self.STATE_DUMPED_INTERMEDIATE,
            self._STATE_COLORS[self.STATE_DUMPED_INTERMEDIATE]) +
         " - Unfeedable"),
        (RL("  ") +
         RL(self.STATE_OVERRIDDEN,
            self._STATE_COLORS[self.STATE_OVERRIDDEN]) +
         " - Has overriding (injected) tensor value"),
        (RL("  ") +
         RL(self.STATE_DIRTY_VARIABLE,
            self._STATE_COLORS[self.STATE_DIRTY_VARIABLE]) +
         " - Dirty variable: Variable already updated this node stepper.")])
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:35,代码来源:stepper_cli.py


示例2: _render_node_traceback

  def _render_node_traceback(self, node_name):
    """Render traceback of a node's creation in Python, if available.

    Args:
      node_name: (str) name of the node.

    Returns:
      A RichTextLines object containing the stack trace of the node's
      construction.
    """

    lines = [RL(""), RL(""), RL("Traceback of node construction:", "bold")]

    try:
      node_stack = self._debug_dump.node_traceback(node_name)
      for depth, (file_path, line, function_name, text) in enumerate(
          node_stack):
        lines.append("%d: %s" % (depth, file_path))

        attribute = debugger_cli_common.MenuItem(
            "", "ps %s -b %d" % (file_path, line)) if text else None
        line_number_line = RL("  ")
        line_number_line += RL("Line:     %d" % line, attribute)
        lines.append(line_number_line)

        lines.append("  Function: %s" % function_name)
        lines.append("  Text:     " + (("\"%s\"" % text) if text else "None"))
        lines.append("")
    except KeyError:
      lines.append("(Node unavailable in the loaded Python graph)")
    except LookupError:
      lines.append("(Unavailable because no Python graph has been loaded)")

    return debugger_cli_common.rich_text_lines_from_rich_line_list(lines)
开发者ID:brainwy12,项目名称:tensorflow,代码行数:34,代码来源:analyzer_cli.py


示例3: get_error_intro

def get_error_intro(tf_error):
  """Generate formatted intro for TensorFlow run-time error.

  Args:
    tf_error: (errors.OpError) TensorFlow run-time error object.

  Returns:
    (RichTextLines) Formatted intro message about the run-time OpError, with
      sample commands for debugging.
  """

  if hasattr(tf_error, "op") and hasattr(tf_error.op, "name"):
    op_name = tf_error.op.name
  else:
    op_name = None

  intro_lines = [
      "--------------------------------------",
      RL("!!! An error occurred during the run !!!", "blink"),
      "",
  ]

  out = debugger_cli_common.rich_text_lines_from_rich_line_list(intro_lines)

  if op_name is not None:
    out.extend(debugger_cli_common.RichTextLines(
        ["You may use the following commands to debug:"]))
    out.extend(
        _recommend_command("ni -a -d -t %s" % op_name,
                           "Inspect information about the failing op.",
                           create_link=True))
    out.extend(
        _recommend_command("li -r %s" % op_name,
                           "List inputs to the failing op, recursively.",
                           create_link=True))

    out.extend(
        _recommend_command(
            "lt",
            "List all tensors dumped during the failing run() call.",
            create_link=True))
  else:
    out.extend(debugger_cli_common.RichTextLines([
        "WARNING: Cannot determine the name of the op that caused the error."]))

  more_lines = [
      "",
      "Op name:    %s" % op_name,
      "Error type: " + str(type(tf_error)),
      "",
      "Details:",
      str(tf_error),
      "",
      "--------------------------------------",
      "",
  ]

  out.extend(debugger_cli_common.RichTextLines(more_lines))

  return out
开发者ID:AnishShah,项目名称:tensorflow,代码行数:60,代码来源:cli_shared.py


示例4: _recommend_command

def _recommend_command(command, description, indent=2, create_link=False):
  """Generate a RichTextLines object that describes a recommended command.

  Args:
    command: (str) The command to recommend.
    description: (str) A description of what the command does.
    indent: (int) How many spaces to indent in the beginning.
    create_link: (bool) Whether a command link is to be applied to the command
      string.

  Returns:
    (RichTextLines) Formatted text (with font attributes) for recommending the
      command.
  """

  indent_str = " " * indent

  if create_link:
    font_attr = [debugger_cli_common.MenuItem("", command), "bold"]
  else:
    font_attr = "bold"

  lines = [RL(indent_str) + RL(command, font_attr) + ":",
           indent_str + "  " + description]

  return debugger_cli_common.rich_text_lines_from_rich_line_list(lines)
开发者ID:LUTAN,项目名称:tensorflow,代码行数:26,代码来源:cli_shared.py


示例5: _counts_summary

  def _counts_summary(counts, skip_zeros=True, total_count=None):
    """Format values as a two-row table."""
    if skip_zeros:
      counts = [(count_key, count_val) for count_key, count_val in counts
                if count_val]
    max_common_len = 0
    for count_key, count_val in counts:
      count_val_str = str(count_val)
      common_len = max(len(count_key) + 1, len(count_val_str) + 1)
      max_common_len = max(common_len, max_common_len)

    key_line = debugger_cli_common.RichLine("|")
    val_line = debugger_cli_common.RichLine("|")
    for count_key, count_val in counts:
      count_val_str = str(count_val)
      key_line += _pad_string_to_length(count_key, max_common_len)
      val_line += _pad_string_to_length(count_val_str, max_common_len)
    key_line += " |"
    val_line += " |"

    if total_count is not None:
      total_key_str = "total"
      total_val_str = str(total_count)
      max_common_len = max(len(total_key_str) + 1, len(total_val_str))
      total_key_str = _pad_string_to_length(total_key_str, max_common_len)
      total_val_str = _pad_string_to_length(total_val_str, max_common_len)
      key_line += total_key_str + " |"
      val_line += total_val_str + " |"

    return debugger_cli_common.rich_text_lines_from_rich_line_list(
        [key_line, val_line])
开发者ID:NevesLucas,项目名称:tensorflow,代码行数:31,代码来源:tensor_format.py


示例6: list_sorted_nodes

  def list_sorted_nodes(self, args, screen_info=None):
    """List the sorted transitive closure of the stepper's fetches."""

    # TODO(cais): Use pattern such as del args, del screen_info python/debug.
    _ = args
    _ = screen_info

    parsed = self.arg_parsers["list_sorted_nodes"].parse_args(args)

    if parsed.lower_bound != -1 and parsed.upper_bound != -1:
      index_range = [
          max(0, parsed.lower_bound),
          min(len(self._sorted_nodes), parsed.upper_bound)
      ]
      verbose = False
    else:
      index_range = [0, len(self._sorted_nodes)]
      verbose = True

    handle_node_names = self._node_stepper.handle_node_names()
    intermediate_tensor_names = self._node_stepper.intermediate_tensor_names()
    override_names = self._node_stepper.override_names()
    dirty_variable_names = [
        dirty_variable.split(":")[0]
        for dirty_variable in self._node_stepper.dirty_variables()
    ]

    lines = []
    if verbose:
      lines.extend(
          ["Topologically-sorted transitive input(s) and fetch(es):", ""])

    output = debugger_cli_common.rich_text_lines_from_rich_line_list(lines)
    self._add_deprecation_warning(output)

    for i, element_name in enumerate(self._sorted_nodes):
      if i < index_range[0] or i >= index_range[1]:
        continue

      # TODO(cais): Use fixed-width text to show node index.
      if i == self._next:
        node_prefix = RL("  ") + RL(self.NEXT_NODE_POINTER_STR, "bold")
      else:
        node_prefix = RL("     ")

      node_prefix += "(%d / %d)" % (i + 1, len(self._sorted_nodes)) + "  ["
      node_prefix += self._get_status_labels(
          element_name,
          handle_node_names,
          intermediate_tensor_names,
          override_names,
          dirty_variable_names)

      output.append_rich_line(node_prefix + "] " + element_name)

    if verbose:
      output.extend(self._node_status_label_legend())

    return output
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:59,代码来源:stepper_cli.py


示例7: print_source

  def print_source(self, args, screen_info=None):
    """Print the content of a source file."""
    del screen_info  # Unused.

    parsed = self._arg_parsers["print_source"].parse_args(args)

    source_annotation = source_utils.annotate_source(
        self._debug_dump,
        parsed.source_file_path,
        do_dumped_tensors=parsed.tensors,
        min_line=parsed.line_begin)

    with open(parsed.source_file_path, "rU") as f:
      source_text = f.read()

    source_lines = source_text.split("\n")
    num_lines = len(source_lines)
    line_num_width = int(np.ceil(np.log10(num_lines))) + 3

    labeled_source_lines = []
    if parsed.line_begin > 1:
      labeled_source_lines.append(
          RL("(... Omitted %d source lines ...)" % (parsed.line_begin - 1),
             "bold"))

    for i, line in enumerate(source_lines[parsed.line_begin - 1:]):
      annotated_line = RL("L%d" % (i + parsed.line_begin), "yellow")
      annotated_line += " " * (line_num_width - len(annotated_line))
      annotated_line += line
      labeled_source_lines.append(annotated_line)

      if i + parsed.line_begin in source_annotation:
        sorted_elements = sorted(source_annotation[i + parsed.line_begin])
        for k, element in enumerate(sorted_elements):
          if k >= parsed.max_elements_per_line:
            labeled_source_lines.append(
                "    (... Omitted %d of %d %s ...)" % (
                    len(sorted_elements) - parsed.max_elements_per_line,
                    len(sorted_elements),
                    "tensor(s)" if parsed.tensors else "op(s)"))
            break

          label = RL(" " * 4)
          if self._debug_dump.debug_watch_keys(
              debug_data.get_node_name(element)):
            attribute = debugger_cli_common.MenuItem("", "pt %s" % element)
          else:
            attribute = "blue"

          label += RL(element, attribute)
          labeled_source_lines.append(label)

    output = debugger_cli_common.rich_text_lines_from_rich_line_list(
        labeled_source_lines)
    _add_main_menu(output, node_name=None)
    return output
开发者ID:brainwy12,项目名称:tensorflow,代码行数:56,代码来源:analyzer_cli.py


示例8: get_error_intro

def get_error_intro(tf_error):
  """Generate formatted intro for TensorFlow run-time error.

  Args:
    tf_error: (errors.OpError) TensorFlow run-time error object.

  Returns:
    (RichTextLines) Formatted intro message about the run-time OpError, with
      sample commands for debugging.
  """

  op_name = tf_error.op.name

  intro_lines = [
      "--------------------------------------",
      RL("!!! An error occurred during the run !!!", "blink"),
      "",
      "You may use the following commands to debug:",
  ]

  out = debugger_cli_common.rich_text_lines_from_rich_line_list(intro_lines)

  out.extend(
      _recommend_command("ni -a -d -t %s" % op_name,
                         "Inspect information about the failing op.",
                         create_link=True))
  out.extend(
      _recommend_command("li -r %s" % op_name,
                         "List inputs to the failing op, recursively.",
                         create_link=True))

  out.extend(
      _recommend_command(
          "lt",
          "List all tensors dumped during the failing run() call.",
          create_link=True))

  more_lines = [
      "",
      "Op name:    " + op_name,
      "Error type: " + str(type(tf_error)),
      "",
      "Details:",
      str(tf_error),
      "",
      "WARNING: Using client GraphDef due to the error, instead of "
      "executor GraphDefs.",
      "--------------------------------------",
      "",
  ]

  out.extend(debugger_cli_common.RichTextLines(more_lines))

  return out
开发者ID:LUTAN,项目名称:tensorflow,代码行数:54,代码来源:cli_shared.py


示例9: error

def error(msg):
  """Generate a RichTextLines output for error.

  Args:
    msg: (str) The error message.

  Returns:
    (debugger_cli_common.RichTextLines) A representation of the error message
      for screen output.
  """

  return debugger_cli_common.rich_text_lines_from_rich_line_list([
      RL("ERROR: " + msg, COLOR_RED)])
开发者ID:LUTAN,项目名称:tensorflow,代码行数:13,代码来源:cli_shared.py


示例10: render

  def render(self,
             max_length,
             backward_command,
             forward_command,
             latest_command_attribute="black_on_white",
             old_command_attribute="magenta_on_white"):
    """Render the rich text content of the single-line navigation bar.

    Args:
      max_length: (`int`) Maximum length of the navigation bar, in characters.
      backward_command: (`str`) command for going backward. Used to construct
        the shortcut menu item.
      forward_command: (`str`) command for going forward. Used to construct the
        shortcut menu item.
       latest_command_attribute: font attribute for lastest command.
       old_command_attribute: font attribute for old (non-latest) command.

    Returns:
      (`debugger_cli_common.RichTextLines`) the navigation bar text with
        attributes.

    """
    output = RL("| ")
    output += RL(
        self.BACK_ARROW_TEXT,
        (debugger_cli_common.MenuItem(None, backward_command)
         if self.can_go_back() else None))
    output += RL(" ")
    output += RL(
        self.FORWARD_ARROW_TEXT,
        (debugger_cli_common.MenuItem(None, forward_command)
         if self.can_go_forward() else None))

    if self._items:
      command_attribute = (latest_command_attribute
                           if (self._pointer == (len(self._items) - 1))
                           else old_command_attribute)
      output += RL(" | ")
      if self._pointer != len(self._items) - 1:
        output += RL("(-%d) " % (len(self._items) - 1 - self._pointer),
                     command_attribute)

      if len(output) < max_length:
        maybe_truncated_command = self._items[self._pointer].command[
            :(max_length - len(output))]
        output += RL(maybe_truncated_command, command_attribute)

    return debugger_cli_common.rich_text_lines_from_rich_line_list([output])
开发者ID:1000sprites,项目名称:tensorflow,代码行数:48,代码来源:curses_widgets.py


示例11: summarize

  def summarize(self, highlight=None):
    """Get a text summary of the config.

    Args:
      highlight: A property name to highlight in the output.

    Returns:
      A `RichTextLines` output.
    """
    lines = [RL("Command-line configuration:", "bold"), RL("")]
    for name, val in self._config.items():
      highlight_attr = "bold" if name == highlight else None
      line = RL("  ")
      line += RL(name, ["underline", highlight_attr])
      line += RL(": ")
      line += RL(str(val), font_attr=highlight_attr)
      lines.append(line)
    return debugger_cli_common.rich_text_lines_from_rich_line_list(lines)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:18,代码来源:cli_config.py


示例12: _report_last_updated

  def _report_last_updated(self):
    """Generate a report of the variables updated in the last cont/step call.

    Returns:
      (debugger_cli_common.RichTextLines) A RichTextLines representation of the
        variables updated in the last cont/step call.
    """

    last_updated = self._node_stepper.last_updated()
    if not last_updated:
      return debugger_cli_common.RichTextLines([])

    rich_lines = [RL("Updated:", self._UPDATED_ATTRIBUTE)]
    sorted_last_updated = sorted(list(last_updated))
    for updated in sorted_last_updated:
      rich_lines.append(RL("  %s" % updated))
    rich_lines.append(RL(""))
    return debugger_cli_common.rich_text_lines_from_rich_line_list(rich_lines)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:18,代码来源:stepper_cli.py


示例13: _report_last_feed_types

  def _report_last_feed_types(self):
    """Generate a report of the feed types used in the cont/step call.

    Returns:
      (debugger_cli_common.RichTextLines) A RichTextLines representation of the
        feeds used in the last cont/step call.
    """
    feed_types = self._node_stepper.last_feed_types()

    out = ["Stepper used feeds:"]
    if feed_types:
      for feed_name in feed_types:
        feed_info = RL("  %s : " % feed_name)
        feed_info += RL(feed_types[feed_name],
                        self._FEED_COLORS[feed_types[feed_name]])
        out.append(feed_info)
    else:
      out.append("  (No feeds)")
    out.append("")

    return debugger_cli_common.rich_text_lines_from_rich_line_list(out)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:21,代码来源:stepper_cli.py


示例14: _get_list_profile_lines

  def _get_list_profile_lines(
      self, device_name, device_index, device_count,
      profile_datum_list, sort_by, sort_reverse, time_unit,
      device_name_filter=None, node_name_filter=None, op_type_filter=None,
      screen_cols=80):
    """Get `RichTextLines` object for list_profile command for a given device.

    Args:
      device_name: (string) Device name.
      device_index: (int) Device index.
      device_count: (int) Number of devices.
      profile_datum_list: List of `ProfileDatum` objects.
      sort_by: (string) Identifier of column to sort. Sort identifier
          must match value of SORT_OPS_BY_OP_NAME, SORT_OPS_BY_OP_TYPE,
          SORT_OPS_BY_EXEC_TIME, SORT_OPS_BY_MEMORY or SORT_OPS_BY_LINE.
      sort_reverse: (bool) Whether to sort in descending instead of default
          (ascending) order.
      time_unit: time unit, must be in cli_shared.TIME_UNITS.
      device_name_filter: Regular expression to filter by device name.
      node_name_filter: Regular expression to filter by node name.
      op_type_filter: Regular expression to filter by op type.
      screen_cols: (int) Number of columns available on the screen (i.e.,
        available screen width).

    Returns:
      `RichTextLines` object containing a table that displays profiling
      information for each op.
    """
    profile_data = ProfileDataTableView(profile_datum_list, time_unit=time_unit)

    # Calculate total time early to calculate column widths.
    total_op_time = sum(datum.op_time for datum in profile_datum_list)
    total_exec_time = sum(datum.node_exec_stats.all_end_rel_micros
                          for datum in profile_datum_list)
    device_total_row = [
        "Device Total", "",
        cli_shared.time_to_readable_str(total_op_time,
                                        force_time_unit=time_unit),
        cli_shared.time_to_readable_str(total_exec_time,
                                        force_time_unit=time_unit)]

    # Calculate column widths.
    column_widths = [
        len(column_name) for column_name in profile_data.column_names()]
    for col in range(len(device_total_row)):
      column_widths[col] = max(column_widths[col], len(device_total_row[col]))
    for col in range(len(column_widths)):
      for row in range(profile_data.row_count()):
        column_widths[col] = max(
            column_widths[col], len(profile_data.value(
                row,
                col,
                device_name_filter=device_name_filter,
                node_name_filter=node_name_filter,
                op_type_filter=op_type_filter)))
      column_widths[col] += 2  # add margin between columns

    # Add device name.
    output = [RL("-" * screen_cols)]
    device_row = "Device %d of %d: %s" % (
        device_index + 1, device_count, device_name)
    output.append(RL(device_row))
    output.append(RL())

    # Add headers.
    base_command = "list_profile"
    row = RL()
    for col in range(profile_data.column_count()):
      column_name = profile_data.column_names()[col]
      sort_id = profile_data.column_sort_id(col)
      command = "%s -s %s" % (base_command, sort_id)
      if sort_by == sort_id and not sort_reverse:
        command += " -r"
      head_menu_item = debugger_cli_common.MenuItem(None, command)
      row += RL(column_name, font_attr=[head_menu_item, "bold"])
      row += RL(" " * (column_widths[col] - len(column_name)))

    output.append(row)

    # Add data rows.
    for row in range(profile_data.row_count()):
      new_row = RL()
      for col in range(profile_data.column_count()):
        new_cell = profile_data.value(
            row,
            col,
            device_name_filter=device_name_filter,
            node_name_filter=node_name_filter,
            op_type_filter=op_type_filter)
        new_row += new_cell
        new_row += RL(" " * (column_widths[col] - len(new_cell)))
      output.append(new_row)

    # Add stat totals.
    row_str = ""
    for col in range(len(device_total_row)):
      row_str += ("{:<%d}" % column_widths[col]).format(device_total_row[col])
    output.append(RL())
    output.append(RL(row_str))
    return debugger_cli_common.rich_text_lines_from_rich_line_list(output)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:100,代码来源:profile_analyzer_cli.py


示例15: get_run_start_intro

def get_run_start_intro(run_call_count,
                        fetches,
                        feed_dict,
                        tensor_filters):
  """Generate formatted intro for run-start UI.

  Args:
    run_call_count: (int) Run call counter.
    fetches: Fetches of the `Session.run()` call. See doc of `Session.run()`
      for more details.
    feed_dict: Feeds to the `Session.run()` call. See doc of `Session.run()`
      for more details.
    tensor_filters: (dict) A dict from tensor-filter name to tensor-filter
      callable.

  Returns:
    (RichTextLines) Formatted intro message about the `Session.run()` call.
  """

  fetch_lines = _get_fetch_names(fetches)

  if not feed_dict:
    feed_dict_lines = ["(Empty)"]
  else:
    feed_dict_lines = []
    for feed_key in feed_dict:
      if isinstance(feed_key, six.string_types):
        feed_dict_lines.append(feed_key)
      else:
        feed_dict_lines.append(feed_key.name)

  intro_lines = [
      "======================================",
      "Session.run() call #%d:" % run_call_count,
      "", "Fetch(es):"
  ]
  intro_lines.extend(["  " + line for line in fetch_lines])
  intro_lines.extend(["", "Feed dict(s):"])
  intro_lines.extend(["  " + line for line in feed_dict_lines])
  intro_lines.extend([
      "======================================", "",
      "Select one of the following commands to proceed ---->"
  ])

  out = debugger_cli_common.RichTextLines(intro_lines)

  out.extend(
      _recommend_command(
          "run",
          "Execute the run() call with debug tensor-watching",
          create_link=True))
  out.extend(
      _recommend_command(
          "run -n",
          "Execute the run() call without debug tensor-watching",
          create_link=True))
  out.extend(
      _recommend_command(
          "run -t <T>",
          "Execute run() calls (T - 1) times without debugging, then "
          "execute run() once more with debugging and drop back to the CLI"))
  out.extend(
      _recommend_command(
          "run -f <filter_name>",
          "Keep executing run() calls until a dumped tensor passes a given, "
          "registered filter (conditional breakpoint mode)"))

  more_lines = ["    Registered filter(s):"]
  if tensor_filters:
    filter_names = []
    for filter_name in tensor_filters:
      filter_names.append(filter_name)
      command_menu_node = debugger_cli_common.MenuItem(
          "", "run -f %s" % filter_name)
      more_lines.append(RL("        * ") + RL(filter_name, command_menu_node))
  else:
    more_lines.append("        (None)")

  out.extend(
      debugger_cli_common.rich_text_lines_from_rich_line_list(more_lines))

  out.extend(
      _recommend_command(
          "invoke_stepper",
          "Use the node-stepper interface, which allows you to interactively "
          "step through nodes involved in the graph run() call and "
          "inspect/modify their values", create_link=True))

  out.append("")

  out.append_rich_line(RL("For more details, see ") +
                       RL("help.", debugger_cli_common.MenuItem("", "help")) +
                       ".")
  out.append("")

  # Make main menu for the run-start intro.
  menu = debugger_cli_common.Menu()
  menu.append(debugger_cli_common.MenuItem("run", "run"))
  menu.append(debugger_cli_common.MenuItem(
      "invoke_stepper", "invoke_stepper"))
#.........这里部分代码省略.........
开发者ID:LUTAN,项目名称:tensorflow,代码行数:101,代码来源:cli_shared.py


示例16: print_source


#.........这里部分代码省略.........
      return debugger_cli_common.RichTextLines(
          ["The source file %s does not contain any profile information for "
           "the previous Session run under the following "
           "filters:" % parsed.source_file_path,
           "  --%s: %s" % (_DEVICE_NAME_FILTER_FLAG, parsed.device_name_filter),
           "  --%s: %s" % (_NODE_NAME_FILTER_FLAG, parsed.node_name_filter),
           "  --%s: %s" % (_OP_TYPE_FILTER_FLAG, parsed.op_type_filter)])

    max_total_cost = 0
    for line_index in source_annotation:
      total_cost = self._get_total_cost(source_annotation[line_index],
                                        parsed.cost_type)
      max_total_cost = max(max_total_cost, total_cost)

    source_lines, line_num_width = source_utils.load_source(
        parsed.source_file_path)

    cost_bar_max_length = 10
    total_cost_head = parsed.cost_type
    column_widths = {
        "cost_bar": cost_bar_max_length + 3,
        "total_cost": len(total_cost_head) + 3,
        "num_nodes_execs": len(self._NUM_EXECS_SUB_HEAD) + 1,
        "line_number": line_num_width,
    }

    head = RL(
        " " * column_widths["cost_bar"] +
        total_cost_head +
        " " * (column_widths["total_cost"] - len(total_cost_head)) +
        self._NUM_NODES_HEAD +
        " " * (column_widths["num_nodes_execs"] - len(self._NUM_NODES_HEAD)),
        font_attr=self._LINE_COST_ATTR)
    head += RL(self._LINENO_HEAD, font_attr=self._LINE_NUM_ATTR)
    sub_head = RL(
        " " * (column_widths["cost_bar"] +
               column_widths["total_cost"]) +
        self._NUM_EXECS_SUB_HEAD +
        " " * (column_widths["num_nodes_execs"] -
               len(self._NUM_EXECS_SUB_HEAD)) +
        " " * column_widths["line_number"],
        font_attr=self._LINE_COST_ATTR)
    sub_head += RL(self._SOURCE_HEAD, font_attr="bold")
    lines = [head, sub_head]

    output_annotations = {}
    for i, line in enumerate(source_lines):
      lineno = i + 1
      if lineno in source_annotation:
        annotation = source_annotation[lineno]
        cost_bar = self._render_normalized_cost_bar(
            self._get_total_cost(annotation, parsed.cost_type), max_total_cost,
            cost_bar_max_length)
        annotated_line = cost_bar
        annotated_line += " " * (column_widths["cost_bar"] - len(cost_bar))

        total_cost = RL(cli_shared.time_to_readable_str(
            self._get_total_cost(annotation, parsed.cost_type),
            force_time_unit=parsed.time_unit),
                        font_attr=self._LINE_COST_ATTR)
        total_cost += " " * (column_widths["total_cost"] - len(total_cost))
        annotated_line += total_cost

        file_path_filter = re.escape(parsed.source_file_path) + "$"
        command = "lp --file_path_filter %s --min_lineno %d --max_lineno %d" % (
            file_path_filter, lineno, lineno + 1)
        if parsed.device_name_filter:
          command += " --%s %s" % (_DEVICE_NAME_FILTER_FLAG,
                                   parsed.device_name_filter)
        if parsed.node_name_filter:
          command += " --%s %s" % (_NODE_NAME_FILTER_FLAG,
                                   parsed.node_name_filter)
        if parsed.op_type_filter:
          command += " --%s %s" % (_OP_TYPE_FILTER_FLAG,
                                   parsed.op_type_filter)
        menu_item = debugger_cli_common.MenuItem(None, command)
        num_nodes_execs = RL("%d(%d)" % (annotation.node_count,
                                         annotation.node_exec_count),
                             font_attr=[self._LINE_COST_ATTR, menu_item])
        num_nodes_execs += " " * (
            column_widths["num_nodes_execs"] - len(num_nodes_execs))
        annotated_line += num_nodes_execs
      else:
        annotated_line = RL(
            " " * sum(column_widths[col_name] for col_name in column_widths
                      if col_name != "line_number"))

      line_num_column = RL(" L%d" % (lineno), self._LINE_NUM_ATTR)
      line_num_column += " " * (
          column_widths["line_number"] - len(line_num_column))
      annotated_line += line_num_column
      annotated_line += line
      lines.append(annotated_line)

      if parsed.init_line == lineno:
        output_annotations[
            debugger_cli_common.INIT_SCROLL_POS_KEY] = len(lines) - 1

    return debugger_cli_common.rich_text_lines_from_rich_line_list(
        lines, annotations=output_annotations)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:101,代码来源:profile_analyzer_cli.py


示例17: get_run_start_intro

def get_run_start_intro(run_call_count,
                        fetches,
                        feed_dict,
                        tensor_filters,
                        is_callable_runner=False):
  """Generate formatted intro for run-start UI.

  Args:
    run_call_count: (int) Run call counter.
    fetches: Fetches of the `Session.run()` call. See doc of `Session.run()`
      for more details.
    feed_dict: Feeds to the `Session.run()` call. See doc of `Session.run()`
      for more details.
    tensor_filters: (dict) A dict from tensor-filter name to tensor-filter
      callable.
    is_callable_runner: (bool) whether a runner returned by
        Session.make_callable is being run.

  Returns:
    (RichTextLines) Formatted intro message about the `Session.run()` call.
  """

  fetch_lines = common.get_flattened_names(fetches)

  if not feed_dict:
    feed_dict_lines = [debugger_cli_common.RichLine("  (Empty)")]
  else:
    feed_dict_lines = []
    for feed_key in feed_dict:
      feed_key_name = common.get_graph_element_name(feed_key)
      feed_dict_line = debugger_cli_common.RichLine("  ")
      feed_dict_line += debugger_cli_common.RichLine(
          feed_key_name,
          debugger_cli_common.MenuItem(None, "pf '%s'" % feed_key_name))
      # Surround the name string with quotes, because feed_key_name may contain
      # spaces in some cases, e.g., SparseTensors.
      feed_dict_lines.append(feed_dict_line)
  feed_dict_lines = debugger_cli_common.rich_text_lines_from_rich_line_list(
      feed_dict_lines)

  out = debugger_cli_common.RichTextLines(_HORIZONTAL_BAR)
  if is_callable_runner:
    out.append("Running a runner returned by Session.make_callable()")
  else:
    out.append("Session.run() call #%d:" % run_call_count)
    out.append("")
    out.append("Fetch(es):")
    out.extend(debugger_cli_common.RichTextLines(
        ["  " + line for line in fetch_lines]))
    out.append("")
    out.append("Feed dict:")
    out.extend(feed_dict_lines)
  out.append(_HORIZONTAL_BAR)
  out.append("")
  out.append("Select one of the following commands to proceed ---->")

  out.extend(
      _recommend_command(
          "run",
          "Execute the run() call with debug tensor-watching",
          create_link=True))
  out.extend(
      _recommend_command(
          "run -n",
          "Execute the run() call without debug tensor-watching",
          create_link=True))
  out.extend(
      _recommend_command(
          "run -t <T>",
          "Execute run() calls (T - 1) times without debugging, then "
          "execute run() once more with debugging and drop back to the CLI"))
  out.extend(
      _recommend_command(
          "run -f <filter_name>",
          "Keep executing run() calls until a dumped tensor passes a given, "
          "registered filter (conditional breakpoint mode)"))

  more_lines = ["    Registered filter(s):"]
  if tensor_filters:
    filter_names = []
    for filter_name in tensor_filters:
      filter_names.append(filter_name)
      command_menu_node = debugger_cli_common.MenuItem(
          "", "run -f %s" % filter_name)
      more_lines.append(RL("        * ") + RL(filter_name, command_menu_node))
  else:
    more_lines.append("        (None)")

  out.extend(
      debugger_cli_common.rich_text_lines_from_rich_line_list(more_lines))

  out.extend(
      _recommend_command(
          "invoke_stepper",
          "Use the node-stepper interface, which allows you to interactively "
          "step through nodes involved in the graph run() call and "
          "inspect/modify their values", create_link=True))

  out.append("")

#.........这里部分代码省略.........
开发者ID:AnishShah,项目名称:tensorflow,代码行数:101,代码来源:cli_shared.py


示例18: format_tensor

def format_tensor(tensor,
                  tensor_name,
                  np_printoptions,
                  print_all=False,
                  tensor_slicing=None,
                  highlight_options=None,
                  include_numeric_summary=False,
                  write_path=None):
  """Generate formatted str to represent a tensor or its slices.

  Args:
    tensor: (numpy ndarray) The tensor value.
    tensor_name: (str) Name of the tensor, e.g., the tensor's debug watch key.
    np_printoptions: (dict) Numpy tensor formatting options.
    print_all: (bool) Whether the tensor is to be displayed in its entirety,
      instead of printing ellipses, even if its number of elements exceeds
      the default numpy display threshold.
      (Note: Even if this is set to true, the screen output can still be cut
       off by the UI frontend if it consist of more lines than the frontend
       can handle.)
    tensor_slicing: (str or None) Slicing of the tensor, e.g., "[:, 1]". If
      None, no slicing will be performed on the tensor.
    highlight_options: (tensor_format.HighlightOptions) options to highlight
      elements of the tensor. See the doc of tensor_format.format_tensor()
      for more details.
    include_numeric_summary: Whether a text summary of the numeric values (if
      applicable) will be included.
    write_path: A path to save the tensor value (after any slicing) to
      (optional). `numpy.save()` is used to save the value.

  Returns:
    An instance of `debugger_cli_common.RichTextLines` representing the
    (potentially sliced) tensor.
  """

  if tensor_slicing:
    # Validate the indexing.
    value = command_parser.evaluate_tensor_slice(tensor, tensor_slicing)
    sliced_name = tensor_name + tensor_slicing
  else:
    value = tensor
    sliced_name = tensor_name

  auxiliary_message = None
  if write_path:
    with gfile.Open(write_path, "wb") as output_file:
      np.save(output_file, value)
    line = debugger_cli_common.RichLine("Saved value to: ")
    line += debugger_cli_common.RichLine(write_path, font_attr="bold")
    line += " (%sB)" % bytes_to_readable_str(gfile.Stat(write_path).length)
    auxiliary_message = debugger_cli_common.rich_text_lines_from_rich_line_list(
        [line, debugger_cli_common.RichLine("")])

  if print_all:
    np_printoptions["threshold"] = value.size
  else:
    np_printoptions["threshold"] = DEFAULT_NDARRAY_DISPLAY_THRESHOLD

  return tensor_format.format_tensor(
      value,
      sliced_name,
      include_metadata=True,
      include_numeric_summary=include_numeric_summary,
      auxiliary_message=auxiliary_message,
      np_printoptions=np_printoptions,
      highlight_options=highlight_options)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:66,代码来源:cli_shared.py



注:本文中的tensorflow.python.debug.cli.debugger_cli_common.rich_text_lines_from_rich_line_list函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap