本文整理汇总了Python中tensorflow.python.data.experimental.ops.optimization.assert_next函数的典型用法代码示例。如果您正苦于以下问题:Python assert_next函数的具体用法?Python assert_next怎么用?Python assert_next使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了assert_next函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testOptimizationNonSerializable
def testOptimizationNonSerializable(self):
dataset = dataset_ops.Dataset.from_tensors(0)
dataset = dataset.apply(optimization.assert_next(["FiniteSkip"]))
dataset = dataset.skip(0) # Should not be removed by noop elimination
dataset = dataset.apply(optimization.non_serializable())
dataset = dataset.apply(optimization.assert_next(["MemoryCacheImpl"]))
dataset = dataset.skip(0) # Should be removed by noop elimination
dataset = dataset.cache()
dataset = dataset_ops._OptimizeDataset(dataset, ["noop_elimination"])
self.assertDatasetProduces(dataset, expected_output=[0])
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:10,代码来源:optimize_dataset_test.py
示例2: testOptimizationNonSerializable
def testOptimizationNonSerializable(self):
dataset = dataset_ops.Dataset.from_tensors(0)
dataset = dataset.apply(optimization.assert_next(["FiniteSkip"]))
dataset = dataset.skip(0) # Should not be removed by noop elimination
dataset = dataset.apply(optimization.non_serializable())
dataset = dataset.apply(optimization.assert_next(["MemoryCacheImpl"]))
dataset = dataset.skip(0) # Should be removed by noop elimination
dataset = dataset.cache()
options = dataset_ops.Options()
options.experimental_optimization.apply_default_optimizations = False
options.experimental_optimization.noop_elimination = True
dataset = dataset.with_options(options)
self.assertDatasetProduces(dataset, expected_output=[0])
开发者ID:rmlarsen,项目名称:tensorflow,代码行数:13,代码来源:optimize_dataset_test.py
示例3: flat_map_fn
def flat_map_fn(_):
dataset = dataset_ops.Dataset.from_tensors(0)
dataset = dataset.apply(optimization.assert_next(["MapAndBatch"]))
# Should be fused by map and batch fusion
dataset = dataset.map(lambda x: x)
dataset = dataset.batch(1)
return dataset
开发者ID:rmlarsen,项目名称:tensorflow,代码行数:7,代码来源:optimize_dataset_test.py
示例4: testLatencyStatsOptimization
def testLatencyStatsOptimization(self):
stats_aggregator = stats_ops.StatsAggregator()
dataset = dataset_ops.Dataset.from_tensors(1).apply(
optimization.assert_next(
["LatencyStats", "Map", "LatencyStats", "Prefetch",
"LatencyStats"])).map(lambda x: x * x).prefetch(1).apply(
stats_ops.set_stats_aggregator(stats_aggregator))
options = dataset_ops.Options()
options.experimental_latency_all_edges = True
dataset = dataset.with_options(options)
iterator = dataset.make_initializable_iterator()
get_next = iterator.get_next()
summary_t = stats_aggregator.get_summary()
with self.cached_session() as sess:
sess.run(iterator.initializer)
self.assertEqual(1 * 1, sess.run(get_next))
with self.assertRaises(errors.OutOfRangeError):
sess.run(get_next)
summary_str = sess.run(summary_t)
self._assertSummaryHasCount(summary_str,
"record_latency_TensorDataset/_1", 1)
self._assertSummaryHasCount(summary_str, "record_latency_MapDataset/_4",
1)
self._assertSummaryHasCount(summary_str,
"record_latency_PrefetchDataset/_6", 1)
开发者ID:ThunderQi,项目名称:tensorflow,代码行数:26,代码来源:latency_all_edges_test.py
示例5: testAssertNext
def testAssertNext(self):
dataset = dataset_ops.Dataset.from_tensors(0).apply(
optimization.assert_next(["Map"])).map(lambda x: x)
options = dataset_ops.Options()
options.experimental_optimization.apply_default_optimizations = False
dataset = dataset.with_options(options)
self.assertDatasetProduces(dataset, expected_output=[0])
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:7,代码来源:assert_next_dataset_test.py
示例6: testNoopElimination
def testNoopElimination(self):
a = constant_op.constant(1, dtype=dtypes.int64)
b = constant_op.constant(2, dtype=dtypes.int64)
some_tensor = math_ops.mul(a, b)
dataset = dataset_ops.Dataset.range(5)
dataset = dataset.apply(
optimization.assert_next(
["FiniteRepeat", "FiniteSkip", "Prefetch", "Prefetch"]))
dataset = dataset.repeat(some_tensor).skip(5).prefetch(0).take(-1).skip(
0).repeat(1).prefetch(0)
options = dataset_ops.Options()
options.experimental_noop_elimination = True
dataset = dataset.with_options(options)
iterator = dataset.make_one_shot_iterator()
get_next = iterator.get_next()
with self.test_session() as sess:
for x in range(5):
result = sess.run(get_next)
self.assertAllEqual(result, x)
with self.assertRaises(errors.OutOfRangeError):
sess.run(get_next)
开发者ID:ThunderQi,项目名称:tensorflow,代码行数:25,代码来源:noop_elimination_test.py
示例7: testFilterFusion
def testFilterFusion(self, map_function, predicates):
dataset = dataset_ops.Dataset.range(5).apply(
optimization.assert_next(["Map", "Filter",
"MemoryCacheImpl"])).map(map_function)
for predicate in predicates:
dataset = dataset.filter(predicate)
dataset = dataset.cache()
options = dataset_ops.Options()
options.experimental_filter_fusion = True
dataset = dataset.with_options(options)
iterator = dataset.make_one_shot_iterator()
get_next = iterator.get_next()
with self.cached_session() as sess:
for x in range(5):
r = map_function(x)
filtered = False
for predicate in predicates:
if isinstance(r, tuple):
b = predicate(*r) # Pass tuple as multiple arguments.
else:
b = predicate(r)
if not sess.run(b):
filtered = True
break
if not filtered:
result = sess.run(get_next)
self.assertAllEqual(r, result)
with self.assertRaises(errors.OutOfRangeError):
sess.run(get_next)
开发者ID:becster,项目名称:tensorflow,代码行数:31,代码来源:filter_fusion_test.py
示例8: testMapFusion
def testMapFusion(self, functions):
dataset = dataset_ops.Dataset.range(5).apply(
optimization.assert_next(["Map", "MemoryCacheImpl"]))
for function in functions:
dataset = dataset.map(function)
dataset = dataset.cache()
options = dataset_ops.Options()
options.experimental_map_fusion = True
dataset = dataset.with_options(options)
iterator = dataset.make_one_shot_iterator()
get_next = iterator.get_next()
with self.cached_session() as sess:
for x in range(5):
result = sess.run(get_next)
r = x
for function in functions:
if isinstance(r, tuple):
r = function(*r) # Pass tuple as multiple arguments.
else:
r = function(r)
self.assertAllEqual(r, result)
with self.assertRaises(errors.OutOfRangeError):
sess.run(get_next)
开发者ID:becster,项目名称:tensorflow,代码行数:25,代码来源:map_fusion_test.py
示例9: testFilterFusion
def testFilterFusion(self, map_function, predicates):
dataset = dataset_ops.Dataset.range(5).apply(
optimization.assert_next(["Map", "Filter",
"MemoryCacheImpl"])).map(map_function)
for predicate in predicates:
dataset = dataset.filter(predicate)
dataset = dataset.cache()
options = dataset_ops.Options()
options.experimental_optimization.apply_default_optimizations = False
options.experimental_optimization.filter_fusion = True
dataset = dataset.with_options(options)
expected_output = []
for x in range(5):
r = map_function(x)
filtered = False
for predicate in predicates:
if isinstance(r, tuple):
b = predicate(*r) # Pass tuple as multiple arguments.
else:
b = predicate(r)
if not self.evaluate(b):
filtered = True
break
if not filtered:
expected_output.append(r)
self.assertDatasetProduces(dataset, expected_output=expected_output)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:28,代码来源:filter_fusion_test.py
示例10: testMapFilterFusion
def testMapFilterFusion(self, function, predicate):
dataset = dataset_ops.Dataset.range(10).apply(
optimization.assert_next(
["Map", "FilterByLastComponent"])).map(function).filter(predicate)
options = dataset_ops.Options()
options.experimental_map_and_filter_fusion = True
dataset = dataset.with_options(options)
self._testMapAndFilter(dataset, function, predicate)
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:8,代码来源:map_and_filter_fusion_test.py
示例11: testAssertNext
def testAssertNext(self):
dataset = dataset_ops.Dataset.from_tensors(0).apply(
optimization.assert_next(["Map"])).map(lambda x: x)
iterator = dataset.make_one_shot_iterator()
get_next = iterator.get_next()
with self.cached_session() as sess:
self.assertEqual(0, sess.run(get_next))
开发者ID:becster,项目名称:tensorflow,代码行数:8,代码来源:assert_next_dataset_test.py
示例12: testMakeNumaAware
def testMakeNumaAware(self):
dataset = dataset_ops.Dataset.range(10).apply(
optimization.assert_next(["NumaMapAndBatch"])).apply(
batching.map_and_batch(lambda x: x * x, 10))
options = dataset_ops.Options()
options.experimental_numa_aware = True
dataset = dataset.with_options(options)
self.assertDatasetProduces(
dataset, expected_output=[[x * x for x in range(10)]])
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:9,代码来源:make_numa_aware_test.py
示例13: testMapAndBatchFusion
def testMapAndBatchFusion(self):
dataset = dataset_ops.Dataset.range(10).apply(
optimization.assert_next(
["MapAndBatch"])).map(lambda x: x * x).batch(10)
options = dataset_ops.Options()
options.experimental_map_and_batch_fusion = True
dataset = dataset.with_options(options)
self.assertDatasetProduces(
dataset, expected_output=[[x * x for x in range(10)]])
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:9,代码来源:map_and_batch_fusion_test.py
示例14: _make_dataset
def _make_dataset(node_names):
dataset = base_dataset.apply(optimization.assert_next(node_names))
dataset = dataset.map(map_fn, num_parallel_calls)
dataset = dataset.batch(100)
options = dataset_ops.Options()
options.experimental_optimization.apply_default_optimizations = False
options.experimental_optimization.map_and_batch_fusion = False
dataset = dataset.with_options(options)
return dataset
开发者ID:kylin9872,项目名称:tensorflow,代码行数:9,代码来源:map_vectorization_test.py
示例15: testHoisting
def testHoisting(self, function, will_optimize):
dataset = dataset_ops.Dataset.range(5).apply(
optimization.assert_next(
["Zip[0]", "Map"] if will_optimize else ["Map"])).map(function)
options = dataset_ops.Options()
options.experimental_hoist_random_uniform = True
dataset = dataset.with_options(options)
self._testDataset(dataset)
开发者ID:ThunderQi,项目名称:tensorflow,代码行数:9,代码来源:hoist_random_uniform_test.py
示例16: testAssertNextInvalid
def testAssertNextInvalid(self):
dataset = dataset_ops.Dataset.from_tensors(0).apply(
optimization.assert_next(["Whoops"])).map(lambda x: x)
self.assertDatasetProduces(
dataset,
expected_error=(
errors.InvalidArgumentError,
"Asserted Whoops transformation at offset 0 but encountered "
"Map transformation instead."))
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:9,代码来源:assert_next_dataset_test.py
示例17: testMapParallelization
def testMapParallelization(self, function, should_optimize):
next_nodes = ["ParallelMap"] if should_optimize else ["Map"]
dataset = dataset_ops.Dataset.range(5).apply(
optimization.assert_next(next_nodes)).map(function)
options = dataset_ops.Options()
options.experimental_map_parallelization = True
dataset = dataset.with_options(options)
if should_optimize:
self.assertDatasetProduces(
dataset, expected_output=[function(x) for x in range(5)])
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:10,代码来源:map_parallelization_test.py
示例18: testAssertNextShort
def testAssertNextShort(self):
dataset = dataset_ops.Dataset.from_tensors(0).apply(
optimization.assert_next(["Map", "Whoops"])).map(lambda x: x)
iterator = dataset.make_one_shot_iterator()
get_next = iterator.get_next()
with self.cached_session() as sess:
with self.assertRaisesRegexp(
errors.InvalidArgumentError,
"Asserted next 2 transformations but encountered only 1."):
sess.run(get_next)
开发者ID:becster,项目名称:tensorflow,代码行数:11,代码来源:assert_next_dataset_test.py
示例19: testAssertNextShort
def testAssertNextShort(self):
dataset = dataset_ops.Dataset.from_tensors(0).apply(
optimization.assert_next(["Map", "Whoops"])).map(lambda x: x)
options = dataset_ops.Options()
options.experimental_autotune = False
dataset = dataset.with_options(options)
self.assertDatasetProduces(
dataset,
expected_error=(
errors.InvalidArgumentError,
"Asserted next 2 transformations but encountered only 1."))
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:11,代码来源:assert_next_dataset_test.py
示例20: testOptimizationDefault
def testOptimizationDefault(self):
dataset = dataset_ops.Dataset.range(10).apply(
optimization.assert_next(["Map",
"Batch"])).map(lambda x: x * x).batch(10)
iterator = dataset.with_options(
dataset_ops.Options()).make_one_shot_iterator()
get_next = iterator.get_next()
with self.cached_session() as sess:
self.assertAllEqual([x * x for x in range(10)], sess.run(get_next))
with self.assertRaises(errors.OutOfRangeError):
sess.run(get_next)
开发者ID:gunan,项目名称:tensorflow,代码行数:12,代码来源:optimize_dataset_op_test.py
注:本文中的tensorflow.python.data.experimental.ops.optimization.assert_next函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论