本文整理汇总了Python中tensorflow.models.rnn.ptb.reader.ptb_raw_data函数的典型用法代码示例。如果您正苦于以下问题:Python ptb_raw_data函数的具体用法?Python ptb_raw_data怎么用?Python ptb_raw_data使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了ptb_raw_data函数的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: main
def main(_):
if not FLAGS.data_path:
raise ValueError("Must set --data_path to PTB data directory")
raw_data = reader.ptb_raw_data(FLAGS.data_path)
train_data, valid_data, test_data, _ = raw_data
config = get_config()
eval_config = get_config()
eval_config.batch_size = 1
eval_config.num_steps = 1
with tf.Graph().as_default(), tf.Session() as session:
initializer = tf.random_uniform_initializer(-config.init_scale,
config.init_scale)
with tf.variable_scope("model", reuse=None, initializer=initializer):
m = PTBModel(is_training=True, config=config)
with tf.variable_scope("model", reuse=True, initializer=initializer):
mvalid = PTBModel(is_training=False, config=config)
mtest = PTBModel(is_training=False, config=eval_config)
tf.initialize_all_variables().run()
for i in range(config.max_max_epoch):
lr_decay = config.lr_decay ** max(i - config.max_epoch, 0.0)
m.assign_lr(session, config.learning_rate * lr_decay)
print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
train_perplexity = run_epoch(session, m, train_data, m.train_op,
verbose=True)
print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))
test_perplexity = run_epoch(session, mtest, test_data, tf.no_op())
print("Test Perplexity: %.3f" % test_perplexity)
开发者ID:Temmame,项目名称:web,代码行数:35,代码来源:ptb_word_lm.py
示例2: load_data
def load_data(seqlength=20):
raw_data = reader.ptb_raw_data('data/ptb')
train_data, val_data, test_data, _ = raw_data
train_data = indices_to_seq_data(train_data, seqlength)
val_data = indices_to_seq_data(val_data, seqlength)
return {'train': train_data,
'test': val_data}
开发者ID:agajews,项目名称:tfbrain,代码行数:7,代码来源:ptb.py
示例3: main
def main(unused_args):
if not FLAGS.data_path:
raise ValueError("Must specify --data_path to PTB data directory")
if not FLAGS.save_path:
raise ValueError("Must specify --save_path to model directory")
raw_data = reader.ptb_raw_data(FLAGS.data_path)
train_data, valid_data, test_data, _ = raw_data
config = get_config()
eval_config = get_config()
eval_config.batch_size = 1
eval_config.num_steps = 1
with tf.Graph().as_default(), tf.Session() as session:
initializer = tf.random_uniform_initializer(-config.init_scale,
config.init_scale)
with tf.variable_scope("model", reuse=None, initializer=initializer):
m = PTBModel(is_training=True, config=config)
with tf.variable_scope("model", reuse=True, initializer=initializer):
mvalid = PTBModel(is_training=False, config=config)
mtest = PTBModel(is_training=False, config=eval_config)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
ckpt=tf.train.get_checkpoint_state(FLAGS.save_path)
if (ckpt):
print("Reading model parameters from %s" % ckpt.model_checkpoint_path)
saver.restore(session, ckpt.model_checkpoint_path)
else:
print("Created model with fresh parameters.")
tf.initialize_all_variables().run()
if not FLAGS.testonly:
for i in range(config.max_max_epoch):
lr_decay = config.lr_decay ** max(i - config.max_epoch, 0.0)
m.assign_lr(session, config.learning_rate * lr_decay)
print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
train_perplexity = run_epoch(session, m, train_data, m.train_op,
verbose=True)
print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))
save_path = saver.save(session, FLAGS.save_path+'/model.ckpt',i)
print("Model saved in: %s" % save_path)
valid_perplexity = run_epoch(session, mvalid, valid_data, tf.no_op())
print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity))
else:
print("Running only a perplexity test")
test_perplexity = run_epoch(session, mtest, test_data, tf.no_op(),verbose=True)
print("Test Perplexity: %.3f" % test_perplexity)
开发者ID:hlt-mt,项目名称:tensorflow,代码行数:58,代码来源:mf_ptb_word_lm.py
示例4: testPtbRawData
def testPtbRawData(self):
tmpdir = tf.test.get_temp_dir()
for suffix in "train", "valid", "test":
filename = os.path.join(tmpdir, "ptb.%s.txt" % suffix)
with tf.gfile.GFile(filename, "w") as fh:
fh.write(self._string_data)
# Smoke test
output = reader.ptb_raw_data(tmpdir)
self.assertEqual(len(output), 4)
开发者ID:821760408-sp,项目名称:tensorflow,代码行数:9,代码来源:reader_test.py
示例5: main
def main(_):
if not FLAGS.data_path:
# raise ValueError("Must set --data_path to PTB data directory")
FLAGS.data_path = 'data/'
raw_data = reader.ptb_raw_data(FLAGS.data_path)
train_data, valid_data, My_data, _ = raw_data
config = get_config()
eval_config = get_config()
eval_config.batch_size = 1
eval_config.num_steps = 1
with tf.Graph().as_default(), tf.Session() as session:
initializer = tf.random_uniform_initializer(-config.init_scale,
config.init_scale)
with tf.variable_scope("model", reuse=None, initializer=initializer):
m = PTBModel(is_training=True, config=config)
# with tf.variable_scope("model", reuse=True, initializer=initializer):
# mvalid = PTBModel(is_training=False, config=config)
# mMy = PTBModel(is_training=False, config=eval_config)
summary_op = tf.merge_all_summaries()
saver = tf.train.Saver(tf.all_variables())
tf.initialize_all_variables().run()
summary_writer = tf.train.SummaryWriter(FLAGS.data_path,
graph_def=session.graph_def)
for i in range(config.max_max_epoch):
lr_decay = config.lr_decay ** max(i - config.max_epoch, 0.0)
m.assign_lr(session, config.learning_rate * lr_decay)
print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
train_perplexity = run_epoch(session,
m,
train_data,
m.train_op,
summary_writer,
summary_op,
verbose=True)
# print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))
# valid_perplexity = run_epoch(session, mvalid, valid_data, tf.no_op())
# print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity))
#
# My_perplexity = run_epoch(session, mMy, My_data, tf.no_op())
# print("My Perplexity: %.3f" % My_perplexity)
if i % 20 == 0:
print('Now perplexity %.3f' % (train_perplexity))
print("SAVEING:")
checkpoint_path = os.path.join(FLAGS.data_path, 'model.ckpt')
saver.save(sess=session, save_path=checkpoint_path, global_step=i)
print("save model to {}".format(checkpoint_path))
开发者ID:IgorWang,项目名称:MachineLearningPracticer,代码行数:56,代码来源:ptb_word_lm.py
示例6: main
def main(_):
if not FLAGS.data_path:
raise ValueError("Must set --data_path to PTB data directory")
raw_data = reader.ptb_raw_data(FLAGS.data_path)
train_data, valid_data, test_data, _ = raw_data
config = get_config()
eval_config = get_config()
eval_config.batch_size = 1
eval_config.num_steps = 1
with tf.Graph().as_default():
initializer = tf.random_uniform_initializer(-config.init_scale,
config.init_scale)
with tf.name_scope("Train"):
train_input = PTBInput(config=config, data=train_data, name="TrainInput")
with tf.variable_scope("Model", reuse=None, initializer=initializer):
m = PTBModel(is_training=True, config=config, input_=train_input)
tf.scalar_summary("Training Loss", m.cost)
tf.scalar_summary("Learning Rate", m.lr)
with tf.name_scope("Valid"):
valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mvalid = PTBModel(is_training=False, config=config, input_=valid_input)
tf.scalar_summary("Validation Loss", mvalid.cost)
with tf.name_scope("Test"):
test_input = PTBInput(config=eval_config, data=test_data, name="TestInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mtest = PTBModel(is_training=False, config=eval_config,
input_=test_input)
sv = tf.train.Supervisor(logdir=FLAGS.save_path)
with sv.managed_session() as session:
for i in range(config.max_max_epoch):
lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0)
m.assign_lr(session, config.learning_rate * lr_decay)
print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
train_perplexity = run_epoch(session, m, eval_op=m.train_op,
verbose=True)
print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))
valid_perplexity = run_epoch(session, mvalid)
print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity))
test_perplexity = run_epoch(session, mtest)
print("Test Perplexity: %.3f" % test_perplexity)
if FLAGS.save_path:
print("Saving model to %s." % FLAGS.save_path)
sv.saver.save(session, FLAGS.save_path, global_step=sv.global_step)
开发者ID:ComeOnGetMe,项目名称:tensorflow,代码行数:54,代码来源:ptb_word_lm.py
示例7: load_ptb_dataset
def load_ptb_dataset(data_path):
"""Load the PTB dataset.
You can download the PTB dataset from here:
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
:param data_path: path to the data/ dir of the PTB dataset.
:return: train, validation, test data
"""
raw_data = reader.ptb_raw_data(data_path)
trX, vlX, teX, _ = raw_data
return trX, vlX, teX
开发者ID:alvarojoao,项目名称:Deep-Learning-TensorFlow,代码行数:12,代码来源:datasets.py
示例8: main
def main():
data_directory = "data"
word_to_id = reader._build_vocab(os.path.join(data_directory,
"ptb.train.txt"))
train, cv, test, _ = reader.ptb_raw_data(data_directory)
train_batch_size = 128
train_num_steps = len(train) // train_batch_size - 1
train_num_steps = 10
ptb_iterator = reader.ptb_iterator(train, train_batch_size, train_num_steps)
learner = Learner(word_to_id)
learner.Train(ptb_iterator, train_batch_size, train_num_steps)
开发者ID:mjchao,项目名称:Machine-Learning-Experiments,代码行数:13,代码来源:Model_Prototype.py
示例9: main
def main(_):
t0 = time.time()
if not FLAGS.data_path:
raise ValueError("Must set --data_path to PTB data directory")
raw_data = reader.ptb_raw_data(FLAGS.data_path)
train_data, valid_data, test_data, _ = raw_data
config = get_config()
eval_config = get_config()
eval_config.batch_size = 1
eval_config.num_steps = 1
# changed from tensorflow - add peak_wps calculation
peak_wps = 0
with tf.Graph().as_default(), tf.Session() as session:
initializer = tf.random_uniform_initializer(-config.init_scale,
config.init_scale)
with tf.variable_scope("model", reuse=None, initializer=initializer):
m = PTBModel(is_training=True, config=config)
with tf.variable_scope("model", reuse=True, initializer=initializer):
mvalid = PTBModel(is_training=False, config=config)
mtest = PTBModel(is_training=False, config=eval_config)
tf.initialize_all_variables().run()
for i in range(config.max_max_epoch):
lr_decay = config.lr_decay ** max(i - config.max_epoch, 0.0)
m.assign_lr(session, config.learning_rate * lr_decay)
print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
train_perplexity, cur_peak_wps = run_epoch(session, m, peak_wps, train_data, m.train_op,
verbose=True)
if cur_peak_wps > peak_wps:
peak_wps = cur_peak_wps
print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))
valid_perplexity, cur_peak_wps = run_epoch(session, mvalid, peak_wps, valid_data, tf.no_op())
print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity))
test_perplexity, cur_peak_wps = run_epoch(session, mtest, peak_wps, test_data, tf.no_op())
print("Test Perplexity: %.3f" % test_perplexity)
# change form tensorflow - print out timing info
t1 = time.time()
print('total time: ', t1-t0)
print('peak wps:', peak_wps)
开发者ID:hewlettpackardlabs,项目名称:opveclib,代码行数:47,代码来源:ptb_word_lm.py
示例10: main
def main(_):
if FLAGS.rename_variable_prefix:
if not FLAGS.model_path or not FLAGS.new_model_path:
logging.error("Must set --model_path and --new_model_path to rename model variables")
exit(1)
else:
if not FLAGS.train_dir:
logging.error("Must set --train_dir")
exit(1)
if not FLAGS.data_dir and (not FLAGS.train_idx or not FLAGS.dev_idx):
logging.error("Must set --data_dir to PTB data directory or specify data using --train_idx,--dev_idx")
exit(1)
logging.getLogger().setLevel(logging.INFO)
logging.info("Start: {}".format(datetime.datetime.strftime(datetime.datetime.now(), '%Y-%m-%d %H:%M:%S')))
device = "/gpu:0"
log_device_placement = False
allow_soft_placement = True
if FLAGS.device:
device = '/'+FLAGS.device
logging.info("Use device %s" % device)
with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto(allow_soft_placement=allow_soft_placement, log_device_placement=log_device_placement)) \
as session, tf.device(device):
if FLAGS.rename_variable_prefix:
model_utils.rename_variable_prefix(session, FLAGS.config_file, FLAGS.model_path, FLAGS.new_model_path,
FLAGS.variable_prefix, FLAGS.rename_variable_prefix)
elif FLAGS.score:
logging.info("Run model in scoring mode")
use_log_probs = True
train_dir = "train.rnn.de"
model, _ = model_utils.load_model(session, "large50k", train_dir, use_log_probs)
#test_path = os.path.join(FLAGS.data_dir, "test15/test15.ids50003.de")
#test_data = reader.read_indexed_data(test_path)
#test_sentences = [ test_data ]
# Add eos symbol to the beginning to score first word as well
test_sentences = [[2, 5, 3316, 7930, 7, 7312, 9864, 30, 8, 10453, 4, 2],
[2, 7, 5, 30, 8, 10453, 7930, 3316, 7312, 9864, 4, 2],
[2, 5, 8, 30, 7, 4, 9864, 3316, 7312, 7930, 10453, 2],
[2, 8, 10453, 9864, 30, 5, 3316, 7312, 7, 7930, 4]]
for test_data in test_sentences:
# using log probs or cross entropies gives the same perplexities
if use_log_probs:
# Run model as in training, with an iterator over inputs
train_utils.run_epoch_eval(session, model, test_data, tf.no_op(), use_log_probs=use_log_probs)
# Run model step by step (yields the same result)
#score_sentence(session, model, test_data)
else:
train_utils.run_epoch_eval(session, model, test_data, tf.no_op(), use_log_probs=use_log_probs)
else:
logging.info("Run model in training mode")
if FLAGS.fixed_random_seed:
tf.set_random_seed(1234)
if FLAGS.model:
config = model_utils.get_config(FLAGS.model)
eval_config = model_utils.get_config(FLAGS.model)
elif FLAGS.config_file:
config = model_utils.read_config(FLAGS.config_file)
eval_config = copy.copy(config)
else:
logging.error("Must specify either model name or config file.")
exit(1)
eval_config.batch_size = 1
eval_config.num_steps = 1
model, mvalid, mtest = model_utils.create_model(session, config, eval_config, FLAGS.train_dir, FLAGS.optimizer)
# Restore saved train variable
start_epoch = 1
start_idx = 0
start_state = None
tmpfile = FLAGS.train_dir+"/tmp_idx.pkl"
if model.global_step.eval() >= FLAGS.steps_per_checkpoint and \
os.path.isfile(tmpfile):
with open(tmpfile, "rb") as f:
start_epoch, start_idx, start_state = pickle.load(f)
logging.info("Restore saved train variables from %s, resume from epoch=%i and train idx=%i and last state" % (tmpfile, start_epoch, start_idx))
if FLAGS.data_dir:
raw_data = reader.ptb_raw_data(FLAGS.data_dir)
train_data, valid_data, test_data, _ = raw_data
else:
train_data = reader.read_indexed_data(FLAGS.train_idx, FLAGS.max_train_data_size, config.vocab_size)
valid_data = reader.read_indexed_data(FLAGS.dev_idx, vocab_size=config.vocab_size)
if FLAGS.test_idx:
test_data = reader.read_indexed_data(FLAGS.test_idx, vocab_size=config.vocab_size)
for epoch in range(start_epoch, config.max_max_epoch+1):
if not (FLAGS.optimizer == "adadelta" or FLAGS.optimizer == "adam"):
if start_idx == 0:
lr_decay = config.lr_decay ** max(epoch - config.max_epoch+1, 0.0)
model.assign_lr(session, config.learning_rate * lr_decay)
logging.info("Epoch: %d Learning rate: %.3f" % (epoch, session.run(model.lr)))
train_perplexity = train_utils.run_epoch(session, model, train_data, model.train_op, FLAGS.train_dir, FLAGS.steps_per_checkpoint,
#.........这里部分代码省略.........
开发者ID:ehasler,项目名称:tensorflow,代码行数:101,代码来源:ptb_word_lm.py
示例11: max
handler.setFormatter(formatter)
logger.addHandler(handler)
if DEBUG:
logger.setLevel(logging.DEBUG)
else:
logger.setLevel(logging.INFO)
from tensorflow.models.rnn.ptb import reader
import numpy as np
DATAURL = "https://github.com/mil-tokyo/neural_network/tree/master/saito/sample/simple-examples/data"
data_path = "simple-examples/data/"
#"../mldatasets/simple-examples/data/"
try:
raw_data = reader.ptb_raw_data( data_path)
except:
# wget http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
# tar xvf simple-examples.tgz
logging.warn("download data from\t%s\tto\t%s" % (DATAURL , data_path) )
train_data, valid_data, test_data, _ = raw_data
"define shapes and generate data"
vocab_size = max(train_data)
emb_size = 120
num_steps = 17
batch_size = 20
logging.debug("batch_size\t%s" % batch_size )
开发者ID:DSLituiev,项目名称:rnn_sandbox,代码行数:31,代码来源:test_cell_ptb.py
示例12: range
tf.app.flags.DEFINE_integer("seed", 12345, "Random seed.")
tf.app.flags.DEFINE_integer("runs", 3, "How many runs.")
tf.app.flags.DEFINE_float("keep_prob", 1.0, "Keep probability for dropout.")
tf.app.flags.DEFINE_string("result_file", None, "Where to write results.")
tf.app.flags.DEFINE_string("moru_ops", 'keep,replace', "operations of moru cell.")
tf.app.flags.DEFINE_string("moru_op_biases", None, "biases of moru operations at beginning of training. "
"Defaults to 0 for each.")
tf.app.flags.DEFINE_integer("moru_op_ctr", None, "Size of op ctr. By default ops are controlled by current input"
"and previous state. Given a positive integer, an additional"
"recurrent op ctr is introduced in MORUCell.")
tf.app.flags.DEFINE_string('device', '/gpu:0', 'device to run on')
FLAGS = tf.app.flags.FLAGS
FLAGS._parse_flags()
raw_data = reader.ptb_raw_data(FLAGS.data)
train_data, valid_data, test_data, _ = raw_data
perplexities = []
batch_size = FLAGS.batch_size
num_steps = FLAGS.num_steps
rng = random.Random(FLAGS.seed)
for run_id in range(FLAGS.runs):
tf.reset_default_graph()
last_valid_perplexities = [float("inf")] * 3
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
tf.set_random_seed(rng.randint(0, 10000))
initializer = tf.random_uniform_initializer(-FLAGS.init_scale,
FLAGS.init_scale)
with tf.device(FLAGS.device):
开发者ID:dirkweissenborn,项目名称:temo,代码行数:31,代码来源:train_ptb_lm.py
注:本文中的tensorflow.models.rnn.ptb.reader.ptb_raw_data函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论