本文整理汇总了Python中tensorflow.contrib.training.python.training.training.create_train_op函数的典型用法代码示例。如果您正苦于以下问题:Python create_train_op函数的具体用法?Python create_train_op怎么用?Python create_train_op使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了create_train_op函数的17个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testTrainingSubsetsOfVariablesOnlyUpdatesThoseVariables
def testTrainingSubsetsOfVariablesOnlyUpdatesThoseVariables(self):
# First, train only the weights of the model.
with ops.Graph().as_default():
random_seed.set_random_seed(0)
total_loss = self.ModelLoss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
weights, biases = variables_lib.get_variables()
train_op = training.create_train_op(total_loss, optimizer)
train_weights = training.create_train_op(
total_loss, optimizer, variables_to_train=[weights])
train_biases = training.create_train_op(
total_loss, optimizer, variables_to_train=[biases])
with session_lib.Session() as sess:
# Initialize the variables.
sess.run(variables_lib2.global_variables_initializer())
# Get the intial weights and biases values.
weights_values, biases_values = sess.run([weights, biases])
self.assertGreater(np.linalg.norm(weights_values), 0)
self.assertAlmostEqual(np.linalg.norm(biases_values), 0)
# Update weights and biases.
loss = sess.run(train_op)
self.assertGreater(loss, .5)
new_weights, new_biases = sess.run([weights, biases])
# Check that the weights and biases have been updated.
self.assertGreater(np.linalg.norm(weights_values - new_weights), 0)
self.assertGreater(np.linalg.norm(biases_values - new_biases), 0)
weights_values, biases_values = new_weights, new_biases
# Update only weights.
loss = sess.run(train_weights)
self.assertGreater(loss, .5)
new_weights, new_biases = sess.run([weights, biases])
# Check that the weights have been updated, but biases have not.
self.assertGreater(np.linalg.norm(weights_values - new_weights), 0)
self.assertAlmostEqual(np.linalg.norm(biases_values - new_biases), 0)
weights_values = new_weights
# Update only biases.
loss = sess.run(train_biases)
self.assertGreater(loss, .5)
new_weights, new_biases = sess.run([weights, biases])
# Check that the biases have been updated, but weights have not.
self.assertAlmostEqual(np.linalg.norm(weights_values - new_weights), 0)
self.assertGreater(np.linalg.norm(biases_values - new_biases), 0)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:52,代码来源:training_test.py
示例2: _train_model
def _train_model(self, checkpoint_dir, num_steps):
"""Trains a simple classification model.
Note that the data has been configured such that after around 300 steps,
the model has memorized the dataset (e.g. we can expect %100 accuracy).
Args:
checkpoint_dir: The directory where the checkpoint is written to.
num_steps: The number of steps to train for.
"""
with ops.Graph().as_default():
random_seed.set_random_seed(0)
tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
tf_predictions = logistic_classifier(tf_inputs)
loss = loss_ops.log_loss(tf_predictions, tf_labels)
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = training.create_train_op(loss, optimizer)
loss = training.train(
train_op,
checkpoint_dir,
hooks=[basic_session_run_hooks.StopAtStepHook(num_steps)])
开发者ID:Immexxx,项目名称:tensorflow,代码行数:25,代码来源:evaluation_test.py
示例3: testEmptyUpdateOps
def testEmptyUpdateOps(self):
with ops.Graph().as_default():
random_seed.set_random_seed(0)
tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
tf_predictions = batchnorm_classifier(tf_inputs)
loss_ops.log_loss(tf_predictions, tf_labels)
total_loss = loss_ops.get_total_loss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = training.create_train_op(total_loss, optimizer, update_ops=[])
moving_mean = variables_lib.get_variables_by_name('moving_mean')[0]
moving_variance = variables_lib.get_variables_by_name('moving_variance')[
0]
with session_lib.Session() as sess:
# Initialize all variables
sess.run(variables_lib2.global_variables_initializer())
mean, variance = sess.run([moving_mean, moving_variance])
# After initialization moving_mean == 0 and moving_variance == 1.
self.assertAllClose(mean, [0] * 4)
self.assertAllClose(variance, [1] * 4)
for _ in range(10):
sess.run([train_op])
mean = moving_mean.eval()
variance = moving_variance.eval()
# Since we skip update_ops the moving_vars are not updated.
self.assertAllClose(mean, [0] * 4)
self.assertAllClose(variance, [1] * 4)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:33,代码来源:training_test.py
示例4: gen_train_op
def gen_train_op():
with ops.name_scope('generator_train'):
return training.create_train_op(
total_loss=gan_loss.generator_loss,
optimizer=generator_optimizer,
variables_to_train=gan_model.generator_variables,
update_ops=gen_update_ops)
开发者ID:ahmedsaiduk,项目名称:tensorflow,代码行数:7,代码来源:tpu_gan_estimator_impl.py
示例5: testNoneGlobalStep
def testNoneGlobalStep(self):
with ops.Graph().as_default():
random_seed.set_random_seed(0)
tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
tf_predictions = batchnorm_classifier(tf_inputs)
loss_ops.log_loss(tf_predictions, tf_labels)
total_loss = loss_ops.get_total_loss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = training.create_train_op(
total_loss, optimizer, global_step=None)
global_step = variables_lib.get_or_create_global_step()
with session_lib.Session() as sess:
# Initialize all variables
sess.run(variables_lib2.global_variables_initializer())
for _ in range(10):
sess.run([train_op])
global_step = global_step.eval()
# Since train_op don't use global_step it shouldn't change.
self.assertAllClose(global_step, 0)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:25,代码来源:training_test.py
示例6: testResumeTrainAchievesRoughlyTheSameLoss
def testResumeTrainAchievesRoughlyTheSameLoss(self):
number_of_steps = [300, 1, 5]
logdir = os.path.join(self.get_temp_dir(), 'resume_train_same_loss')
for i in range(len(number_of_steps)):
with ops.Graph().as_default():
random_seed.set_random_seed(i)
tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
tf_predictions = logistic_classifier(tf_inputs)
loss_ops.log_loss(tf_predictions, tf_labels)
total_loss = loss_ops.get_total_loss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = training.create_train_op(total_loss, optimizer)
saver = saver_lib.Saver()
loss = training.train(
train_op,
logdir,
hooks=[
basic_session_run_hooks.StopAtStepHook(
num_steps=number_of_steps[i]),
basic_session_run_hooks.CheckpointSaverHook(
logdir, save_steps=50, saver=saver),
])
self.assertIsNotNone(loss)
self.assertLess(loss, .015)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:31,代码来源:training_test.py
示例7: dis_train_op
def dis_train_op():
with ops.name_scope('discriminator_train'):
return training.create_train_op(
total_loss=gan_loss.discriminator_loss,
optimizer=discriminator_optimizer,
variables_to_train=gan_model.discriminator_variables,
update_ops=dis_update_ops)
开发者ID:ahmedsaiduk,项目名称:tensorflow,代码行数:7,代码来源:tpu_gan_estimator_impl.py
示例8: testTrainOpInCollection
def testTrainOpInCollection(self):
with ops.Graph().as_default():
tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
tf_predictions = batchnorm_classifier(tf_inputs)
loss = losses.log_loss(tf_labels, tf_predictions)
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = training.create_train_op(loss, optimizer)
# Make sure the training op was recorded in the proper collection
self.assertTrue(train_op in ops.get_collection(ops.GraphKeys.TRAIN_OP))
开发者ID:Dr4KK,项目名称:tensorflow,代码行数:12,代码来源:training_test.py
示例9: testTrainWithNoInitAssignCanAchieveZeroLoss
def testTrainWithNoInitAssignCanAchieveZeroLoss(self):
g = ops.Graph()
with g.as_default():
random_seed.set_random_seed(0)
tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
tf_predictions = batchnorm_classifier(tf_inputs)
loss_ops.log_loss(tf_predictions, tf_labels)
total_loss = loss_ops.get_total_loss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = training.create_train_op(total_loss, optimizer)
loss = training.train(
train_op,
self._logdir,
hooks=[basic_session_run_hooks.StopAtStepHook(num_steps=300)])
self.assertLess(loss, .1)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:20,代码来源:training_test.py
示例10: testCanAchieveZeroLoss
def testCanAchieveZeroLoss(self):
with ops.Graph().as_default():
random_seed.set_random_seed(0)
tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
tf_predictions = logistic_classifier(tf_inputs)
losses.log_loss(tf_labels, tf_predictions)
total_loss = losses.get_total_loss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = training.create_train_op(total_loss, optimizer)
loss = training.train(
train_op,
None,
hooks=[basic_session_run_hooks.StopAtStepHook(num_steps=300)],
save_summaries_steps=None,
save_checkpoint_secs=None)
self.assertIsNotNone(loss)
self.assertLess(loss, .015)
开发者ID:Dr4KK,项目名称:tensorflow,代码行数:20,代码来源:training_test.py
示例11: testCanAchieveZeroLoss
def testCanAchieveZeroLoss(self):
logdir = os.path.join(self.get_temp_dir(), 'can_achieve_zero_loss')
with ops.Graph().as_default():
random_seed.set_random_seed(0)
tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
tf_predictions = logistic_classifier(tf_inputs)
loss_ops.log_loss(tf_predictions, tf_labels)
total_loss = loss_ops.get_total_loss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = training.create_train_op(total_loss, optimizer)
loss = training.train(
train_op,
logdir,
hooks=[basic_session_run_hooks.StopAtStepHook(num_steps=300)])
self.assertIsNotNone(loss)
self.assertLess(loss, .015)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:22,代码来源:training_test.py
示例12: testGlobalStepIsIncrementedByDefault
def testGlobalStepIsIncrementedByDefault(self):
with ops.Graph().as_default():
random_seed.set_random_seed(0)
tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
tf_predictions = batchnorm_classifier(tf_inputs)
loss = losses.log_loss(tf_labels, tf_predictions)
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = training.create_train_op(loss, optimizer)
global_step = variables_lib.get_or_create_global_step()
with self.test_session() as session:
# Initialize all variables
session.run(variables_lib2.global_variables_initializer())
for _ in range(10):
session.run(train_op)
# After 10 updates global_step should be 10.
self.assertAllClose(global_step.eval(), 10)
开发者ID:Dr4KK,项目名称:tensorflow,代码行数:22,代码来源:training_test.py
示例13: create_train_op
def create_train_op(self, learning_rate=1.0, gradient_multiplier=1.0):
tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
tf_predictions = logistic_classifier(tf_inputs)
loss_ops.log_loss(tf_predictions, tf_labels)
total_loss = loss_ops.get_total_loss()
optimizer = gradient_descent.GradientDescentOptimizer(
learning_rate=learning_rate)
def transform_grads_fn(grads):
if gradient_multiplier != 1.0:
variables = variables_lib2.trainable_variables()
gradient_multipliers = {var: gradient_multiplier for var in variables}
with ops.name_scope('multiply_grads'):
return training.multiply_gradients(grads, gradient_multipliers)
else:
return grads
return training.create_train_op(
total_loss, optimizer, transform_grads_fn=transform_grads_fn)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:23,代码来源:training_test.py
示例14: testUseUpdateOps
def testUseUpdateOps(self):
with ops.Graph().as_default():
random_seed.set_random_seed(0)
tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
expected_mean = np.mean(self._inputs, axis=(0))
expected_var = np.var(self._inputs, axis=(0))
tf_predictions = batchnorm_classifier(tf_inputs)
loss = losses.log_loss(tf_labels, tf_predictions)
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = training.create_train_op(loss, optimizer)
moving_mean = variables_lib.get_variables_by_name('moving_mean')[0]
moving_variance = variables_lib.get_variables_by_name('moving_variance')[
0]
with self.test_session() as session:
# Initialize all variables
session.run(variables_lib2.global_variables_initializer())
mean, variance = session.run([moving_mean, moving_variance])
# After initialization moving_mean == 0 and moving_variance == 1.
self.assertAllClose(mean, [0] * 4)
self.assertAllClose(variance, [1] * 4)
for _ in range(10):
session.run(train_op)
mean = moving_mean.eval()
variance = moving_variance.eval()
# After 10 updates with decay 0.1 moving_mean == expected_mean and
# moving_variance == expected_var.
self.assertAllClose(mean, expected_mean)
self.assertAllClose(variance, expected_var)
开发者ID:Dr4KK,项目名称:tensorflow,代码行数:36,代码来源:training_test.py
示例15: create_train_op
def create_train_op(total_loss,
optimizer,
global_step=_USE_GLOBAL_STEP,
update_ops=None,
variables_to_train=None,
clip_gradient_norm=0,
summarize_gradients=False,
gate_gradients=tf_optimizer.Optimizer.GATE_OP,
aggregation_method=None,
colocate_gradients_with_ops=False,
gradient_multipliers=None,
check_numerics=True):
"""Creates an `Operation` that evaluates the gradients and returns the loss.
Args:
total_loss: A `Tensor` representing the total loss.
optimizer: A tf.Optimizer to use for computing the gradients.
global_step: A `Tensor` representing the global step variable. If left as
`_USE_GLOBAL_STEP`, then slim.variables.global_step() is used.
update_ops: An optional list of updates to execute. If `update_ops` is
`None`, then the update ops are set to the contents of the
`tf.GraphKeys.UPDATE_OPS` collection. If `update_ops` is not `None`, but
it doesn't contain all of the update ops in `tf.GraphKeys.UPDATE_OPS`,
a warning will be displayed.
variables_to_train: an optional list of variables to train. If None, it will
default to all tf.trainable_variables().
clip_gradient_norm: If greater than 0 then the gradients would be clipped
by it.
summarize_gradients: Whether or not add summaries for each gradient.
gate_gradients: How to gate the computation of gradients. See tf.Optimizer.
aggregation_method: Specifies the method used to combine gradient terms.
Valid values are defined in the class `AggregationMethod`.
colocate_gradients_with_ops: Whether or not to try colocating the gradients
with the ops that generated them.
gradient_multipliers: A dictionary of either `Variables` or `Variable` op
names to the coefficient by which the associated gradient should be
scaled.
check_numerics: Whether or not we apply check_numerics.
Returns:
A `Tensor` that when evaluated, computes the gradients and returns the total
loss value.
"""
def transform_grads_fn(grads):
if gradient_multipliers:
with ops.name_scope('multiply_grads'):
grads = multiply_gradients(grads, gradient_multipliers)
# Clip gradients.
if clip_gradient_norm > 0:
with ops.name_scope('clip_grads'):
grads = clip_gradient_norms(grads, clip_gradient_norm)
return grads
return training.create_train_op(
total_loss=total_loss,
optimizer=optimizer,
global_step=global_step,
update_ops=update_ops,
variables_to_train=variables_to_train,
transform_grads_fn=transform_grads_fn,
summarize_gradients=summarize_gradients,
gate_gradients=gate_gradients,
aggregation_method=aggregation_method,
colocate_gradients_with_ops=colocate_gradients_with_ops,
check_numerics=check_numerics)
开发者ID:astorfi,项目名称:tensorflow,代码行数:67,代码来源:learning.py
示例16: gan_train_ops
def gan_train_ops(
model,
loss,
generator_optimizer,
discriminator_optimizer,
check_for_unused_update_ops=True,
# Optional args to pass directly to the `create_train_op`.
**kwargs):
"""Returns GAN train ops.
The highest-level call in TFGAN. It is composed of functions that can also
be called, should a user require more control over some part of the GAN
training process.
Args:
model: A GANModel.
loss: A GANLoss.
generator_optimizer: The optimizer for generator updates.
discriminator_optimizer: The optimizer for the discriminator updates.
check_for_unused_update_ops: If `True`, throws an exception if there are
update ops outside of the generator or discriminator scopes.
**kwargs: Keyword args to pass directly to
`training.create_train_op` for both the generator and
discriminator train op.
Returns:
A GANTrainOps tuple of (generator_train_op, discriminator_train_op) that can
be used to train a generator/discriminator pair.
"""
if isinstance(model, namedtuples.CycleGANModel):
saved_params = locals()
saved_params.pop('model', None)
saved_params.pop('loss', None)
kwargs = saved_params.pop('kwargs', {})
saved_params.update(kwargs)
with ops.name_scope('cyclegan_x2y_train'):
train_ops_x2y = gan_train_ops(model.model_x2y, loss.loss_x2y,
**saved_params)
with ops.name_scope('cyclegan_y2x_train'):
train_ops_y2x = gan_train_ops(model.model_y2x, loss.loss_y2x,
**saved_params)
return namedtuples.GANTrainOps(
(train_ops_x2y.generator_train_op, train_ops_y2x.generator_train_op),
(train_ops_x2y.discriminator_train_op,
train_ops_y2x.discriminator_train_op),
training_util.get_or_create_global_step().assign_add(1))
# Create global step increment op.
global_step = training_util.get_or_create_global_step()
global_step_inc = global_step.assign_add(1)
# Get generator and discriminator update ops. We split them so that update
# ops aren't accidentally run multiple times. For now, throw an error if
# there are update ops that aren't associated with either the generator or
# the discriminator. Might modify the `kwargs` dictionary.
gen_update_ops, dis_update_ops = _get_update_ops(
kwargs, model.generator_scope.name, model.discriminator_scope.name,
check_for_unused_update_ops)
generator_global_step = None
if isinstance(generator_optimizer,
sync_replicas_optimizer.SyncReplicasOptimizer):
# TODO(joelshor): Figure out a way to get this work without including the
# dummy global step in the checkpoint.
# WARNING: Making this variable a local variable causes sync replicas to
# hang forever.
generator_global_step = variable_scope.get_variable(
'dummy_global_step_generator',
shape=[],
dtype=global_step.dtype.base_dtype,
initializer=init_ops.zeros_initializer(),
trainable=False,
collections=[ops.GraphKeys.GLOBAL_VARIABLES])
gen_update_ops += [generator_global_step.assign(global_step)]
with ops.name_scope('generator_train'):
gen_train_op = training.create_train_op(
total_loss=loss.generator_loss,
optimizer=generator_optimizer,
variables_to_train=model.generator_variables,
global_step=generator_global_step,
update_ops=gen_update_ops,
**kwargs)
discriminator_global_step = None
if isinstance(discriminator_optimizer,
sync_replicas_optimizer.SyncReplicasOptimizer):
# See comment above `generator_global_step`.
discriminator_global_step = variable_scope.get_variable(
'dummy_global_step_discriminator',
shape=[],
dtype=global_step.dtype.base_dtype,
initializer=init_ops.zeros_initializer(),
trainable=False,
collections=[ops.GraphKeys.GLOBAL_VARIABLES])
dis_update_ops += [discriminator_global_step.assign(global_step)]
with ops.name_scope('discriminator_train'):
disc_train_op = training.create_train_op(
total_loss=loss.discriminator_loss,
optimizer=discriminator_optimizer,
variables_to_train=model.discriminator_variables,
#.........这里部分代码省略.........
开发者ID:andrewharp,项目名称:tensorflow,代码行数:101,代码来源:train.py
示例17: testTrainAllVarsHasLowerLossThanTrainSubsetOfVars
def testTrainAllVarsHasLowerLossThanTrainSubsetOfVars(self):
logdir = os.path.join(self.get_temp_dir(), 'tmp_logs3/')
if gfile.Exists(logdir): # For running on jenkins.
gfile.DeleteRecursively(logdir)
# First, train only the weights of the model.
with ops.Graph().as_default():
random_seed.set_random_seed(0)
total_loss = self.ModelLoss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
weights = variables_lib.get_variables_by_name('weights')
train_op = training.create_train_op(
total_loss, optimizer, variables_to_train=weights)
saver = saver_lib.Saver()
loss = training.train(
train_op,
logdir,
hooks=[
basic_session_run_hooks.CheckpointSaverHook(
logdir, save_steps=1, saver=saver),
basic_session_run_hooks.StopAtStepHook(num_steps=200),
])
self.assertGreater(loss, .015)
self.assertLess(loss, .05)
# Next, train the biases of the model.
with ops.Graph().as_default():
random_seed.set_random_seed(1)
total_loss = self.ModelLoss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
biases = variables_lib.get_variables_by_name('biases')
train_op = training.create_train_op(
total_loss, optimizer, variables_to_train=biases)
saver = saver_lib.Saver()
loss = training.train(
train_op,
logdir,
hooks=[
basic_session_run_hooks.CheckpointSaverHook(
logdir, save_steps=1, saver=saver),
basic_session_run_hooks.StopAtStepHook(num_steps=300),
])
self.assertGreater(loss, .015)
self.assertLess(loss, .05)
# Finally, train both weights and bias to get lower loss.
with ops.Graph().as_default():
random_seed.set_random_seed(2)
total_loss = self.ModelLoss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = training.create_train_op(total_loss, optimizer)
saver = saver_lib.Saver()
loss = training.train(
train_op,
logdir,
hooks=[
basic_session_run_hooks.CheckpointSaverHook(
logdir, save_steps=1, saver=saver),
basic_session_run_hooks.StopAtStepHook(num_steps=400),
])
self.assertIsNotNone(loss)
self.assertLess(loss, .015)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:67,代码来源:training_test.py
注:本文中的tensorflow.contrib.training.python.training.training.create_train_op函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论