• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python slim.fully_connected函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.contrib.slim.fully_connected函数的典型用法代码示例。如果您正苦于以下问题:Python fully_connected函数的具体用法?Python fully_connected怎么用?Python fully_connected使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了fully_connected函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _build_graph

    def _build_graph(self):

        normalized_input = tf.div(self._input, 255.0)

        #d = tf.divide(1.0, tf.sqrt(8. * 8. * 4.))
        conv1 = slim.conv2d(normalized_input, 16, [8, 8], activation_fn=tf.nn.relu,
                            padding='VALID', stride=4, biases_initializer=None)
                            # weights_initializer=tf.random_uniform_initializer(minval=-d, maxval=d))

        #d = tf.divide(1.0, tf.sqrt(4. * 4. * 16.))
        conv2 = slim.conv2d(conv1, 32, [4, 4], activation_fn=tf.nn.relu,
                            padding='VALID', stride=2, biases_initializer=None)
                            #weights_initializer=tf.random_uniform_initializer(minval=-d, maxval=d))

        flattened = slim.flatten(conv2)

        #d = tf.divide(1.0, tf.sqrt(2592.))
        fc1 = slim.fully_connected(flattened, 256, activation_fn=tf.nn.relu, biases_initializer=None)
                                   #weights_initializer=tf.random_uniform_initializer(minval=-d, maxval=d))

        #d = tf.divide(1.0, tf.sqrt(256.))
        # estimate of the value function
        self.value_func_prediction = slim.fully_connected(fc1, 1, activation_fn=None, biases_initializer=None)
                                                          #weights_initializer=tf.random_uniform_initializer(minval=-d, maxval=d))

        # softmax output with one entry per action representing the probability of taking an action
        self.policy_predictions = slim.fully_connected(fc1, self.output_size, activation_fn=tf.nn.softmax,
                                                       biases_initializer=None)
开发者ID:thalles753,项目名称:machine-learning,代码行数:28,代码来源:A3C_Network.py


示例2: _create_transformation

  def _create_transformation(self, input, n_output, reuse, scope_prefix):
    """Create the deterministic transformation between stochastic layers.

    If self.hparam.nonlinear:
        2 x tanh layers
    Else:
        1 x linear layer
    """
    if self.hparams.nonlinear:
      h = slim.fully_connected(input,
                               self.hparams.n_hidden,
                               reuse=reuse,
                               activation_fn=tf.nn.tanh,
                               scope='%s_nonlinear_1' % scope_prefix)
      h = slim.fully_connected(h,
                               self.hparams.n_hidden,
                               reuse=reuse,
                               activation_fn=tf.nn.tanh,
                               scope='%s_nonlinear_2' % scope_prefix)
      h = slim.fully_connected(h,
                               n_output,
                               reuse=reuse,
                               activation_fn=None,
                               scope='%s' % scope_prefix)
    else:
      h = slim.fully_connected(input,
                               n_output,
                               reuse=reuse,
                               activation_fn=None,
                               scope='%s' % scope_prefix)
    return h
开发者ID:ALISCIFP,项目名称:models,代码行数:31,代码来源:rebar.py


示例3: create_network

    def create_network(self, name):
        with tf.variable_scope(name) as scope:

            inputs = tf.placeholder(fl32, [None, self.state_dim], 'inputs')
            actions = tf.placeholder(fl32, [None, self.action_dim], 'actions')

            with slim.arg_scope(
                [slim.fully_connected],
                activation_fn=relu,
                weights_initializer=uniform,
                weights_regularizer=None
            ):

                net = tf.concat(1, [inputs, actions])
                net = slim.fully_connected(net, 400)
                net = slim.fully_connected(net, 300)
                '''net = slim.fully_connected(inputs, 400)
                w1 = tf.get_variable(
                    "w1", shape=[400, 300], initializer=uniform
                )
                w2 = tf.get_variable(
                    "w2", shape=[self.action_dim, 300], initializer=uniform
                )
                b = tf.get_variable(
                    "b", shape=[300], initializer=constant
                )
                net = relu(tf.matmul(net, w1) + tf.matmul(actions, w2) + b)'''
                out = slim.fully_connected(net, 1, activation_fn=None)

        return (inputs, actions, out, scope.name)
开发者ID:jpp46,项目名称:CurrentProjects,代码行数:30,代码来源:networks.py


示例4: __init__

    def __init__(self):
        # policy network
        self.observations = tf.placeholder(tf.float32, [None, 4], name='input_x')
        self.input_y = tf.placeholder(tf.float32, [None, 1], name='input_y')
        self.reward = tf.placeholder(tf.float32, name='reward_signal')
        l1 = slim.fully_connected(self.observations,
                                  hidden,
                                  biases_initializer=None,
                                  activation_fn=tf.nn.relu)
        self.score = slim.fully_connected(l1,
                                          1,
                                          biases_initializer=None)
        self.probability = tf.nn.sigmoid(self.score)
        loglike = tf.log(self.input_y * (self.input_y - self.probability)
                         + (1 - self.input_y) * (self.input_y + self.probability))
        loss = -tf.reduce_mean(loglike * self.reward)

        self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
        self.w1grad = tf.placeholder(tf.float32, name='batch_grad1')
        self.w2grad = tf.placeholder(tf.float32, name='batch_grad2')
        batch_grad = [self.w1grad, self.w2grad]

        self.tvars = tf.trainable_variables()
        self.newgrads = tf.gradients(loss, self.tvars)
        self.update = self.optimizer.apply_gradients(zip(batch_grad, self.tvars))
开发者ID:yaoyaowd,项目名称:tensorflow_demo,代码行数:25,代码来源:3_model_rl.py


示例5: discriminative_network

def discriminative_network(x):
  """Outputs probability in logits."""
  h0 = slim.fully_connected(x, H * 2, activation_fn=tf.tanh)
  h1 = slim.fully_connected(h0, H * 2, activation_fn=tf.tanh)
  h2 = slim.fully_connected(h1, H * 2, activation_fn=tf.tanh)
  h3 = slim.fully_connected(h2, 1, activation_fn=None)
  return h3
开发者ID:ekostem,项目名称:edward,代码行数:7,代码来源:gan_wasserstein_synthetic.py


示例6: _build_layers

    def _build_layers(self, inputs, num_outputs, options):
        """Process the flattened inputs.

        Note that dict inputs will be flattened into a vector. To define a
        model that processes the components separately, use _build_layers_v2().
        """

        hiddens = options.get("fcnet_hiddens")
        activation = get_activation_fn(options.get("fcnet_activation"))

        with tf.name_scope("fc_net"):
            i = 1
            last_layer = inputs
            for size in hiddens:
                label = "fc{}".format(i)
                last_layer = slim.fully_connected(
                    last_layer,
                    size,
                    weights_initializer=normc_initializer(1.0),
                    activation_fn=activation,
                    scope=label)
                i += 1
            label = "fc_out"
            output = slim.fully_connected(
                last_layer,
                num_outputs,
                weights_initializer=normc_initializer(0.01),
                activation_fn=None,
                scope=label)
            return output, last_layer
开发者ID:jamescasbon,项目名称:ray,代码行数:30,代码来源:fcnet.py


示例7: __init__

    def __init__(self, lr, s_size, a_size, h_size):
        # These lines established the feed-forward part of the network. The agent takes a state and produces an action.
        self.state_in = tf.placeholder(shape=[None, s_size], dtype=tf.float32)
        hidden = slim.fully_connected(self.state_in, h_size, biases_initializer=None, activation_fn=tf.nn.relu)
        self.output = slim.fully_connected(hidden, a_size, activation_fn=tf.nn.softmax, biases_initializer=None)
        self.chosen_action = tf.argmax(self.output, 1)

        # The next six lines establish the training proceedure. We feed the reward and chosen action into the network
        # to compute the loss, and use it to update the network.
        self.reward_holder = tf.placeholder(shape=[None], dtype=tf.float32)
        self.action_holder = tf.placeholder(shape=[None], dtype=tf.int32)

        self.indexes = tf.range(0, tf.shape(self.output)[0]) * tf.shape(self.output)[1] + self.action_holder
        self.responsible_outputs = tf.gather(tf.reshape(self.output, [-1]), self.indexes)

        self.loss = -tf.reduce_mean(tf.log(self.responsible_outputs) * self.reward_holder)

        tvars = tf.trainable_variables()
        self.gradient_holders = []
        for idx2, var in enumerate(tvars):
            placeholder = tf.placeholder(tf.float32, name=str(idx2) + '_holder')
            self.gradient_holders.append(placeholder)

        self.gradients = tf.gradients(self.loss, tvars)

        optimizer = tf.train.AdamOptimizer(learning_rate=lr)
        self.update_batch = optimizer.apply_gradients(zip(self.gradient_holders, tvars))
开发者ID:dangraf,项目名称:PycharmProjects,代码行数:27,代码来源:cartpole.py


示例8: __init__

 def __init__(self, actions, td_discount_rate = 0.99, learningRate= 0.0001, epsilonGreedy = 0.1):
     self.learningRate = learningRate
     self.td_discount_rate = td_discount_rate
     self.epsilonGreedy = epsilonGreedy
     
     self.input = tf.placeholder('float', shape=[None,4])      
     x1 = slim.fully_connected(self.input, 32, scope='fc/fc_1')
     x1 = tf.nn.relu(x1)
     self.Qout = slim.fully_connected(x1, actions)
     
     self.predict = tf.argmax(self.Qout,1)
     self.logQVal = tf.summary.scalar('QVal', tf.reduce_mean(self.predict) )
     
     # get the best action q values 
     self.newQout = tf.placeholder(shape=[None,2],dtype=tf.float32)
     self.epsilonInput = tf.placeholder(dtype=tf.float32, name="epsilonInput")
     self.newstateReward = tf.placeholder(shape=[None],dtype=tf.float32)
     self.tdTarget = self.newstateReward + td_discount_rate * np.amax(self.newQout)
     self.td_error = tf.square(self.tdTarget - np.amax(self.Qout))
     # trun into single scalar value 
     self.loss = tf.reduce_mean(self.td_error)        
     
     self.tdLogger= tf.summary.scalar('tdLoss', self.loss)
     self.tdTargetLogger= tf.summary.histogram('tdTarget', self.tdTarget)
     self.epsilonLogger= tf.summary.scalar('epsilon', self.epsilonInput)
     
     # minimize the loess (mean of td errors)
     self.trainer = tf.train.AdamOptimizer(learning_rate=self.learningRate)
     self.updateModel = self.trainer.minimize(self.loss)
     
     
     self.memory = Memory(memory_capacity)
开发者ID:flutist,项目名称:CartPole-v0,代码行数:32,代码来源:q-network.py


示例9: fprop

 def fprop(self, x, **kwargs):
     del kwargs
     with tf.variable_scope(self.scope, reuse=tf.AUTO_REUSE):
         net = slim.fully_connected(x, 60)
         logits = slim.fully_connected(net, 10, activation_fn=None)
         return {self.O_LOGITS: logits,
                 self.O_PROBS: tf.nn.softmax(logits)}
开发者ID:limin24kobe,项目名称:cleverhans,代码行数:7,代码来源:test_attacks.py


示例10: __init__

    def __init__(self,
                 env,
                 hidden_size=8,
                 learning_rate=0.01,
                 gamma=0.99):
        self.state_dim = env.observation_space.shape[0]
        self.action_dim = env.action_space.n
        self.gamma = gamma
        self.history = []

        # Define network
        self.state_in = tf.placeholder(shape=[None, self.state_dim], dtype=tf.float32)
        hidden = slim.fully_connected(self.state_in, hidden_size,
                                      biases_initializer=None,
                                      activation_fn=tf.nn.relu)
        self.output = slim.fully_connected(hidden, self.action_dim,
                                           biases_initializer=None,
                                           activation_fn=tf.nn.softmax)
        self.reward = tf.placeholder(shape=[None], dtype=tf.float32)
        self.actual_action = tf.placeholder(shape=[None], dtype=tf.int32)
        self.indexes = tf.range(0, tf.shape(self.output)[0]) * self.action_dim \
                       + self.actual_action
        self.actual_output = tf.gather(tf.reshape(self.output, [-1]), self.indexes)
        self.loss = -tf.reduce_mean(tf.log(self.actual_output)*self.reward)

        self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
        self.train_op = slim.learning.create_train_op(self.loss, self.optimizer)

        self.session = tf.InteractiveSession()
        self.session.run(tf.initialize_all_variables())
开发者ID:yaoyaowd,项目名称:tensorflow_demo,代码行数:30,代码来源:2_dqn.py


示例11: localization_VGG16

	def localization_VGG16(self,inputs):

		with tf.variable_scope('localization_network'):
			with slim.arg_scope([slim.conv2d, slim.fully_connected],
								 activation_fn = tf.nn.relu,
								 weights_initializer = tf.constant_initializer(0.0)):
				
				net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')
				net = slim.max_pool2d(net, [2, 2], scope='pool1')
				net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
				net = slim.max_pool2d(net, [2, 2], scope='pool2')
				net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
				net = slim.max_pool2d(net, [2, 2], scope='pool3')
				net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')
				net = slim.max_pool2d(net, [2, 2], scope='pool4')
				net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')
				net = slim.max_pool2d(net, [2, 2], scope='pool5')
				shape = int(np.prod(net.get_shape()[1:]))

				net = slim.fully_connected(tf.reshape(net, [-1, shape]), 4096, scope='fc6')
				net = slim.fully_connected(net, 1024, scope='fc7')
				identity = np.array([[1., 0., 0.],
									[0., 1., 0.]])
				identity = identity.flatten()
				net = slim.fully_connected(net, 6, biases_initializer = tf.constant_initializer(identity) , scope='fc8')
			
		return net
开发者ID:dmehr,项目名称:HyperFace-TensorFlow-implementation,代码行数:27,代码来源:model.py


示例12: network_det

	def network_det(self,inputs,reuse=False):

		if reuse:
			tf.get_variable_scope().reuse_variables()

		with slim.arg_scope([slim.conv2d, slim.fully_connected],
							 activation_fn = tf.nn.relu,
							 weights_initializer = tf.truncated_normal_initializer(0.0, 0.01)):
			
			conv1 = slim.conv2d(inputs, 96, [11,11], 4, padding= 'VALID', scope='conv1')
			max1 = slim.max_pool2d(conv1, [3,3], 2, padding= 'VALID', scope='max1')

			conv2 = slim.conv2d(max1, 256, [5,5], 1, scope='conv2')
			max2 = slim.max_pool2d(conv2, [3,3], 2, padding= 'VALID', scope='max2')
			conv3 = slim.conv2d(max2, 384, [3,3], 1, scope='conv3')

			conv4 = slim.conv2d(conv3, 384, [3,3], 1, scope='conv4')
			conv5 = slim.conv2d(conv4, 256, [3,3], 1, scope='conv5')
			pool5 = slim.max_pool2d(conv5, [3,3], 2, padding= 'VALID', scope='pool5')
			
			shape = int(np.prod(pool5.get_shape()[1:]))
			fc6 = slim.fully_connected(tf.reshape(pool5, [-1, shape]), 4096, scope='fc6')
			
			fc_detection = slim.fully_connected(fc6, 512, scope='fc_det1')
			out_detection = slim.fully_connected(fc_detection, 2, scope='fc_det2', activation_fn = None)
			
		return out_detection
开发者ID:dmehr,项目名称:HyperFace-TensorFlow-implementation,代码行数:27,代码来源:model_prediction.py


示例13: _init

    def _init(self, inputs, num_outputs, options):
        hiddens = options.get("fcnet_hiddens", [256, 256])

        fcnet_activation = options.get("fcnet_activation", "tanh")
        if fcnet_activation == "tanh":
            activation = tf.nn.tanh
        elif fcnet_activation == "relu":
            activation = tf.nn.relu

        with tf.name_scope("fc_net"):
            i = 1
            last_layer = inputs
            for size in hiddens:
                label = "fc{}".format(i)
                last_layer = slim.fully_connected(
                    last_layer, size,
                    weights_initializer=normc_initializer(1.0),
                    activation_fn=activation,
                    scope=label)
                i += 1
            label = "fc_out"
            output = slim.fully_connected(
                last_layer, num_outputs,
                weights_initializer=normc_initializer(0.01),
                activation_fn=None, scope=label)
            return output, last_layer
开发者ID:adgirish,项目名称:ray,代码行数:26,代码来源:fcnet.py


示例14: encoder

    def encoder(self, images, is_training):
        activation_fn = leaky_relu  # tf.nn.relu
        weight_decay = 0.0
        with tf.variable_scope('encoder'):
            with slim.arg_scope([slim.batch_norm],
                                is_training=is_training):
                with slim.arg_scope([slim.conv2d, slim.fully_connected],
                                    weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
                                    weights_regularizer=slim.l2_regularizer(weight_decay),
                                    normalizer_fn=slim.batch_norm,
                                    normalizer_params=self.batch_norm_params):
                    net = images
                    
                    net = slim.conv2d(net, 32, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_1a')
                    net = slim.repeat(net, 3, conv2d_block, 0.1, 32, [4, 4], 1, activation_fn=activation_fn, scope='Conv2d_1b')
                    
                    net = slim.conv2d(net, 64, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_2a')
                    net = slim.repeat(net, 3, conv2d_block, 0.1, 64, [4, 4], 1, activation_fn=activation_fn, scope='Conv2d_2b')

                    net = slim.conv2d(net, 128, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_3a')
                    net = slim.repeat(net, 3, conv2d_block, 0.1, 128, [4, 4], 1, activation_fn=activation_fn, scope='Conv2d_3b')

                    net = slim.conv2d(net, 256, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_4a')
                    net = slim.repeat(net, 3, conv2d_block, 0.1, 256, [4, 4], 1, activation_fn=activation_fn, scope='Conv2d_4b')
                    
                    net = slim.flatten(net)
                    fc1 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_1')
                    fc2 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_2')
        return fc1, fc2
开发者ID:NickyGeorge,项目名称:facenet,代码行数:29,代码来源:dfc_vae_resnet.py


示例15: build_decoder_rnn

    def build_decoder_rnn(self, first_step):

        with tf.variable_scope("cnn"):
            image_emb = slim.fully_connected(self.fc7, self.input_encoding_size, reuse=True, activation_fn=None, scope='encode_image')
        with tf.variable_scope("rnnlm"):
            if first_step:
                rnn_input = image_emb # At the first step, the input is the embedded image
            else:
                # The input of later time step, is the embedding of the previous word
                # The previous word is a placeholder
                self.decoder_prev_word = tf.placeholder(tf.int32, [None])
                rnn_input = tf.nn.embedding_lookup(self.Wemb, self.decoder_prev_word)

            batch_size = tf.shape(rnn_input)[0]

            tf.get_variable_scope().reuse_variables()

            if not first_step:
                # If not first step, the states are also placeholders.
                self.decoder_initial_state = initial_state = utils.get_placeholder_state(self.cell.state_size)
                self.decoder_flattened_state = utils.flatten_state(initial_state)
            else:
                # The states for the first step are zero.
                initial_state = self.cell.zero_state(batch_size, tf.float32)

            outputs, state = tf.contrib.legacy_seq2seq.rnn_decoder([rnn_input], initial_state, self.cell)
            logits = slim.fully_connected(outputs[0], self.vocab_size + 1, activation_fn = None, scope = 'logit')
            decoder_probs = tf.reshape(tf.nn.softmax(logits), [batch_size, self.vocab_size + 1])
            decoder_state = utils.flatten_state(state)
        # output the current word distribution and states
        return [decoder_probs, decoder_state]
开发者ID:ruotianluo,项目名称:neuraltalk2-tensorflow,代码行数:31,代码来源:ShowTellModel.py


示例16: build_arch_baseline

def build_arch_baseline(input, is_train: bool, num_classes: int):

    bias_initializer = tf.truncated_normal_initializer(
        mean=0.0, stddev=0.01)  # tf.constant_initializer(0.0)
    # The paper didnot mention any regularization, a common l2 regularizer to weights is added here
    weights_regularizer = tf.contrib.layers.l2_regularizer(5e-04)

    tf.logging.info('input shape: {}'.format(input.get_shape()))

    # weights_initializer=initializer,
    with slim.arg_scope([slim.conv2d, slim.fully_connected], trainable=is_train, biases_initializer=bias_initializer, weights_regularizer=weights_regularizer):
        with tf.variable_scope('relu_conv1') as scope:
            output = slim.conv2d(input, num_outputs=32, kernel_size=[
                                 5, 5], stride=1, padding='SAME', scope=scope, activation_fn=tf.nn.relu)
            output = slim.max_pool2d(output, [2, 2], scope='max_2d_layer1')

            tf.logging.info('output shape: {}'.format(output.get_shape()))

        with tf.variable_scope('relu_conv2') as scope:
            output = slim.conv2d(output, num_outputs=64, kernel_size=[
                                 5, 5], stride=1, padding='SAME', scope=scope, activation_fn=tf.nn.relu)
            output = slim.max_pool2d(output, [2, 2], scope='max_2d_layer2')

            tf.logging.info('output shape: {}'.format(output.get_shape()))

        output = slim.flatten(output)
        output = slim.fully_connected(output, 1024, scope='relu_fc3', activation_fn=tf.nn.relu)
        tf.logging.info('output shape: {}'.format(output.get_shape()))
        output = slim.dropout(output, 0.5, scope='dp')
        output = slim.fully_connected(output, num_classes, scope='final_layer', activation_fn=None)
        tf.logging.info('output shape: {}'.format(output.get_shape()))
        return output
开发者ID:lzqkean,项目名称:deep_learning,代码行数:32,代码来源:capsnet_em.py


示例17: cross_ent_loss

def cross_ent_loss(output, x, y):
    loss = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=output)
    loss = tf.reduce_mean(loss)
    num_class = int(output.get_shape()[-1])
    data_size = int(x.get_shape()[1])

    # reconstruction loss
    y = tf.one_hot(y, num_class, dtype=tf.float32)
    y = tf.expand_dims(y, axis=2)
    output = tf.expand_dims(output, axis=2)
    output = tf.reshape(tf.multiply(output, y), shape=[cfg.batch_size, -1])
    tf.logging.info("decoder input value dimension:{}".format(output.get_shape()))

    with tf.variable_scope('decoder'):
        output = slim.fully_connected(output, 512, trainable=True)
        output = slim.fully_connected(output, 1024, trainable=True)
        output = slim.fully_connected(output, data_size * data_size,
                                      trainable=True, activation_fn=tf.sigmoid)

        x = tf.reshape(x, shape=[cfg.batch_size, -1])
        reconstruction_loss = tf.reduce_mean(tf.square(output - x))

    # regularization loss
    regularization = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)

    loss_all = tf.add_n([loss] + [0.0005 * reconstruction_loss] + regularization)

    return loss_all, reconstruction_loss, output
开发者ID:lzqkean,项目名称:deep_learning,代码行数:28,代码来源:capsnet_em.py


示例18: build_generator

    def build_generator(self):
        """
        Generator for generating captions
        Support sample max or sample from distribution
        No Beam search here; beam search is in decoder
        """
        # Variables for the sample setting
        self.sample_max = tf.Variable(True, trainable = False, name = "sample_max")
        self.sample_temperature = tf.Variable(1.0, trainable = False, name = "temperature")

        self.generator = []
        with tf.variable_scope("rnnlm"):
            flattened_ctx = tf.reshape(self.context, [self.batch_size, 196, 512])
            ctx_mean = tf.reduce_mean(flattened_ctx, 1)

            tf.get_variable_scope().reuse_variables()

            initial_state = utils.get_initial_state(ctx_mean, self.cell.state_size)

            #projected context
            # This is used in attention module; do this outside the loop to reduce redundant computations
            # with tf.variable_scope("attention"):
            if self.att_hid_size == 0:
                pctx = slim.fully_connected(flattened_ctx, 1, activation_fn = None, scope = 'ctx_att') # (batch) * 196 * 1
            else:
                pctx = slim.fully_connected(flattened_ctx, self.att_hid_size, activation_fn = None, scope = 'ctx_att') # (batch) * 196 * att_hid_size

            rnn_input = tf.nn.embedding_lookup(self.Wemb, tf.zeros([self.batch_size], tf.int32))

            prev_h = utils.last_hidden_vec(initial_state)

            self.g_alphas = []
            outputs = []
            state = initial_state
            for ind in range(MAX_STEPS):

                with tf.variable_scope("attention"):
                    alpha = self.get_alpha(prev_h, pctx)
                    self.g_alphas.append(alpha)
                    weighted_context = tf.reduce_sum(flattened_ctx * tf.expand_dims(alpha, 2), 1)

                output, state = self.cell(tf.concat(axis=1, values=[weighted_context, rnn_input]), state)
                outputs.append(output)
                prev_h = output

                # Get the input of next timestep
                prev_logit = slim.fully_connected(prev_h, self.vocab_size + 1, activation_fn = None, scope = 'logit')
                prev_symbol = tf.stop_gradient(tf.cond(self.sample_max,
                    lambda: tf.argmax(prev_logit, 1), # pick the word with largest probability as the input of next time step
                    lambda: tf.squeeze(
                        tf.multinomial(tf.nn.log_softmax(prev_logit) / self.sample_temperature, 1), 1))) # Sample from the distribution
                self.generator.append(prev_symbol)
                rnn_input = tf.nn.embedding_lookup(self.Wemb, prev_symbol)
            
            self.g_output = output = tf.reshape(tf.concat(axis=1, values=outputs), [-1, self.rnn_size]) # outputs[1:], because we don't calculate loss on time 0.
            self.g_logits = logits = slim.fully_connected(output, self.vocab_size + 1, activation_fn = None, scope = 'logit')
            self.g_probs = probs = tf.reshape(tf.nn.softmax(logits), [self.batch_size, MAX_STEPS, self.vocab_size + 1])

        self.generator = tf.transpose(tf.reshape(tf.concat(axis=0, values=self.generator), [MAX_STEPS, -1]))
开发者ID:ruotianluo,项目名称:neuraltalk2-tensorflow,代码行数:59,代码来源:ShowAttendTellModel_old.py


示例19: neural_network

 def neural_network(self, X):
   """pi, mu, sigma = NN(x; theta)"""
   hidden1 = slim.fully_connected(X, 25)
   hidden2 = slim.fully_connected(hidden1, 25)
   self.pi = slim.fully_connected(hidden2, self.K, activation_fn=tf.nn.softmax)
   self.mus = slim.fully_connected(hidden2, self.K, activation_fn=None)
   self.sigmas = slim.fully_connected(hidden2, self.K,
                                      activation_fn=tf.nn.softplus)
开发者ID:blei-lab,项目名称:edward,代码行数:8,代码来源:tf_mixture_density_network_slim.py


示例20: build_graph

def build_graph(top_k):
    keep_prob = tf.placeholder(dtype=tf.float32, shape=[], name='keep_prob')
    images = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 1], name='image_batch')
    labels = tf.placeholder(dtype=tf.int64, shape=[None], name='label_batch')
    is_training = tf.placeholder(dtype=tf.bool, shape=[], name='train_flag')
    with tf.device('/gpu:0'):
        with slim.arg_scope([slim.conv2d, slim.fully_connected],
                            normalizer_fn=slim.batch_norm,
                            normalizer_params={'is_training': is_training}):
            conv3_1 = slim.conv2d(images, 64, [3, 3], 1, padding='SAME', scope='conv3_1')
            max_pool_1 = slim.max_pool2d(conv3_1, [2, 2], [2, 2], padding='SAME', scope='pool1')
            conv3_2 = slim.conv2d(max_pool_1, 128, [3, 3], padding='SAME', scope='conv3_2')
            max_pool_2 = slim.max_pool2d(conv3_2, [2, 2], [2, 2], padding='SAME', scope='pool2')
            conv3_3 = slim.conv2d(max_pool_2, 256, [3, 3], padding='SAME', scope='conv3_3')
            max_pool_3 = slim.max_pool2d(conv3_3, [2, 2], [2, 2], padding='SAME', scope='pool3')
            conv3_4 = slim.conv2d(max_pool_3, 512, [3, 3], padding='SAME', scope='conv3_4')
            conv3_5 = slim.conv2d(conv3_4, 512, [3, 3], padding='SAME', scope='conv3_5')
            max_pool_4 = slim.max_pool2d(conv3_5, [2, 2], [2, 2], padding='SAME', scope='pool4')

            flatten = slim.flatten(max_pool_4)
            fc1 = slim.fully_connected(slim.dropout(flatten, keep_prob), 1024,
                                       activation_fn=tf.nn.relu, scope='fc1')
            logits = slim.fully_connected(slim.dropout(fc1, keep_prob), FLAGS.charset_size, activation_fn=None,
                                          scope='fc2')
        loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels))
        accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits, 1), labels), tf.float32))

        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        if update_ops:
            updates = tf.group(*update_ops)
            loss = control_flow_ops.with_dependencies([updates], loss)

        global_step = tf.get_variable("step", [], initializer=tf.constant_initializer(0.0), trainable=False)
        optimizer = tf.train.AdamOptimizer(learning_rate=0.1)
        train_op = slim.learning.create_train_op(loss, optimizer, global_step=global_step)
        probabilities = tf.nn.softmax(logits)

        tf.summary.scalar('loss', loss)
        tf.summary.scalar('accuracy', accuracy)
        merged_summary_op = tf.summary.merge_all()
        predicted_val_top_k, predicted_index_top_k = tf.nn.top_k(probabilities, k=top_k)
        accuracy_in_top_k = tf.reduce_mean(tf.cast(tf.nn.in_top_k(probabilities, labels, top_k), tf.float32))

    return {'images': images,
            'labels': labels,
            'keep_prob': keep_prob,
            'top_k': top_k,
            'global_step': global_step,
            'train_op': train_op,
            'loss': loss,
            'is_training': is_training,
            'accuracy': accuracy,
            'accuracy_top_k': accuracy_in_top_k,
            'merged_summary_op': merged_summary_op,
            'predicted_distribution': probabilities,
            'predicted_index_top_k': predicted_index_top_k,
            'predicted_val_top_k': predicted_val_top_k}
开发者ID:oraSC,项目名称:Chinese-Character-Recognition,代码行数:57,代码来源:chinese_character_recognition_bn.py



注:本文中的tensorflow.contrib.slim.fully_connected函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python slim.l2_regularizer函数代码示例发布时间:2022-05-27
下一篇:
Python slim.flatten函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap