• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python loss_ops.log_loss函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.contrib.losses.python.losses.loss_ops.log_loss函数的典型用法代码示例。如果您正苦于以下问题:Python log_loss函数的具体用法?Python log_loss怎么用?Python log_loss使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了log_loss函数的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: ModelLoss

  def ModelLoss(self):
    tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
    tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

    tf_predictions = logistic_classifier(tf_inputs)
    loss_ops.log_loss(tf_predictions, tf_labels)
    return loss_ops.get_total_loss()
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:7,代码来源:training_test.py


示例2: testNoneGlobalStep

  def testNoneGlobalStep(self):
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = batchnorm_classifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()
      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = training.create_train_op(
          total_loss, optimizer, global_step=None)

      global_step = variables_lib.get_or_create_global_step()

      with session_lib.Session() as sess:
        # Initialize all variables
        sess.run(variables_lib2.global_variables_initializer())

        for _ in range(10):
          sess.run([train_op])
        global_step = global_step.eval()
        # Since train_op don't use global_step it shouldn't change.
        self.assertAllClose(global_step, 0)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:25,代码来源:training_test.py


示例3: testResumeTrainAchievesRoughlyTheSameLoss

  def testResumeTrainAchievesRoughlyTheSameLoss(self):
    number_of_steps = [300, 1, 5]
    logdir = os.path.join(self.get_temp_dir(), 'resume_train_same_loss')

    for i in range(len(number_of_steps)):
      with ops.Graph().as_default():
        random_seed.set_random_seed(i)
        tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
        tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

        tf_predictions = logistic_classifier(tf_inputs)
        loss_ops.log_loss(tf_predictions, tf_labels)
        total_loss = loss_ops.get_total_loss()

        optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

        train_op = training.create_train_op(total_loss, optimizer)

        saver = saver_lib.Saver()

        loss = training.train(
            train_op,
            logdir,
            hooks=[
                basic_session_run_hooks.StopAtStepHook(
                    num_steps=number_of_steps[i]),
                basic_session_run_hooks.CheckpointSaverHook(
                    logdir, save_steps=50, saver=saver),
            ])
        self.assertIsNotNone(loss)
        self.assertLess(loss, .015)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:31,代码来源:training_test.py


示例4: testResumeTrainAchievesRoughlyTheSameLoss

  def testResumeTrainAchievesRoughlyTheSameLoss(self):
    logdir = os.path.join(
        tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs')
    number_of_steps = [300, 301, 305]

    for i in range(len(number_of_steps)):
      with ops.Graph().as_default():
        random_seed.set_random_seed(i)
        tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
        tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

        tf_predictions = LogisticClassifier(tf_inputs)
        loss_ops.log_loss(tf_predictions, tf_labels)
        total_loss = loss_ops.get_total_loss()

        optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

        train_op = learning.create_train_op(total_loss, optimizer)

        loss = learning.train(
            train_op,
            logdir,
            number_of_steps=number_of_steps[i],
            log_every_n_steps=10)
        self.assertIsNotNone(loss)
        self.assertLess(loss, .015)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:26,代码来源:learning_test.py


示例5: testEmptyUpdateOps

  def testEmptyUpdateOps(self):
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = batchnorm_classifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()
      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = training.create_train_op(total_loss, optimizer, update_ops=[])

      moving_mean = variables_lib.get_variables_by_name('moving_mean')[0]
      moving_variance = variables_lib.get_variables_by_name('moving_variance')[
          0]

      with session_lib.Session() as sess:
        # Initialize all variables
        sess.run(variables_lib2.global_variables_initializer())
        mean, variance = sess.run([moving_mean, moving_variance])
        # After initialization moving_mean == 0 and moving_variance == 1.
        self.assertAllClose(mean, [0] * 4)
        self.assertAllClose(variance, [1] * 4)

        for _ in range(10):
          sess.run([train_op])
        mean = moving_mean.eval()
        variance = moving_variance.eval()

        # Since we skip update_ops the moving_vars are not updated.
        self.assertAllClose(mean, [0] * 4)
        self.assertAllClose(variance, [1] * 4)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:33,代码来源:training_test.py


示例6: testTrainWithTrace

  def testTrainWithTrace(self):
    logdir = os.path.join(
        tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs')
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = LogisticClassifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()
      summary.scalar('total_loss', total_loss)

      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = learning.create_train_op(total_loss, optimizer)

      loss = learning.train(
          train_op,
          logdir,
          number_of_steps=300,
          log_every_n_steps=10,
          trace_every_n_steps=100)
    self.assertIsNotNone(loss)
    for trace_step in [1, 101, 201]:
      trace_filename = 'tf_trace-%d.json' % trace_step
      self.assertTrue(os.path.isfile(os.path.join(logdir, trace_filename)))
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:27,代码来源:learning_test.py


示例7: testTrainWithSessionWrapper

  def testTrainWithSessionWrapper(self):
    """Test that slim.learning.train can take `session_wrapper` args.

    One of the applications of `session_wrapper` is the wrappers of TensorFlow
    Debugger (tfdbg), which intercept methods calls to `tf.Session` (e.g., run)
    to achieve debugging. `DumpingDebugWrapperSession` is used here for testing
    purpose.
    """
    dump_root = tempfile.mkdtemp()

    def dumping_wrapper(sess):  # pylint: disable=invalid-name
      return dumping_wrapper_lib.DumpingDebugWrapperSession(sess, dump_root)

    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = LogisticClassifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()

      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = learning.create_train_op(total_loss, optimizer)

      loss = learning.train(
          train_op, None, number_of_steps=1, session_wrapper=dumping_wrapper)
    self.assertIsNotNone(loss)

    run_root = glob.glob(os.path.join(dump_root, 'run_*'))[-1]
    dump = debug_data.DebugDumpDir(run_root)
    self.assertAllEqual(0,
                        dump.get_tensors('global_step', 0, 'DebugIdentity')[0])
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:34,代码来源:learning_test.py


示例8: testTrainOpInCollection

  def testTrainOpInCollection(self):
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = batchnorm_classifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()
      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = training.create_train_op(total_loss, optimizer)

      # Make sure the training op was recorded in the proper collection
      self.assertTrue(train_op in ops.get_collection(ops.GraphKeys.TRAIN_OP))
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:15,代码来源:training_test.py


示例9: _train_model

  def _train_model(self, checkpoint_dir, num_steps):
    """Trains a simple classification model.

    Note that the data has been configured such that after around 300 steps,
    the model has memorized the dataset (e.g. we can expect %100 accuracy).

    Args:
      checkpoint_dir: The directory where the checkpoint is written to.
      num_steps: The number of steps to train for.
    """
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = logistic_classifier(tf_inputs)
      loss = loss_ops.log_loss(tf_predictions, tf_labels)

      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
      train_op = training.create_train_op(loss, optimizer)

      loss = training.train(
          train_op,
          checkpoint_dir,
          hooks=[basic_session_run_hooks.StopAtStepHook(num_steps)])
开发者ID:Immexxx,项目名称:tensorflow,代码行数:25,代码来源:evaluation_test.py


示例10: testTrainWithNoneAsLogdirWhenUsingTraceRaisesError

  def testTrainWithNoneAsLogdirWhenUsingTraceRaisesError(self):
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = LogisticClassifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()

      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = learning.create_train_op(total_loss, optimizer)

      with self.assertRaises(ValueError):
        learning.train(
            train_op, None, number_of_steps=300, trace_every_n_steps=10)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:17,代码来源:learning_test.py


示例11: testTrainWithNoneAsInitWhenUsingVarsRaisesError

  def testTrainWithNoneAsInitWhenUsingVarsRaisesError(self):
    logdir = os.path.join(
        tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs')
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = LogisticClassifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()

      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = learning.create_train_op(total_loss, optimizer)

      with self.assertRaises(RuntimeError):
        learning.train(train_op, logdir, init_op=None, number_of_steps=300)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:18,代码来源:learning_test.py



注:本文中的tensorflow.contrib.losses.python.losses.loss_ops.log_loss函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python metrics.streaming_mean函数代码示例发布时间:2022-05-27
下一篇:
Python loss_ops.get_total_loss函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap