本文整理汇总了Python中tensorflow.contrib.learn.python.learn.utils.saved_model_export_utils.make_export_strategy函数的典型用法代码示例。如果您正苦于以下问题:Python make_export_strategy函数的具体用法?Python make_export_strategy怎么用?Python make_export_strategy使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了make_export_strategy函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_export_strategies_reset
def test_export_strategies_reset(self):
est = TestEstimator()
export_strategy_1 = saved_model_export_utils.make_export_strategy(
est, 'export_input_1', exports_to_keep=None)
ex = experiment.Experiment(
est,
train_input_fn='train_input',
eval_input_fn='eval_input',
eval_metrics='eval_metrics',
train_steps=100,
eval_steps=100,
export_strategies=[export_strategy_1])
ex.train_and_evaluate()
self.assertEqual(1, est.export_count)
# After reset with empty list (None), the count does not change and the user
# provided export strategy list should remain intact.
old_es = ex.reset_export_strategies()
ex.train_and_evaluate()
self.assertAllEqual([export_strategy_1], old_es)
self.assertEqual(1, est.export_count)
# After reset with list, the count should increase with the number of items.
export_strategy_2 = saved_model_export_utils.make_export_strategy(
est, 'export_input_2', exports_to_keep=None)
export_strategy_3 = saved_model_export_utils.make_export_strategy(
est, 'export_input_3', exports_to_keep=None)
old_es = ex.reset_export_strategies([export_strategy_2, export_strategy_3])
ex.train_and_evaluate()
self.assertAllEqual([], old_es)
self.assertEqual(3, est.export_count)
开发者ID:falcone01,项目名称:tensorflow,代码行数:33,代码来源:experiment_test.py
示例2: _make_experiment_fn
def _make_experiment_fn(output_dir):
"""Creates experiment for DNNBoostedTreeCombinedRegressor."""
(x_train, y_train), (x_test,
y_test) = tf.keras.datasets.boston_housing.load_data()
train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
x={"x": x_train},
y=y_train,
batch_size=FLAGS.batch_size,
num_epochs=None,
shuffle=True)
eval_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
x={"x": x_test}, y=y_test, num_epochs=1, shuffle=False)
feature_columns = [
feature_column.real_valued_column("x", dimension=_BOSTON_NUM_FEATURES)
]
feature_spec = tf.contrib.layers.create_feature_spec_for_parsing(
feature_columns)
serving_input_fn = input_fn_utils.build_parsing_serving_input_fn(feature_spec)
export_strategies = [
saved_model_export_utils.make_export_strategy(serving_input_fn)]
return tf.contrib.learn.Experiment(
estimator=_get_estimator(output_dir, feature_columns),
train_input_fn=train_input_fn,
eval_input_fn=eval_input_fn,
train_steps=None,
eval_steps=FLAGS.num_eval_steps,
eval_metrics=None,
export_strategies=export_strategies)
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:30,代码来源:boston_combined.py
示例3: make_custom_export_strategy
def make_custom_export_strategy(name,
convert_fn,
feature_columns,
export_input_fn):
"""Makes custom exporter of GTFlow tree format.
Args:
name: A string, for the name of the export strategy.
convert_fn: A function that converts the tree proto to desired format and
saves it to the desired location. Can be None to skip conversion.
feature_columns: A list of feature columns.
export_input_fn: A function that takes no arguments and returns an
`InputFnOps`.
Returns:
An `ExportStrategy`.
"""
base_strategy = saved_model_export_utils.make_export_strategy(
serving_input_fn=export_input_fn)
input_fn = export_input_fn()
(sorted_feature_names, dense_floats, sparse_float_indices, _, _,
sparse_int_indices, _, _) = gbdt_batch.extract_features(
input_fn.features, feature_columns)
def export_fn(estimator, export_dir, checkpoint_path=None, eval_result=None):
"""A wrapper to export to SavedModel, and convert it to other formats."""
result_dir = base_strategy.export(estimator, export_dir,
checkpoint_path,
eval_result)
with ops.Graph().as_default() as graph:
with tf_session.Session(graph=graph) as sess:
saved_model_loader.load(
sess, [tag_constants.SERVING], result_dir)
# Note: This is GTFlow internal API and might change.
ensemble_model = graph.get_operation_by_name(
"ensemble_model/TreeEnsembleSerialize")
_, dfec_str = sess.run(ensemble_model.outputs)
dtec = tree_config_pb2.DecisionTreeEnsembleConfig()
dtec.ParseFromString(dfec_str)
# Export the result in the same folder as the saved model.
if convert_fn:
convert_fn(dtec, sorted_feature_names,
len(dense_floats),
len(sparse_float_indices),
len(sparse_int_indices), result_dir, eval_result)
feature_importances = _get_feature_importances(
dtec, sorted_feature_names,
len(dense_floats),
len(sparse_float_indices), len(sparse_int_indices))
sorted_by_importance = sorted(
feature_importances.items(), key=lambda x: -x[1])
assets_dir = os.path.join(result_dir, "assets.extra")
gfile.MakeDirs(assets_dir)
with gfile.GFile(os.path.join(assets_dir, "feature_importances"),
"w") as f:
f.write("\n".join("%s, %f" % (k, v) for k, v in sorted_by_importance))
return result_dir
return export_strategy.ExportStrategy(
name, export_fn, strip_default_attrs=True)
开发者ID:DILASSS,项目名称:tensorflow,代码行数:60,代码来源:custom_export_strategy.py
示例4: test_train_and_evaluate
def test_train_and_evaluate(self):
for est in self._estimators_for_tests():
eval_metrics = 'eval_metrics' if not isinstance(
est, core_estimator.Estimator) else None
noop_hook = _NoopHook()
export_strategy = saved_model_export_utils.make_export_strategy(
est,
None if isinstance(est, core_estimator.Estimator) else 'export_input',
exports_to_keep=None)
ex = experiment.Experiment(
est,
train_input_fn='train_input',
eval_input_fn='eval_input',
eval_metrics=eval_metrics,
eval_hooks=[noop_hook],
train_steps=100,
eval_steps=100,
export_strategies=export_strategy)
ex.train_and_evaluate()
self.assertEqual(1, est.fit_count)
self.assertEqual(1, est.eval_count)
self.assertEqual(1, est.export_count)
self.assertEqual(1, len(est.monitors))
self.assertEqual([noop_hook], est.eval_hooks)
self.assertTrue(isinstance(est.monitors[0],
session_run_hook.SessionRunHook))
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:26,代码来源:experiment_test.py
示例5: test_continuous_train_and_eval_with_predicate_fn
def test_continuous_train_and_eval_with_predicate_fn(self):
for est in self._estimators_for_tests(eval_dict={'global_step': 100}):
eval_metrics = 'eval_metrics' if not isinstance(
est, core_estimator.Estimator) else None
export_strategy = saved_model_export_utils.make_export_strategy(
est,
None if isinstance(est, core_estimator.Estimator) else 'export_input',
exports_to_keep=None)
ex = experiment.Experiment(
est,
train_input_fn='train_input',
eval_input_fn='eval_input',
eval_metrics=eval_metrics,
train_steps=100000000000, # a value will make `ex` never stops.
eval_steps=100,
export_strategies=export_strategy)
def predicate_fn(eval_result):
del eval_result # unused. for fn signature.
return False
ex.continuous_train_and_eval(continuous_eval_predicate_fn=predicate_fn)
self.assertEqual(0, est.fit_count)
self.assertEqual(0, est.eval_count)
self.assertEqual(1, est.export_count)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:25,代码来源:experiment_test.py
示例6: main
def main(unused_argv):
# Load training and eval data
mnist = read_data_sets(FLAGS.data_dir,
source_url=FLAGS.datasource_url)
train_data = mnist.train.images # Returns np.array
train_labels = np.asarray(mnist.train.labels, dtype=np.int32)
eval_data = mnist.test.images # Returns np.array
eval_labels = np.asarray(mnist.test.labels, dtype=np.int32)
def serving_input_receiver_fn():
feature_tensor = tf.placeholder(tf.float32, [None, 784])
return tf.estimator.export.ServingInputReceiver({'x': feature_tensor}, {'x': feature_tensor})
learn_runner.run(
generate_experiment_fn(
min_eval_frequency=1,
train_steps=FLAGS.num_steps,
eval_steps=FLAGS.eval_steps,
export_strategies=[saved_model_export_utils.make_export_strategy(
serving_input_receiver_fn,
exports_to_keep=1
)]
),
run_config = tf.contrib.learn.RunConfig().replace(model_dir=FLAGS.job_dir, save_checkpoints_steps=1000),
hparams=hparam.HParams(dataset=mnist.train, eval_data=eval_data, eval_labels=eval_labels),
)
开发者ID:qordobafranzi,项目名称:tensorflow-workshop,代码行数:29,代码来源:task.py
示例7: test_checkpoint_and_export
def test_checkpoint_and_export(self):
model_dir = tempfile.mkdtemp()
config = run_config_lib.RunConfig(save_checkpoints_steps=3)
est = dnn.DNNClassifier(
n_classes=3,
feature_columns=[
feature_column.real_valued_column('feature', dimension=4)
],
hidden_units=[3, 3],
model_dir=model_dir,
config=config)
exp_strategy = saved_model_export_utils.make_export_strategy(
est, 'export_input', exports_to_keep=None)
ex = experiment.Experiment(
est,
train_input_fn=test_data.iris_input_multiclass_fn,
eval_input_fn=test_data.iris_input_multiclass_fn,
export_strategies=(exp_strategy,),
train_steps=8,
checkpoint_and_export=True,
eval_delay_secs=0)
with test.mock.patch.object(ex, '_maybe_export'):
with test.mock.patch.object(ex, '_call_evaluate'):
ex.train_and_evaluate()
# Eval and export are called after steps 1, 4, 7, and 8 (after training
# is completed).
self.assertEqual(ex._maybe_export.call_count, 4)
self.assertEqual(ex._call_evaluate.call_count, 4)
开发者ID:Kongsea,项目名称:tensorflow,代码行数:31,代码来源:experiment_test.py
示例8: test_continuous_train_and_eval
def test_continuous_train_and_eval(self):
for est in self._estimators_for_tests(eval_dict={'global_step': 100}):
if isinstance(est, core_estimator.Estimator):
eval_metrics = None
saving_listeners = 'saving_listeners'
else:
eval_metrics = 'eval_metrics'
saving_listeners = None
noop_hook = _NoopHook()
export_strategy = saved_model_export_utils.make_export_strategy(
est,
None if isinstance(est, core_estimator.Estimator) else 'export_input',
exports_to_keep=None)
ex = experiment.Experiment(
est,
train_input_fn='train_input',
eval_input_fn='eval_input',
eval_metrics=eval_metrics,
eval_hooks=[noop_hook],
train_steps=100,
eval_steps=100,
export_strategies=export_strategy,
saving_listeners=saving_listeners)
ex.continuous_train_and_eval()
self.assertEqual(1, est.fit_count)
self.assertEqual(1, est.eval_count)
self.assertEqual(1, est.export_count)
self.assertEqual([noop_hook], est.eval_hooks)
开发者ID:Kongsea,项目名称:tensorflow,代码行数:28,代码来源:experiment_test.py
示例9: _export_strategy
def _export_strategy():
if self.saves_training():
return [saved_model_export_utils.make_export_strategy(
serving_input_fn=_serving_input_fn,
default_output_alternative_key=None,
exports_to_keep=1)]
logger.warn("serving_input_fn not specified, model NOT saved, use checkpoints to reconstruct")
return None
开发者ID:FNDaily,项目名称:sagemaker-tensorflow-container,代码行数:8,代码来源:experiment_trainer.py
示例10: test_export_strategies_reset
def test_export_strategies_reset(self):
for est in self._estimators_for_tests():
eval_metrics = 'eval_metrics' if not isinstance(
est, core_estimator.Estimator) else None
export_strategy_1 = saved_model_export_utils.make_export_strategy(
est,
None if isinstance(est, core_estimator.Estimator) else 'export_1',
exports_to_keep=None)
ex = experiment.Experiment(
est,
train_input_fn='train_input',
eval_input_fn='eval_input',
eval_metrics=eval_metrics,
train_steps=100,
eval_steps=100,
export_strategies=(export_strategy_1,))
ex.train_and_evaluate()
self.assertEqual(1, est.export_count)
# After reset with empty list (None), the count does not change and the
# user provided export strategy list should remain intact.
old_es = ex.reset_export_strategies()
ex.train_and_evaluate()
self.assertAllEqual([export_strategy_1], old_es)
self.assertEqual(1, est.export_count)
# After reset with list, the count should increase with the number of
# items.
export_strategy_2 = saved_model_export_utils.make_export_strategy(
est,
None if isinstance(est, core_estimator.Estimator) else 'export_2',
exports_to_keep=None)
export_strategy_3 = saved_model_export_utils.make_export_strategy(
est,
None if isinstance(est, core_estimator.Estimator) else 'export_3',
exports_to_keep=None)
old_es = ex.reset_export_strategies(
[export_strategy_2, export_strategy_3])
ex.train_and_evaluate()
self.assertAllEqual([], old_es)
self.assertEqual(3, est.export_count)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:43,代码来源:experiment_test.py
示例11: test_make_export_strategy
def test_make_export_strategy(self):
"""Only tests that an ExportStrategy instance is created."""
def _serving_input_fn():
return array_ops.constant([1]), None
export_strategy = saved_model_export_utils.make_export_strategy(
serving_input_fn=_serving_input_fn,
default_output_alternative_key="default",
assets_extra={"from/path": "to/path"},
as_text=False,
exports_to_keep=5)
self.assertTrue(
isinstance(export_strategy, export_strategy_lib.ExportStrategy))
开发者ID:ivankreso,项目名称:tensorflow,代码行数:12,代码来源:saved_model_export_utils_test.py
示例12: test_test
def test_test(self):
for est in self._estimators_for_tests():
exp_strategy = saved_model_export_utils.make_export_strategy(
est, 'export_input', exports_to_keep=None)
ex = experiment.Experiment(
est,
train_input_fn='train_input',
eval_input_fn='eval_input',
export_strategies=(exp_strategy,))
ex.test()
self.assertEqual(1, est.fit_count)
self.assertEqual(1, est.eval_count)
self.assertEqual(1, est.export_count)
开发者ID:LUTAN,项目名称:tensorflow,代码行数:13,代码来源:experiment_test.py
示例13: test_test
def test_test(self):
est = TestEstimator()
exp_strategy = saved_model_export_utils.make_export_strategy(
est, 'export_input', exports_to_keep=None)
ex = experiment.Experiment(
est,
train_input_fn='train_input',
eval_input_fn='eval_input',
export_strategies=[exp_strategy])
ex.test()
self.assertEqual(1, est.fit_count)
self.assertEqual(1, est.eval_count)
self.assertEqual(1, est.export_count)
开发者ID:falcone01,项目名称:tensorflow,代码行数:13,代码来源:experiment_test.py
示例14: test_default_output_alternative_key_core_estimator
def test_default_output_alternative_key_core_estimator(self):
est = TestCoreEstimator()
export_strategy = saved_model_export_utils.make_export_strategy(
est,
default_output_alternative_key='export_key',
exports_to_keep=None)
ex = experiment.Experiment(
est,
train_input_fn='train_input',
eval_input_fn='eval_input',
train_steps=100,
eval_steps=100,
export_strategies=export_strategy)
with self.assertRaisesRegexp(
ValueError, 'default_output_alternative_key is not supported'):
ex.train_and_evaluate()
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:16,代码来源:experiment_test.py
示例15: _experiment_fn
def _experiment_fn(output_dir):
return tflearn.Experiment(
get_model(output_dir, nbuckets, hidden_units, learning_rate),
train_input_fn=read_dataset(traindata, mode=tf.contrib.learn.ModeKeys.TRAIN, num_training_epochs=num_training_epochs, batch_size=batch_size),
eval_input_fn=read_dataset(evaldata),
export_strategies=[saved_model_export_utils.make_export_strategy(
serving_input_fn,
default_output_alternative_key=None,
exports_to_keep=1
)],
eval_metrics = {
'rmse' : tflearn.MetricSpec(metric_fn=my_rmse, prediction_key='probabilities'),
'training/hptuning/metric' : tflearn.MetricSpec(metric_fn=my_rmse, prediction_key='probabilities')
},
min_eval_frequency = 100,
**args
)
开发者ID:yogiadi,项目名称:data-science-on-gcp,代码行数:17,代码来源:model.py
示例16: test_train_and_evaluate
def test_train_and_evaluate(self):
est = TestEstimator()
export_strategy = saved_model_export_utils.make_export_strategy(
est, 'export_input')
ex = experiment.Experiment(
est,
train_input_fn='train_input',
eval_input_fn='eval_input',
eval_metrics='eval_metrics',
train_steps=100,
eval_steps=100,
export_strategies=export_strategy)
ex.train_and_evaluate()
self.assertEquals(1, est.fit_count)
self.assertEquals(1, est.eval_count)
self.assertEquals(1, est.export_count)
self.assertEquals(1, len(est.monitors))
self.assertTrue(isinstance(est.monitors[0], monitors.ValidationMonitor))
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:18,代码来源:experiment_test.py
示例17: _experiment_fn
def _experiment_fn(output_dir):
train_input_fn = generate_input_fn(train_file)
eval_input_fn = generate_input_fn(test_file)
my_model = build_estimator(model_type=model_type,
model_dir=output_dir)
experiment = tf.contrib.learn.Experiment(
my_model,
train_input_fn=train_input_fn,
eval_input_fn=eval_input_fn,
train_steps=1000
,
export_strategies=[saved_model_export_utils.make_export_strategy(
serving_input_fn,
default_output_alternative_key=None
)]
)
return experiment
开发者ID:yamau6809,项目名称:tensorflow-workshop,代码行数:18,代码来源:model.py
示例18: experiment_fn
def experiment_fn(output_dir):
# run experiment
return tflearn.Experiment(
tflearn.Estimator(model_fn=cnn_model, model_dir=output_dir),
train_input_fn=get_train(),
eval_input_fn=get_valid(),
eval_metrics={
'acc': tflearn.MetricSpec(
metric_fn=metrics.streaming_accuracy, prediction_key='class'
)
},
export_strategies=[saved_model_export_utils.make_export_strategy(
serving_input_fn,
default_output_alternative_key=None,
exports_to_keep=1
)],
train_steps = TRAIN_STEPS
)
开发者ID:GoogleCloudPlatform,项目名称:training-data-analyst,代码行数:18,代码来源:model.py
示例19: make_custom_export_strategy
def make_custom_export_strategy(name, convert_fn, feature_columns,
export_input_fn):
"""Makes custom exporter of GTFlow tree format.
Args:
name: A string, for the name of the export strategy.
convert_fn: A function that converts the tree proto to desired format and
saves it to the desired location.
feature_columns: A list of feature columns.
export_input_fn: A function that takes no arguments and returns an
`InputFnOps`.
Returns:
An `ExportStrategy`.
"""
base_strategy = saved_model_export_utils.make_export_strategy(
serving_input_fn=export_input_fn)
input_fn = export_input_fn()
(sorted_feature_names, dense_floats, sparse_float_indices, _, _,
sparse_int_indices, _, _) = gbdt_batch.extract_features(
input_fn.features, feature_columns)
def export_fn(estimator, export_dir, checkpoint_path=None, eval_result=None):
"""A wrapper to export to SavedModel, and convert it to other formats."""
result_dir = base_strategy.export(estimator, export_dir,
checkpoint_path,
eval_result)
with ops.Graph().as_default() as graph:
with tf_session.Session(graph=graph) as sess:
saved_model_loader.load(
sess, [tag_constants.SERVING], result_dir)
# Note: This is GTFlow internal API and might change.
ensemble_model = graph.get_operation_by_name(
"ensemble_model/TreeEnsembleSerialize")
_, dfec_str = sess.run(ensemble_model.outputs)
dtec = tree_config_pb2.DecisionTreeEnsembleConfig()
dtec.ParseFromString(dfec_str)
# Export the result in the same folder as the saved model.
convert_fn(dtec, sorted_feature_names, len(dense_floats),
len(sparse_float_indices), len(sparse_int_indices),
result_dir, eval_result)
return result_dir
return export_strategy.ExportStrategy(name, export_fn)
开发者ID:KrisRoofe,项目名称:tensorflow,代码行数:43,代码来源:custom_export_strategy.py
示例20: experiment_fn
def experiment_fn(output_dir):
get_train = model.read_dataset(train_data_paths, mode=tf.contrib.learn.ModeKeys.TRAIN)
get_valid = model.read_dataset(eval_data_paths, mode=tf.contrib.learn.ModeKeys.EVAL)
# run experiment
return tflearn.Experiment(
tflearn.Estimator(model_fn=model.simple_rnn, model_dir=output_dir),
train_input_fn=get_train,
eval_input_fn=get_valid,
eval_metrics={
'rmse': tflearn.MetricSpec(
metric_fn=tf.contrib.metrics.streaming_root_mean_squared_error
)
},
export_strategies=[saved_model_export_utils.make_export_strategy(
model.serving_input_fn,
default_output_alternative_key=None,
exports_to_keep=1
)],
**experiment_args
)
开发者ID:GoogleCloudPlatform,项目名称:training-data-analyst,代码行数:20,代码来源:task.py
注:本文中的tensorflow.contrib.learn.python.learn.utils.saved_model_export_utils.make_export_strategy函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论