• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python checkpoints.load_variable函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.contrib.learn.python.learn.utils.checkpoints.load_variable函数的典型用法代码示例。如果您正苦于以下问题:Python load_variable函数的具体用法?Python load_variable怎么用?Python load_variable使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了load_variable函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_train_skip_train_if_max_step_already_saved

  def test_train_skip_train_if_max_step_already_saved(self):
    with tf.Graph().as_default() as g, self.test_session(g):
      with tf.control_dependencies(self._build_inference_graph()):
        train_op = tf.assign_add(tf.contrib.framework.get_global_step(), 1)
      learn.graph_actions._monitored_train(  # pylint: disable=protected-access
          g,
          output_dir=self._output_dir,
          train_op=train_op,
          loss_op=tf.constant(2.0),
          max_steps=10)
      step = checkpoints.load_variable(
          self._output_dir, tf.contrib.framework.get_global_step().name)
      self.assertEqual(10, step)

    with tf.Graph().as_default() as g, self.test_session(g):
      with tf.control_dependencies(self._build_inference_graph()):
        train_op = tf.assign_add(tf.contrib.framework.get_global_step(), 1)
      learn.graph_actions._monitored_train(  # pylint: disable=protected-access
          g,
          output_dir=self._output_dir,
          train_op=train_op,
          loss_op=tf.constant(2.0),
          max_steps=10)
      step = checkpoints.load_variable(
          self._output_dir, tf.contrib.framework.get_global_step().name)
      self.assertEqual(10, step)
开发者ID:MostafaGazar,项目名称:tensorflow,代码行数:26,代码来源:graph_actions_test.py


示例2: weights_

 def weights_(self):
   hiddenlayer_weights = [checkpoints.load_variable(
       self._model_dir, name=("dnn/hiddenlayer_%d/weights" % i))
                          for i, _ in enumerate(self._hidden_units)]
   logits_weights = [checkpoints.load_variable(
       self._model_dir, name="dnn/logits/weights")]
   return hiddenlayer_weights + logits_weights
开发者ID:MrCrumpets,项目名称:tensorflow,代码行数:7,代码来源:dnn.py


示例3: bias_

 def bias_(self):
     hiddenlayer_bias = [
         checkpoints.load_variable(self._model_dir, name=("dnn/hiddenlayer_%d/biases" % i))
         for i, _ in enumerate(self._hidden_units)
     ]
     logits_bias = [checkpoints.load_variable(self._model_dir, name="dnn/logits/biases")]
     centered_bias = [checkpoints.load_variable(self._model_dir, name=_CENTERED_BIAS_WEIGHT)]
     return hiddenlayer_bias + logits_bias + centered_bias
开发者ID:pronobis,项目名称:tensorflow,代码行数:8,代码来源:dnn.py


示例4: testGetTensor

 def testGetTensor(self):
   checkpoint_dir = self.get_temp_dir()
   with self.test_session() as session:
     v1, v2, v3, v4 = _create_checkpoints(session, checkpoint_dir)
   self.assertAllEqual(checkpoints.load_variable(checkpoint_dir, "var1"), v1)
   self.assertAllEqual(checkpoints.load_variable(checkpoint_dir, "var2"), v2)
   self.assertAllEqual(checkpoints.load_variable(checkpoint_dir, "var3"), v3)
   self.assertAllEqual(
       checkpoints.load_variable(checkpoint_dir, "useful_scope/var4"), v4)
开发者ID:0-T-0,项目名称:tensorflow,代码行数:9,代码来源:checkpoints_test.py


示例5: get_bias

  def get_bias(self, model_dir):
    """Returns the bias of the model.

    Args:
      model_dir: Directory where model parameters, graph and etc. are saved.

    Returns:
      The bias weights created by this model.
    """
    return [checkpoints.load_variable(
        model_dir, name=(self._scope+"/hiddenlayer_%d/biases" % i))
            for i, _ in enumerate(self._hidden_units)] + [
                checkpoints.load_variable(
                    model_dir, name=(self._scope+"/logits/biases"))]
开发者ID:10imaging,项目名称:tensorflow,代码行数:14,代码来源:composable_model.py


示例6: print_tensors_in_checkpoint_file

def print_tensors_in_checkpoint_file(file_name, tensor_name):
  """Prints tensors in a checkpoint file.

  If no `tensor_name` is provided, prints the tensor names and shapes
  in the checkpoint file.

  If `tensor_name` is provided, prints the content of the tensor.

  Args:
    file_name: Name of the checkpoint file.
    tensor_name: Name of the tensor in the checkpoint file to print.
  """
  try:
    if not tensor_name:
      variables = checkpoints.list_variables(file_name)
      for name, shape in variables:
        print("%s\t%s" % (name, str(shape)))
    else:
      print("tensor_name: ", tensor_name)
      print(checkpoints.load_variable(file_name, tensor_name))
  except Exception as e:  # pylint: disable=broad-except
    print(str(e))
    if "corrupted compressed block contents" in str(e):
      print("It's likely that your checkpoint file has been compressed "
            "with SNAPPY.")
开发者ID:Baaaaam,项目名称:tensorflow,代码行数:25,代码来源:inspect_checkpoint.py


示例7: weights_

 def weights_(self):
     values = {}
     optimizer_regex = r".*/" + self._optimizer.get_name() + r"(_\d)?$"
     for name, _ in checkpoints.list_variables(self._model_dir):
         if name.startswith("linear/") and name != "linear/bias_weight" and not re.match(optimizer_regex, name):
             values[name] = checkpoints.load_variable(self._model_dir, name)
     if len(values) == 1:
         return values[list(values.keys())[0]]
     return values
开发者ID:flyingbirdman,项目名称:tensorflow,代码行数:9,代码来源:linear.py


示例8: test_train_max_steps_is_not_incremental

  def test_train_max_steps_is_not_incremental(self):
    with tf.Graph().as_default() as g, self.test_session(g):
      with tf.control_dependencies(self._build_inference_graph()):
        train_op = tf.assign_add(tf.contrib.framework.get_global_step(), 1)
      learn.graph_actions.train(g, output_dir=self._output_dir,
                                train_op=train_op, loss_op=tf.constant(2.0),
                                max_steps=10)
      step = checkpoints.load_variable(
          self._output_dir, tf.contrib.framework.get_global_step().name)
      self.assertEqual(10, step)

    with tf.Graph().as_default() as g, self.test_session(g):
      with tf.control_dependencies(self._build_inference_graph()):
        train_op = tf.assign_add(tf.contrib.framework.get_global_step(), 1)
      learn.graph_actions.train(g, output_dir=self._output_dir,
                                train_op=train_op, loss_op=tf.constant(2.0),
                                max_steps=15)
      step = checkpoints.load_variable(
          self._output_dir, tf.contrib.framework.get_global_step().name)
      self.assertEqual(15, step)
开发者ID:MostafaGazar,项目名称:tensorflow,代码行数:20,代码来源:graph_actions_test.py


示例9: get_variable_value

  def get_variable_value(self, name):
    """Returns value of the variable given by name.

    Args:
      name: string, name of the tensor.

    Returns:
      Numpy array - value of the tensor.
    """
    if name.endswith(':0'):
      name = name[:-2]
    return checkpoints.load_variable(self.model_dir, name)
开发者ID:MMMdata,项目名称:tensorflow,代码行数:12,代码来源:estimator.py


示例10: get_weights

  def get_weights(self, model_dir):
    """Returns weights per feature of the linear part.

    Args:
      model_dir: Directory where model parameters, graph and etc. are saved.

    Returns:
      The weights created by this model (without the optimizer weights).
    """
    all_variables = [name for name, _ in checkpoints.list_variables(model_dir)]
    values = {}
    optimizer_regex = r".*/" + self._get_optimizer().get_name() + r"(_\d)?$"
    for name in all_variables:
      if (name.startswith(self._scope + "/") and
          name != self._scope + "/bias_weight" and
          not re.match(optimizer_regex, name)):
        values[name] = checkpoints.load_variable(model_dir, name)
    if len(values) == 1:
      return values[list(values.keys())[0]]
    return values
开发者ID:10imaging,项目名称:tensorflow,代码行数:20,代码来源:composable_model.py


示例11: get_variable_value

 def get_variable_value(self, name):
   return checkpoints.load_variable(self.model_dir, name)
开发者ID:KalraA,项目名称:tensorflow,代码行数:2,代码来源:linear.py


示例12: bias_

 def bias_(self):
   return checkpoints.load_variable(self._model_dir,
                                    name="linear/bias_weight")
开发者ID:KalraA,项目名称:tensorflow,代码行数:3,代码来源:linear.py


示例13: _train_internal

def _train_internal(graph,
                    output_dir,
                    train_op,
                    loss_op,
                    global_step_tensor,
                    init_op,
                    init_feed_dict,
                    init_fn,
                    log_every_steps,
                    supervisor_is_chief,
                    supervisor_master,
                    supervisor_save_model_secs,
                    keep_checkpoint_max,
                    supervisor_save_summaries_steps,
                    feed_fn,
                    steps,
                    fail_on_nan_loss,
                    monitors,
                    max_steps):
  """See train."""
  if (steps is not None) and (max_steps is not None):
    raise ValueError('Can not provide both steps and max_steps.')
  if not output_dir:
    raise ValueError('Output directory should be non-empty %s.' % output_dir)
  if train_op is None:
    raise ValueError('Missing train_op.')
  if loss_op is None:
    raise ValueError('Missing loss_op.')

  with graph.as_default():
    global_step_tensor = contrib_variables.assert_or_get_global_step(
        graph, global_step_tensor)
    if global_step_tensor is None:
      raise ValueError('No "global_step" was provided or found in the graph.')

    # Get current step.
    try:
      start_step = checkpoints.load_variable(
          output_dir, global_step_tensor.name)
    except (errors.NotFoundError, ValueError):
      start_step = 0

    summary_writer = (get_summary_writer(output_dir)
                      if supervisor_is_chief else None)

    # Add default chief monitors if none were provided.
    if not monitors:
      monitors = monitors_lib.get_default_monitors(
          loss_op=loss_op,
          summary_op=logging_ops.get_summary_op(),
          save_summary_steps=supervisor_save_summaries_steps,
          summary_writer=summary_writer) if supervisor_is_chief else []

    # TODO(ipolosukhin): Replace all functionality of Supervisor
    # with Chief-Exclusive Monitors.
    if not supervisor_is_chief:
      # Prune list of monitor to the ones runnable on all workers.
      monitors = [monitor for monitor in monitors if monitor.run_on_all_workers]

    if max_steps is None:
      max_steps = (start_step + steps) if steps else None
    # Start monitors, can create graph parts.
    for monitor in monitors:
      monitor.begin(max_steps=max_steps)

  supervisor = tf_supervisor.Supervisor(
      graph,
      init_op=init_op or tf_supervisor.Supervisor.USE_DEFAULT,
      init_feed_dict=init_feed_dict,
      is_chief=supervisor_is_chief,
      logdir=output_dir,
      saver=_make_saver(graph, keep_checkpoint_max),
      global_step=global_step_tensor,
      summary_op=None,
      summary_writer=summary_writer,
      save_model_secs=supervisor_save_model_secs,
      init_fn=init_fn)
  session = supervisor.PrepareSession(master=supervisor_master,
                                      start_standard_services=True)
  supervisor.StartQueueRunners(session)

  with session:
    get_current_step = lambda: session.run(global_step_tensor)

    start_step = get_current_step()
    last_step = start_step
    last_log_step = start_step
    loss_value = None
    logging.info('Training steps [%d,%s)', last_step, 'inf'
                 if max_steps is None else str(max_steps))

    excinfo = None
    try:
      while not supervisor.ShouldStop() and (
          (max_steps is None) or (last_step < max_steps)):
        start_time = time.time()
        feed_dict = feed_fn() if feed_fn is not None else None

        outputs, should_stop = _run_with_monitors(
            session, last_step + 1, [train_op, loss_op], feed_dict, monitors)
#.........这里部分代码省略.........
开发者ID:2020zyc,项目名称:tensorflow,代码行数:101,代码来源:graph_actions.py


示例14: clusters

 def clusters(self):
   """Returns cluster centers."""
   return checkpoints.load_variable(self.model_dir, self.CLUSTERS)
开发者ID:31H0B1eV,项目名称:tensorflow,代码行数:3,代码来源:kmeans.py


示例15: train

def train(graph,
          output_dir,
          train_op,
          loss_op,
          global_step_tensor=None,
          init_op=None,
          init_feed_dict=None,
          init_fn=None,
          log_every_steps=10,
          supervisor_is_chief=True,
          supervisor_master='',
          supervisor_save_model_secs=600,
          supervisor_save_summaries_steps=100,
          feed_fn=None,
          steps=None,
          fail_on_nan_loss=True,
          monitors=None):
  """Train a model.

  Given `graph`, a directory to write outputs to (`output_dir`), and some ops,
  run a training loop. The given `train_op` performs one step of training on the
  model. The `loss_op` represents the objective function of the training. It is
  expected to increment the `global_step_tensor`, a scalar integer tensor
  counting training steps. This function uses `Supervisor` to initialize the
  graph (from a checkpoint if one is available in `output_dir`), write summaries
  defined in the graph, and write regular checkpoints as defined by
  `supervisor_save_model_secs`.

  Training continues until `global_step_tensor` evaluates to `max_steps`, or, if
  `fail_on_nan_loss`, until `loss_op` evaluates to `NaN`. In that case the
  program is terminated with exit code 1.

  Args:
    graph: A graph to train. It is expected that this graph is not in use
      elsewhere.
    output_dir: A directory to write outputs to.
    train_op: An op that performs one training step when run.
    loss_op: A scalar loss tensor.
    global_step_tensor: A tensor representing the global step. If none is given,
      one is extracted from the graph using the same logic as in `Supervisor`.
    init_op: An op that initializes the graph. If `None`, use `Supervisor`'s
      default.
    init_feed_dict: A dictionary that maps `Tensor` objects to feed values.
      This feed dictionary will be used when `init_op` is evaluated.
    init_fn: Optional callable passed to Supervisor to initialize the model.
    log_every_steps: Output logs regularly. The logs contain timing data and the
      current loss.
    supervisor_is_chief: Whether the current process is the chief supervisor in
      charge of restoring the model and running standard services.
    supervisor_master: The master string to use when preparing the session.
    supervisor_save_model_secs: Save a checkpoint every
      `supervisor_save_model_secs` seconds when training.
    supervisor_save_summaries_steps: Save summaries every
      `supervisor_save_summaries_steps` seconds when training.
    feed_fn: A function that is called every iteration to produce a `feed_dict`
      passed to `session.run` calls. Optional.
    steps: Trains for this many steps (e.g. current global step + `steps`).
    fail_on_nan_loss: If true, raise `NanLossDuringTrainingError` if `loss_op`
      evaluates to `NaN`. If false, continue training as if nothing happened.
    monitors: List of `BaseMonitor` subclass instances. Used for callbacks
      inside the training loop.

  Returns:
    The final loss value.

  Raises:
    ValueError: If `global_step_tensor` is not provided. See
        `tf.contrib.framework.get_global_step` for how we look it up if not
        provided explicitly.
    NanLossDuringTrainingError: If `fail_on_nan_loss` is `True`, and loss ever
        evaluates to `NaN`.
  """
  if not output_dir:
    raise ValueError('Output directory should be non-empty.')

  with graph.as_default():
    global_step_tensor = contrib_variables.assert_or_get_global_step(
        graph, global_step_tensor)
    if global_step_tensor is None:
      raise ValueError('No "global_step" was provided or found in the graph.')

    # Get current step.
    try:
      start_step = checkpoints.load_variable(
          output_dir, global_step_tensor.name)
    except (errors.NotFoundError, ValueError):
      start_step = 0

    summary_writer = (get_summary_writer(output_dir)
                      if supervisor_is_chief else None)

    # TODO(ipolosukhin): Replace all functionality of Supervisor with Monitors.
    if not supervisor_is_chief:
      # monitors should run only on the chief.
      monitors = []
    elif not monitors:
      monitors = monitors_lib.get_default_monitors(
          loss_op=loss_op,
          summary_op=logging_ops.get_summary_op(),
          save_summary_steps=supervisor_save_summaries_steps,
#.........这里部分代码省略.........
开发者ID:carloscampo5200,项目名称:tensorflow,代码行数:101,代码来源:graph_actions.py


示例16: _supervised_train


#.........这里部分代码省略.........
    supervisor_save_summaries_steps: Save summaries every
      `supervisor_save_summaries_steps` seconds when training.
    feed_fn: A function that is called every iteration to produce a `feed_dict`
      passed to `session.run` calls. Optional.
    steps: Trains for this many steps (e.g. current global step + `steps`).
    fail_on_nan_loss: If true, raise `NanLossDuringTrainingError` if `loss_op`
      evaluates to `NaN`. If false, continue training as if nothing happened.
    monitors: List of `BaseMonitor` subclass instances. Used for callbacks
      inside the training loop.
    max_steps: Number of total steps for which to train model. If `None`,
      train forever. Two calls fit(steps=100) means 200 training iterations.
      On the other hand two calls of fit(max_steps=100) means, second call
      will not do any iteration since first call did all 100 steps.

  Returns:
    The final loss value.

  Raises:
    ValueError: If `output_dir`, `train_op`, `loss_op`, or `global_step_tensor`
      is not provided. See `tf.contrib.framework.get_global_step` for how we
      look up the latter if not provided explicitly.
    NanLossDuringTrainingError: If `fail_on_nan_loss` is `True`, and loss ever
      evaluates to `NaN`.
    ValueError: If both `steps` and `max_steps` are not `None`.
  """
  if (steps is not None) and (max_steps is not None):
    raise ValueError('Can not provide both steps and max_steps.')
  if not output_dir:
    raise ValueError('Output directory should be non-empty %s.' % output_dir)
  if train_op is None:
    raise ValueError('Missing train_op.')
  if loss_op is None:
    raise ValueError('Missing loss_op.')
  if monitors is None:
    monitors = []
  if not isinstance(monitors, list):
    raise ValueError('Monitors should be a list.')
  with graph.as_default():
    global_step_tensor = contrib_variables.assert_or_get_global_step(
        graph, global_step_tensor)
  if global_step_tensor is None:
    raise ValueError('No "global_step" was provided or found in the graph.')

  if max_steps is not None:
    try:
      start_step = checkpoints.load_variable(output_dir,
                                             global_step_tensor.name)
      if max_steps <= start_step:
        logging.info('Skipping training since max_steps has already saved.')
        return None
    except:  # pylint: disable=bare-except
      pass

  with graph.as_default():
    # See question about adding the summary writer to the scaffold.
    if supervisor_is_chief:
      summary_writer = summary_writer_cache.SummaryWriterCache.get(output_dir)
      monitors.extend([
          monitors_lib.StepCounter(summary_writer=summary_writer),
          monitors_lib.NanLoss(loss_op,
                               fail_on_nan_loss=fail_on_nan_loss),
          monitors_lib.PrintTensor({'loss': loss_op.name},
                                   every_n=log_every_steps),
      ])

    # Finalize graph and add savers
    # TODO(ispir): remove keep_checkpoint_max from Scaffold interface
    scaffold = supervised_session.Scaffold(
        global_step_tensor=global_step_tensor,
        init_op=init_op,
        init_feed_dict=init_feed_dict,
        init_fn=init_fn,
        keep_checkpoint_max=keep_checkpoint_max)
    if supervisor_is_chief:
      if scaffold.summary_op is not None:
        monitors.append(monitors_lib.SummarySaver(
            scaffold.summary_op,
            save_steps=supervisor_save_summaries_steps,
            summary_writer=summary_writer))
      if supervisor_save_model_steps > 0:
        monitors.append(
            monitors_lib.CheckpointSaver(supervisor_save_model_steps,
                                         scaffold.saver, output_dir))

    if steps is not None or max_steps is not None:
      monitors.append(monitors_lib.StopAtStep(steps, max_steps))
    if not supervisor_is_chief:
      # Prune list of monitor to the ones runnable on all workers.
      monitors = [monitor for monitor in monitors if monitor.run_on_all_workers]

    with supervised_session.SupervisedSession(supervisor_master,
                                              is_chief=supervisor_is_chief,
                                              checkpoint_dir=output_dir,
                                              monitors=monitors,
                                              scaffold=scaffold) as super_sess:
      loss = None
      while not super_sess.should_stop():
        _, loss = super_sess.run([train_op, loss_op], feed_fn() if feed_fn else
                                 None)
      return loss
开发者ID:2020zyc,项目名称:tensorflow,代码行数:101,代码来源:graph_actions.py


示例17: testNoTensor

 def testNoTensor(self):
   checkpoint_dir = self.get_temp_dir()
   with self.test_session() as session:
     _, _, _, _ = _create_checkpoints(session, checkpoint_dir)
   with self.assertRaises(tf.errors.OpError):
     self.assertAllEqual(checkpoints.load_variable(checkpoint_dir, "var5"), [])
开发者ID:0-T-0,项目名称:tensorflow,代码行数:6,代码来源:checkpoints_test.py


示例18: clusters

 def clusters(self):
   """Returns cluster centers."""
   clusters = checkpoints.load_variable(self.model_dir,
                                        gmm_ops.GmmAlgorithm.CLUSTERS_VARIABLE)
   return np.squeeze(clusters, 1)
开发者ID:AdamPalmar,项目名称:tensorflow,代码行数:5,代码来源:gmm.py


示例19: covariances

 def covariances(self):
   """Returns the covariances."""
   return checkpoints.load_variable(
       self.model_dir,
       gmm_ops.GmmAlgorithm.CLUSTERS_COVS_VARIABLE)
开发者ID:AdamPalmar,项目名称:tensorflow,代码行数:5,代码来源:gmm.py


示例20: _monitored_train


#.........这里部分代码省略.........
      will not do any iteration since first call did all 100 steps.

  Returns:
    The final loss value.

  Raises:
    ValueError: If `output_dir`, `train_op`, `loss_op`, or `global_step_tensor`
      is not provided. See `tf.contrib.framework.get_global_step` for how we
      look up the latter if not provided explicitly.
    NanLossDuringTrainingError: If `fail_on_nan_loss` is `True`, and loss ever
      evaluates to `NaN`.
    ValueError: If both `steps` and `max_steps` are not `None`.
  """
  if (steps is not None) and (max_steps is not None):
    raise ValueError('Can not provide both steps and max_steps.')
  if not output_dir:
    raise ValueError('Output directory should be non-empty %s.' % output_dir)
  if train_op is None:
    raise ValueError('Missing train_op.')
  if loss_op is None:
    raise ValueError('Missing loss_op.')
  if hooks is None:
    hooks = []
  if not isinstance(hooks, list):
    raise ValueError('Hooks should be a list.')
  with graph.as_default():
    global_step_tensor = contrib_variables.assert_or_get_global_step(
        graph, global_step_tensor)
  if global_step_tensor is None:
    raise ValueError('No "global_step" was provided or found in the graph.')

  if max_steps is not None:
    try:
      start_step = checkpoints.load_variable(output_dir,
                                             global_step_tensor.name)
      if max_steps <= start_step:
        logging.info('Skipping training since max_steps has already saved.')
        return None
    except:  # pylint: disable=bare-except
      pass

  # Adapted SessionRunHooks such as ExportMonitor depend on the
  # CheckpointSaverHook to be executed before they should be executed.
  # The `hooks` param comprises of deprecated monitor hooks
  # (such as ExportMonitor). Appending them after the basic_session_run_hooks.
  all_hooks = []
  with graph.as_default():
    all_hooks.append(basic_session_run_hooks.NanTensorHook(
        loss_op, fail_on_nan_loss=fail_on_nan_loss))
    if log_every_steps > 0:
      all_hooks.append(basic_session_run_hooks.LoggingTensorHook({
          'loss': loss_op.name,
          'step': global_step_tensor.name
      }, every_n_iter=log_every_steps))

    def make_saver():
      return tf_saver.Saver(
          sharded=True, max_to_keep=keep_checkpoint_max, defer_build=True)

    scaffold = monitored_session.Scaffold(
        init_op=init_op,
        init_feed_dict=init_feed_dict,
        init_fn=init_fn,
        saver=monitored_session.Scaffold.get_or_default('saver',
                                                        ops.GraphKeys.SAVERS,
                                                        make_saver))
开发者ID:MostafaGazar,项目名称:tensorflow,代码行数:67,代码来源:graph_actions.py



注:本文中的tensorflow.contrib.learn.python.learn.utils.checkpoints.load_variable函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap