本文整理汇总了Python中tensorflow.contrib.learn.python.learn.estimators.head.regression_head函数的典型用法代码示例。如果您正苦于以下问题:Python regression_head函数的具体用法?Python regression_head怎么用?Python regression_head使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了regression_head函数的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: _get_default_head
def _get_default_head(params, weights_name, output_type, name=None):
"""Creates a default head based on a type of a problem."""
if output_type == ModelBuilderOutputType.MODEL_FN_OPS:
if params.regression:
return head_lib.regression_head(
weight_column_name=weights_name,
label_dimension=params.num_outputs,
enable_centered_bias=False,
head_name=name)
else:
return head_lib.multi_class_head(
params.num_classes,
weight_column_name=weights_name,
enable_centered_bias=False,
head_name=name)
else:
if params.regression:
return core_head_lib.regression_head(
weight_column=weights_name,
label_dimension=params.num_outputs,
name=name,
loss_reduction=losses.Reduction.SUM_OVER_BATCH_SIZE)
else:
if params.num_classes == 2:
return core_head_lib.binary_classification_head(
weight_column=weights_name,
name=name,
loss_reduction=losses.Reduction.SUM_OVER_BATCH_SIZE)
else:
return core_head_lib.multi_class_head(
n_classes=params.num_classes,
weight_column=weights_name,
name=name,
loss_reduction=losses.Reduction.SUM_OVER_BATCH_SIZE)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:34,代码来源:random_forest.py
示例2: _get_default_head
def _get_default_head(params, weights_name, output_type, name=None):
"""Creates a default head based on a type of a problem."""
if output_type == ModelBuilderOutputType.MODEL_FN_OPS:
if params.regression:
return head_lib.regression_head(
weight_column_name=weights_name,
label_dimension=params.num_outputs,
enable_centered_bias=False,
head_name=name)
else:
return head_lib.multi_class_head(
params.num_classes,
weight_column_name=weights_name,
enable_centered_bias=False,
head_name=name)
else:
if params.regression:
return core_head_lib._regression_head( # pylint:disable=protected-access
weight_column=weights_name,
label_dimension=params.num_outputs,
name=name,
loss_reduction=losses.Reduction.SUM_OVER_NONZERO_WEIGHTS)
else:
return core_head_lib._multi_class_head_with_softmax_cross_entropy_loss( # pylint:disable=protected-access
n_classes=params.num_classes,
weight_column=weights_name,
name=name,
loss_reduction=losses.Reduction.SUM_OVER_NONZERO_WEIGHTS)
开发者ID:ZhangXinNan,项目名称:tensorflow,代码行数:28,代码来源:random_forest.py
示例3: __init__
def __init__(self,
learner_config,
examples_per_layer,
label_dimension=1,
num_trees=None,
feature_columns=None,
label_name=None,
weight_column_name=None,
model_dir=None,
config=None,
feature_engineering_fn=None,
logits_modifier_function=None,
center_bias=True):
"""Initializes a GradientBoostedDecisionTreeRegressor estimator instance.
Args:
learner_config: A config for the learner.
examples_per_layer: Number of examples to accumulate before growing a
layer. It can also be a function that computes the number of examples
based on the depth of the layer that's being built.
label_dimension: Number of regression labels per example. This is the size
of the last dimension of the labels `Tensor` (typically, this has shape
`[batch_size, label_dimension]`).
num_trees: An int, number of trees to build.
feature_columns: A list of feature columns.
label_name: String, name of the key in label dict. Can be null if label
is a tensor (single headed models).
weight_column_name: Name of the column for weights, or None if not
weighted.
model_dir: Directory for model exports, etc.
config: `RunConfig` object to configure the runtime settings.
feature_engineering_fn: Feature engineering function. Takes features and
labels which are the output of `input_fn` and returns features and
labels which will be fed into the model.
logits_modifier_function: A modifier function for the logits.
center_bias: Whether a separate tree should be created for first fitting
the bias.
"""
head = head_lib.regression_head(
label_name=label_name,
label_dimension=label_dimension,
weight_column_name=weight_column_name,
enable_centered_bias=False)
super(GradientBoostedDecisionTreeRegressor, self).__init__(
model_fn=model.model_builder,
params={
'head': head,
'feature_columns': feature_columns,
'learner_config': learner_config,
'num_trees': num_trees,
'weight_column_name': weight_column_name,
'examples_per_layer': examples_per_layer,
'logits_modifier_function': logits_modifier_function,
'center_bias': center_bias,
},
model_dir=model_dir,
config=config,
feature_engineering_fn=feature_engineering_fn)
开发者ID:Dr4KK,项目名称:tensorflow,代码行数:58,代码来源:estimator.py
示例4: __init__
def __init__(self,
example_id_column,
feature_columns,
weight_column_name=None,
model_dir=None,
l1_regularization=0.0,
l2_regularization=1.0,
num_loss_partitions=None,
config=None,
feature_engineering_fn=None,
partitioner=None):
"""Construct a `SDCALinearRegressor` estimator object.
Args:
example_id_column: A string defining the feature column name representing
example ids. Used to initialize the underlying SDCA optimizer.
feature_columns: An iterable containing all the feature columns used by
the model. All items in the iterable should derive from `FeatureColumn`.
Note that the order of the items is ignored at model construction time.
weight_column_name: A string defining feature column name representing
weights. It is used to down weight or boost examples during training. It
will be multiplied by the loss of the example.
model_dir: Directory to save model parameters, graph etc. This can also be
used to load checkpoints from the directory into an estimator to
continue training a previously saved model.
l1_regularization: L1-regularization parameter. Refers to global L1
regularization (across all examples).
l2_regularization: L2-regularization parameter. Refers to global L2
regularization (across all examples).
num_loss_partitions: number of partitions of the (global) loss function
optimized by the underlying optimizer (SDCAOptimizer).
config: `RunConfig` object to configure the runtime settings.
feature_engineering_fn: Feature engineering function. Takes features and
labels which are the output of `input_fn` and returns features and
labels which will be fed into the model.
partitioner: Variable partitioner for the primal weights (`div`
partitioning strategy will be used).
Returns:
A `SDCALinearRegressor` estimator.
"""
super(SDCALinearRegressor, self).__init__(
example_id_column=example_id_column,
feature_columns=feature_columns,
weight_column_name=weight_column_name,
model_dir=model_dir,
head=head_lib.regression_head(weight_column_name=weight_column_name),
l1_regularization=l1_regularization,
l2_regularization=l2_regularization,
num_loss_partitions=num_loss_partitions,
config=config,
feature_engineering_fn=None,
partitioner=partitioner)
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:54,代码来源:sdca_estimator.py
示例5: get_default_head
def get_default_head(params, weights_name, name=None):
if params.regression:
return head_lib.regression_head(
weight_column_name=weights_name,
label_dimension=params.num_outputs,
enable_centered_bias=False,
head_name=name)
else:
return head_lib.multi_class_head(
params.num_classes,
weight_column_name=weights_name,
enable_centered_bias=False,
head_name=name)
开发者ID:rmcguinness,项目名称:tensorflow,代码行数:13,代码来源:random_forest.py
示例6: __init__
def __init__(self,
model_dir=None,
label_dimension=1,
weight_column_name=None,
config=None,
feature_engineering_fn=None):
"""Initializes a DebugRegressor instance.
Args:
model_dir: Directory to save model parameters, graph and etc. This can
also be used to load checkpoints from the directory into a estimator to
continue training a previously saved model.
label_dimension: Number of regression targets per example. This is the
size of the last dimension of the labels and logits `Tensor` objects
(typically, these have shape `[batch_size, label_dimension]`).
weight_column_name: A string defining feature column name representing
weights. It is used to down weight or boost examples during training. It
will be multiplied by the loss of the example.
config: `RunConfig` object to configure the runtime settings.
feature_engineering_fn: Feature engineering function. Takes features and
labels which are the output of `input_fn` and returns
features and labels which will be fed into the model.
Returns:
A `DebugRegressor` estimator.
"""
params = {
"head":
head_lib.regression_head(
weight_column_name=weight_column_name,
label_dimension=label_dimension,
enable_centered_bias=True)
}
super(DebugRegressor, self).__init__(
model_fn=debug_model_fn,
model_dir=model_dir,
config=config,
params=params,
feature_engineering_fn=feature_engineering_fn)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:40,代码来源:debug.py
示例7: __init__
def __init__(self,
example_id_column,
feature_columns,
weight_column_name=None,
model_dir=None,
l1_regularization=0.0,
l2_regularization=1.0,
num_loss_partitions=None,
config=None,
feature_engineering_fn=None):
"""Construct a `SDCARegressor` estimator object. See _SDCAEstimator."""
super(SDCARegressor, self).__init__(
example_id_column=example_id_column,
feature_columns=feature_columns,
weight_column_name=weight_column_name,
model_dir=model_dir,
head=head_lib.regression_head(weight_column_name=weight_column_name),
l1_regularization=l1_regularization,
l2_regularization=l2_regularization,
num_loss_partitions=num_loss_partitions,
config=config,
feature_engineering_fn=None)
开发者ID:falcone01,项目名称:tensorflow,代码行数:22,代码来源:sdca_estimator.py
示例8: __init__
def __init__(self, # _joint_linear_weights pylint: disable=invalid-name
model_dir=None,
weight_column_name=None,
linear_feature_columns=None,
linear_optimizer=None,
_joint_linear_weights=False,
dnn_feature_columns=None,
dnn_optimizer=None,
dnn_hidden_units=None,
dnn_activation_fn=nn.relu,
dnn_dropout=None,
gradient_clip_norm=None,
enable_centered_bias=False,
label_dimension=1,
config=None,
feature_engineering_fn=None,
embedding_lr_multipliers=None,
input_layer_min_slice_size=None,
fix_global_step_increment_bug=False):
"""Initializes a DNNLinearCombinedRegressor instance.
Note: New users must set `fix_global_step_increment_bug=True` when creating
an estimator.
Args:
model_dir: Directory to save model parameters, graph and etc. This can
also be used to load checkpoints from the directory into a estimator
to continue training a previously saved model.
weight_column_name: A string defining feature column name representing
weights. It is used to down weight or boost examples during training. It
will be multiplied by the loss of the example.
linear_feature_columns: An iterable containing all the feature columns
used by linear part of the model. All items in the set must be
instances of classes derived from `FeatureColumn`.
linear_optimizer: An instance of `tf.Optimizer` used to apply gradients to
the linear part of the model. If `None`, will use a FTRL optimizer.
_joint_linear_weights: If True a single (possibly partitioned) variable
will be used to store the linear model weights. It's faster, but
requires that all columns are sparse and have the 'sum' combiner.
dnn_feature_columns: An iterable containing all the feature columns used
by deep part of the model. All items in the set must be instances of
classes derived from `FeatureColumn`.
dnn_optimizer: An instance of `tf.Optimizer` used to apply gradients to
the deep part of the model. If `None`, will use an Adagrad optimizer.
dnn_hidden_units: List of hidden units per layer. All layers are fully
connected.
dnn_activation_fn: Activation function applied to each layer. If None,
will use `tf.nn.relu`.
dnn_dropout: When not None, the probability we will drop out
a given coordinate.
gradient_clip_norm: A float > 0. If provided, gradients are clipped
to their global norm with this clipping ratio. See
tf.clip_by_global_norm for more details.
enable_centered_bias: A bool. If True, estimator will learn a centered
bias variable for each class. Rest of the model structure learns the
residual after centered bias.
label_dimension: Number of regression targets per example. This is the
size of the last dimension of the labels and logits `Tensor` objects
(typically, these have shape `[batch_size, label_dimension]`).
config: RunConfig object to configure the runtime settings.
feature_engineering_fn: Feature engineering function. Takes features and
labels which are the output of `input_fn` and returns features and
labels which will be fed into the model.
embedding_lr_multipliers: Optional. A dictionary from `EmbeddingColumn` to
a `float` multiplier. Multiplier will be used to multiply with
learning rate for the embedding variables.
input_layer_min_slice_size: Optional. The min slice size of input layer
partitions. If not provided, will use the default of 64M.
fix_global_step_increment_bug: If `False`, the estimator needs two fit
steps to optimize both linear and dnn parts. If `True`, this bug is
fixed. New users must set this to `True`, but it the default value is
`False` for backwards compatibility.
Raises:
ValueError: If both linear_feature_columns and dnn_features_columns are
empty at the same time.
"""
linear_feature_columns = linear_feature_columns or []
dnn_feature_columns = dnn_feature_columns or []
self._feature_columns = linear_feature_columns + dnn_feature_columns
if not self._feature_columns:
raise ValueError("Either linear_feature_columns or dnn_feature_columns "
"must be defined.")
# TODO(b/35922130): Replace with `input_layer_partitioner` arg.
input_layer_partitioner = None
if input_layer_min_slice_size is not None:
input_layer_partitioner = (
partitioned_variables.min_max_variable_partitioner(
max_partitions=config.num_ps_replicas if config else 0,
min_slice_size=input_layer_min_slice_size))
head = head_lib.regression_head(
weight_column_name=weight_column_name,
label_dimension=label_dimension,
enable_centered_bias=enable_centered_bias)
super(DNNLinearCombinedRegressor, self).__init__(
model_fn=_dnn_linear_combined_model_fn,
model_dir=model_dir,
config=config,
#.........这里部分代码省略.........
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:101,代码来源:dnn_linear_combined.py
示例9: __init__
def __init__(self,
learner_config,
examples_per_layer,
label_dimension=1,
num_trees=None,
feature_columns=None,
label_name=None,
weight_column_name=None,
model_dir=None,
config=None,
feature_engineering_fn=None,
logits_modifier_function=None,
center_bias=True,
use_core_libs=False,
output_leaf_index=False,
override_global_step_value=None):
"""Initializes a GradientBoostedDecisionTreeRegressor estimator instance.
Args:
learner_config: A config for the learner.
examples_per_layer: Number of examples to accumulate before growing a
layer. It can also be a function that computes the number of examples
based on the depth of the layer that's being built.
label_dimension: Number of regression labels per example. This is the size
of the last dimension of the labels `Tensor` (typically, this has shape
`[batch_size, label_dimension]`).
num_trees: An int, number of trees to build.
feature_columns: A list of feature columns.
label_name: String, name of the key in label dict. Can be null if label
is a tensor (single headed models).
weight_column_name: Name of the column for weights, or None if not
weighted.
model_dir: Directory for model exports, etc.
config: `RunConfig` object to configure the runtime settings.
feature_engineering_fn: Feature engineering function. Takes features and
labels which are the output of `input_fn` and returns features and
labels which will be fed into the model.
logits_modifier_function: A modifier function for the logits.
center_bias: Whether a separate tree should be created for first fitting
the bias.
use_core_libs: Whether feature columns and loss are from the core (as
opposed to contrib) version of tensorflow.
output_leaf_index: whether to output leaf indices along with predictions
during inference. The leaf node indexes are available in predictions
dict by the key 'leaf_index'. For example,
result_dict = classifier.predict(...)
for example_prediction_result in result_dict:
# access leaf index list by example_prediction_result["leaf_index"]
# which contains one leaf index per tree
override_global_step_value: If after the training is done, global step
value must be reset to this value. This should be used to reset global
step to a number > number of steps used to train the current ensemble.
For example, the usual way is to train a number of trees and set a very
large number of training steps. When the training is done (number of
trees were trained), this parameter can be used to set the global step
to a large value, making it look like that number of training steps ran.
If None, no override of global step will happen.
"""
head = head_lib.regression_head(
label_name=label_name,
label_dimension=label_dimension,
weight_column_name=weight_column_name,
enable_centered_bias=False)
if label_dimension == 1:
learner_config.num_classes = 2
else:
learner_config.num_classes = label_dimension
super(GradientBoostedDecisionTreeRegressor, self).__init__(
model_fn=model.model_builder,
params={
'head': head,
'feature_columns': feature_columns,
'learner_config': learner_config,
'num_trees': num_trees,
'weight_column_name': weight_column_name,
'examples_per_layer': examples_per_layer,
'logits_modifier_function': logits_modifier_function,
'center_bias': center_bias,
'use_core_libs': use_core_libs,
'output_leaf_index': False,
'override_global_step_value': override_global_step_value
},
model_dir=model_dir,
config=config,
feature_engineering_fn=feature_engineering_fn)
开发者ID:ZhangXinNan,项目名称:tensorflow,代码行数:85,代码来源:estimator.py
示例10: __init__
def __init__(self,
hidden_units,
feature_columns,
model_dir=None,
weight_column_name=None,
optimizer=None,
activation_fn=nn.relu,
dropout=None,
gradient_clip_norm=None,
enable_centered_bias=False,
config=None,
feature_engineering_fn=None,
label_dimension=1,
embedding_lr_multipliers=None,
input_layer_min_slice_size=None):
"""Initializes a `DNNRegressor` instance.
Args:
hidden_units: List of hidden units per layer. All layers are fully
connected. Ex. `[64, 32]` means first layer has 64 nodes and second one
has 32.
feature_columns: An iterable containing all the feature columns used by
the model. All items in the set should be instances of classes derived
from `FeatureColumn`.
model_dir: Directory to save model parameters, graph and etc. This can
also be used to load checkpoints from the directory into a estimator to
continue training a previously saved model.
weight_column_name: A string defining feature column name representing
weights. It is used to down weight or boost examples during training. It
will be multiplied by the loss of the example.
optimizer: An instance of `tf.Optimizer` used to train the model. If
`None`, will use an Adagrad optimizer.
activation_fn: Activation function applied to each layer. If `None`, will
use `tf.nn.relu`.
dropout: When not `None`, the probability we will drop out a given
coordinate.
gradient_clip_norm: A `float` > 0. If provided, gradients are clipped
to their global norm with this clipping ratio. See
`tf.clip_by_global_norm` for more details.
enable_centered_bias: A bool. If True, estimator will learn a centered
bias variable for each class. Rest of the model structure learns the
residual after centered bias.
config: `RunConfig` object to configure the runtime settings.
feature_engineering_fn: Feature engineering function. Takes features and
labels which are the output of `input_fn` and
returns features and labels which will be fed
into the model.
label_dimension: Number of regression targets per example. This is the
size of the last dimension of the labels and logits `Tensor` objects
(typically, these have shape `[batch_size, label_dimension]`).
embedding_lr_multipliers: Optional. A dictionary from `EbeddingColumn` to
a `float` multiplier. Multiplier will be used to multiply with
learning rate for the embedding variables.
input_layer_min_slice_size: Optional. The min slice size of input layer
partitions. If not provided, will use the default of 64M.
Returns:
A `DNNRegressor` estimator.
"""
self._feature_columns = tuple(feature_columns or [])
super(DNNRegressor, self).__init__(
model_fn=_dnn_model_fn,
model_dir=model_dir,
config=config,
params={
"head":
head_lib.regression_head(
label_dimension=label_dimension,
weight_column_name=weight_column_name,
enable_centered_bias=enable_centered_bias),
"hidden_units": hidden_units,
"feature_columns": self._feature_columns,
"optimizer": optimizer,
"activation_fn": activation_fn,
"dropout": dropout,
"gradient_clip_norm": gradient_clip_norm,
"embedding_lr_multipliers": embedding_lr_multipliers,
"input_layer_min_slice_size": input_layer_min_slice_size,
},
feature_engineering_fn=feature_engineering_fn)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:80,代码来源:dnn.py
示例11: __init__
def __init__(self,
dnn_hidden_units,
dnn_feature_columns,
tree_learner_config,
num_trees,
tree_examples_per_layer,
weight_column_name=None,
model_dir=None,
config=None,
label_name=None,
label_dimension=1,
feature_engineering_fn=None,
dnn_optimizer="Adagrad",
dnn_activation_fn=nn.relu,
dnn_dropout=None,
dnn_input_layer_partitioner=None,
dnn_input_layer_to_tree=True,
dnn_steps_to_train=10000,
predict_with_tree_only=False,
tree_feature_columns=None,
tree_center_bias=False,
dnn_to_tree_distillation_param=None,
use_core_versions=False):
"""Initializes a DNNBoostedTreeCombinedRegressor instance.
Args:
dnn_hidden_units: List of hidden units per layer for DNN.
dnn_feature_columns: An iterable containing all the feature columns
used by the model's DNN.
tree_learner_config: A config for the tree learner.
num_trees: Number of trees to grow model to after training DNN.
tree_examples_per_layer: Number of examples to accumulate before
growing the tree a layer. This value has a big impact on model
quality and should be set equal to the number of examples in
training dataset if possible. It can also be a function that computes
the number of examples based on the depth of the layer that's
being built.
weight_column_name: The name of weight column.
model_dir: Directory for model exports.
config: `RunConfig` of the estimator.
label_name: String, name of the key in label dict. Can be null if label
is a tensor (single headed models).
label_dimension: Number of regression labels per example. This is the size
of the last dimension of the labels `Tensor` (typically, this has shape
`[batch_size, label_dimension]`).
feature_engineering_fn: Feature engineering function. Takes features and
labels which are the output of `input_fn` and returns features and
labels which will be fed into the model.
dnn_optimizer: string, `Optimizer` object, or callable that defines the
optimizer to use for training the DNN. If `None`, will use the Adagrad
optimizer with default learning rate.
dnn_activation_fn: Activation function applied to each layer of the DNN.
If `None`, will use `tf.nn.relu`.
dnn_dropout: When not `None`, the probability to drop out a given
unit in the DNN.
dnn_input_layer_partitioner: Partitioner for input layer of the DNN.
Defaults to `min_max_variable_partitioner` with `min_slice_size`
64 << 20.
dnn_input_layer_to_tree: Whether to provide the DNN's input layer
as a feature to the tree.
dnn_steps_to_train: Number of steps to train dnn for before switching
to gbdt.
predict_with_tree_only: Whether to use only the tree model output as the
final prediction.
tree_feature_columns: An iterable containing all the feature columns
used by the model's boosted trees. If dnn_input_layer_to_tree is
set to True, these features are in addition to dnn_feature_columns.
tree_center_bias: Whether a separate tree should be created for
first fitting the bias.
dnn_to_tree_distillation_param: A Tuple of (float, loss_fn), where the
float defines the weight of the distillation loss, and the loss_fn, for
computing distillation loss, takes dnn_logits, tree_logits and weight
tensor. If the entire tuple is None, no distillation will be applied. If
only the loss_fn is None, we will take the sigmoid/softmax cross entropy
loss be default. When distillation is applied, `predict_with_tree_only`
will be set to True.
use_core_versions: Whether feature columns and loss are from the core (as
opposed to contrib) version of tensorflow.
"""
head = head_lib.regression_head(
label_name=label_name,
label_dimension=label_dimension,
weight_column_name=weight_column_name,
enable_centered_bias=False)
# num_classes needed for GradientBoostedDecisionTreeModel
if label_dimension == 1:
tree_learner_config.num_classes = 2
else:
tree_learner_config.num_classes = label_dimension
def _model_fn(features, labels, mode, config):
return _dnn_tree_combined_model_fn(
features=features,
labels=labels,
mode=mode,
head=head,
dnn_hidden_units=dnn_hidden_units,
dnn_feature_columns=dnn_feature_columns,
tree_learner_config=tree_learner_config,
#.........这里部分代码省略.........
开发者ID:StephenOman,项目名称:tensorflow,代码行数:101,代码来源:dnn_tree_combined_estimator.py
注:本文中的tensorflow.contrib.learn.python.learn.estimators.head.regression_head函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论