本文整理汇总了Python中tensorflow.contrib.learn.python.learn.estimators._sklearn.mean_squared_error函数的典型用法代码示例。如果您正苦于以下问题:Python mean_squared_error函数的具体用法?Python mean_squared_error怎么用?Python mean_squared_error使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了mean_squared_error函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testContinueTraining
def testContinueTraining(self):
boston = base.load_boston()
output_dir = tempfile.mkdtemp()
est = estimator.SKCompat(
estimator.Estimator(
model_fn=linear_model_fn, model_dir=output_dir))
float64_labels = boston.target.astype(np.float64)
est.fit(x=boston.data, y=float64_labels, steps=50)
scores = est.score(
x=boston.data,
y=float64_labels,
metrics={'MSE': metric_ops.streaming_mean_squared_error})
del est
# Create another estimator object with the same output dir.
est2 = estimator.SKCompat(
estimator.Estimator(
model_fn=linear_model_fn, model_dir=output_dir))
# Check we can evaluate and predict.
scores2 = est2.score(
x=boston.data,
y=float64_labels,
metrics={'MSE': metric_ops.streaming_mean_squared_error})
self.assertAllClose(scores['MSE'], scores2['MSE'])
predictions = np.array(list(est2.predict(x=boston.data)))
other_score = _sklearn.mean_squared_error(predictions, float64_labels)
self.assertAllClose(scores['MSE'], other_score)
# Check we can keep training.
est2.fit(x=boston.data, y=float64_labels, steps=100)
scores3 = est2.score(
x=boston.data,
y=float64_labels,
metrics={'MSE': metric_ops.streaming_mean_squared_error})
self.assertLess(scores3['MSE'], scores['MSE'])
开发者ID:Immexxx,项目名称:tensorflow,代码行数:35,代码来源:estimator_test.py
示例2: testContinueTrainingDictionaryInput
def testContinueTrainingDictionaryInput(self):
boston = tf.contrib.learn.datasets.load_boston()
output_dir = tempfile.mkdtemp()
est = tf.contrib.learn.Estimator(model_fn=linear_model_fn,
model_dir=output_dir)
boston_input = {'input': boston.data}
float64_target = {'labels': boston.target.astype(np.float64)}
est.fit(x=boston_input, y=float64_target, steps=50)
scores = est.evaluate(
x=boston_input,
y=float64_target,
metrics={'MSE': tf.contrib.metrics.streaming_mean_squared_error})
del est
# Create another estimator object with the same output dir.
est2 = tf.contrib.learn.Estimator(model_fn=linear_model_fn,
model_dir=output_dir)
# Check we can evaluate and predict.
scores2 = est2.evaluate(
x=boston_input,
y=float64_target,
metrics={'MSE': tf.contrib.metrics.streaming_mean_squared_error})
self.assertAllClose(scores2['MSE'],
scores['MSE'])
predictions = np.array(list(est2.predict(x=boston_input)))
other_score = _sklearn.mean_squared_error(predictions, float64_target['labels'])
self.assertAllClose(other_score, scores['MSE'])
开发者ID:tensorflow,项目名称:tensorflow,代码行数:27,代码来源:estimator_test.py
示例3: testContinueTraining
def testContinueTraining(self):
boston = tf.contrib.learn.datasets.load_boston()
output_dir = tempfile.mkdtemp()
est = tf.contrib.learn.Estimator(model_fn=linear_model_fn,
model_dir=output_dir)
float64_target = boston.target.astype(np.float64)
est.fit(x=boston.data, y=float64_target, steps=50)
scores = est.evaluate(
x=boston.data,
y=float64_target,
metrics={'MSE': tf.contrib.metrics.streaming_mean_squared_error})
del est
# Create another estimator object with the same output dir.
est2 = tf.contrib.learn.Estimator(model_fn=linear_model_fn,
model_dir=output_dir)
# Check we can evaluate and predict.
scores2 = est2.evaluate(
x=boston.data,
y=float64_target,
metrics={'MSE': tf.contrib.metrics.streaming_mean_squared_error})
self.assertAllClose(scores2['MSE'],
scores['MSE'])
predictions = est2.predict(x=boston.data)
other_score = _sklearn.mean_squared_error(predictions, float64_target)
self.assertAllClose(other_score, scores['MSE'])
# Check we can keep training.
est2.fit(x=boston.data, y=float64_target, steps=100)
scores3 = est2.evaluate(
x=boston.data,
y=float64_target,
metrics={'MSE': tf.contrib.metrics.streaming_mean_squared_error})
self.assertLess(scores3['MSE'], scores['MSE'])
开发者ID:imzhenyu,项目名称:tensorflow,代码行数:34,代码来源:estimator_test.py
示例4: testCustomMetrics
def testCustomMetrics(self):
"""Tests custom evaluation metrics."""
def _input_fn(num_epochs=None):
# Create 4 rows, one of them (y = x), three of them (y=Not(x))
labels = constant_op.constant([[1.], [0.], [0.], [0.]])
features = {
'x':
input_lib.limit_epochs(
array_ops.ones(
shape=[4, 1], dtype=dtypes.float32),
num_epochs=num_epochs),
}
return features, labels
def _my_metric_op(predictions, labels):
return math_ops.reduce_sum(math_ops.multiply(predictions, labels))
regressor = dnn.DNNRegressor(
feature_columns=[feature_column.real_valued_column('x')],
hidden_units=[3, 3],
config=run_config.RunConfig(tf_random_seed=1))
regressor.fit(input_fn=_input_fn, steps=5)
scores = regressor.evaluate(
input_fn=_input_fn,
steps=1,
metrics={
'my_error': metric_ops.streaming_mean_squared_error,
('my_metric', 'scores'): _my_metric_op
})
self.assertIn('loss', set(scores.keys()))
self.assertIn('my_error', set(scores.keys()))
self.assertIn('my_metric', set(scores.keys()))
predict_input_fn = functools.partial(_input_fn, num_epochs=1)
predictions = np.array(list(regressor.predict(input_fn=predict_input_fn)))
self.assertAlmostEqual(
_sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions),
scores['my_error'])
# Tests the case that the 2nd element of the key is not "scores".
with self.assertRaises(KeyError):
regressor.evaluate(
input_fn=_input_fn,
steps=1,
metrics={
('my_error', 'predictions'):
metric_ops.streaming_mean_squared_error
})
# Tests the case where the tuple of the key doesn't have 2 elements.
with self.assertRaises(ValueError):
regressor.evaluate(
input_fn=_input_fn,
steps=1,
metrics={
('bad_length_name', 'scores', 'bad_length'):
metric_ops.streaming_mean_squared_error
})
开发者ID:willdzeng,项目名称:tensorflow,代码行数:59,代码来源:dnn_test.py
示例5: testOneDim
def testOneDim(self):
random.seed(42)
x = np.random.rand(1000)
y = 2 * x + 3
regressor = learn.TensorFlowLinearRegressor()
regressor.fit(x, y)
score = mean_squared_error(y, regressor.predict(x))
self.assertLess(score, 1.0, "Failed with score = {0}".format(score))
开发者ID:0ruben,项目名称:tensorflow,代码行数:8,代码来源:base_test.py
示例6: testBoston
def testBoston(self):
random.seed(42)
boston = datasets.load_boston()
regressor = learn.LinearRegressor(
feature_columns=learn.infer_real_valued_columns_from_input(boston.data))
regressor.fit(boston.data, boston.target, max_steps=500)
score = mean_squared_error(boston.target, regressor.predict(boston.data))
self.assertLess(score, 150, "Failed with score = {0}".format(score))
开发者ID:MostafaGazar,项目名称:tensorflow,代码行数:8,代码来源:base_test.py
示例7: testBoston
def testBoston(self):
random.seed(42)
boston = datasets.load_boston()
regressor = learn.TensorFlowLinearRegressor(batch_size=boston.data.shape[0],
steps=500,
learning_rate=0.001)
regressor.fit(boston.data, boston.target)
score = mean_squared_error(boston.target, regressor.predict(boston.data))
self.assertLess(score, 150, "Failed with score = {0}".format(score))
开发者ID:0ruben,项目名称:tensorflow,代码行数:9,代码来源:base_test.py
示例8: testOneDim
def testOneDim(self):
random.seed(42)
x = np.random.rand(1000)
y = 2 * x + 3
feature_columns = learn.infer_real_valued_columns_from_input(x)
regressor = learn.TensorFlowLinearRegressor(feature_columns=feature_columns)
regressor.fit(x, y)
score = mean_squared_error(y, regressor.predict(x))
self.assertLess(score, 1.0, "Failed with score = {0}".format(score))
开发者ID:AntHar,项目名称:tensorflow,代码行数:9,代码来源:base_test.py
示例9: testMultiRegression
def testMultiRegression(self):
random.seed(42)
rng = np.random.RandomState(1)
x = np.sort(200 * rng.rand(100, 1) - 100, axis=0)
y = np.array([np.pi * np.sin(x).ravel(), np.pi * np.cos(x).ravel()]).T
regressor = learn.TensorFlowLinearRegressor(learning_rate=0.01)
regressor.fit(x, y)
score = mean_squared_error(regressor.predict(x), y)
self.assertLess(score, 10, "Failed with score = {0}".format(score))
开发者ID:0ruben,项目名称:tensorflow,代码行数:9,代码来源:multioutput_test.py
示例10: testBostonAll
def testBostonAll(self):
boston = tf.contrib.learn.datasets.load_boston()
est = tf.contrib.learn.Estimator(model_fn=linear_model_fn,
classification=False)
est.fit(x=boston.data, y=boston.target.astype(np.float32), steps=100)
scores = est.evaluate(
x=boston.data,
y=boston.target.astype(np.float32))
predictions = est.predict(x=boston.data)
other_score = mean_squared_error(predictions, boston.target)
self.assertAllClose(other_score, scores['mean_squared_error'])
开发者ID:3kwa,项目名称:tensorflow,代码行数:11,代码来源:estimator_test.py
示例11: testBostonAll
def testBostonAll(self):
boston = tf.contrib.learn.datasets.load_boston()
est = tf.contrib.learn.Estimator(model_fn=linear_model_fn)
est.fit(x=boston.data, y=boston.target.astype(np.float32), steps=100)
scores = est.evaluate(
x=boston.data,
y=boston.target.astype(np.float32),
metrics={'MSE': tf.contrib.metrics.streaming_mean_squared_error})
predictions = est.predict(x=boston.data)
other_score = _sklearn.mean_squared_error(predictions, boston.target)
self.assertAllClose(other_score, scores['MSE'])
开发者ID:EvenStrangest,项目名称:tensorflow,代码行数:11,代码来源:estimator_test.py
示例12: testMultiRegression
def testMultiRegression(self):
random.seed(42)
rng = np.random.RandomState(1)
x = np.sort(200 * rng.rand(100, 1) - 100, axis=0)
y = np.array([np.pi * np.sin(x).ravel(), np.pi * np.cos(x).ravel()]).T
regressor = learn.LinearRegressor(
feature_columns=learn.infer_real_valued_columns_from_input(x),
target_dimension=2)
regressor.fit(x, y, steps=100)
score = mean_squared_error(regressor.predict(x), y)
self.assertLess(score, 10, "Failed with score = {0}".format(score))
开发者ID:JamesFysh,项目名称:tensorflow,代码行数:11,代码来源:multioutput_test.py
示例13: testCustomMetrics
def testCustomMetrics(self):
"""Tests custom evaluation metrics."""
def _input_fn(num_epochs=None):
# Create 4 rows, one of them (y = x), three of them (y=Not(x))
labels = constant_op.constant([[1.], [0.], [0.], [0.]])
features = {
'x':
input_lib.limit_epochs(
array_ops.ones(shape=[4, 1], dtype=dtypes.float32),
num_epochs=num_epochs),
}
return features, labels
def _my_metric_op(predictions, labels):
return math_ops.reduce_sum(math_ops.multiply(predictions, labels))
regressor = debug.DebugRegressor(
config=run_config.RunConfig(tf_random_seed=1))
regressor.fit(input_fn=_input_fn, steps=5)
scores = regressor.evaluate(
input_fn=_input_fn,
steps=1,
metrics={
'my_error':
MetricSpec(
metric_fn=metric_ops.streaming_mean_squared_error,
prediction_key='scores'),
'my_metric':
MetricSpec(metric_fn=_my_metric_op, prediction_key='scores')
})
self.assertIn('loss', set(scores.keys()))
self.assertIn('my_error', set(scores.keys()))
self.assertIn('my_metric', set(scores.keys()))
predict_input_fn = functools.partial(_input_fn, num_epochs=1)
predictions = np.array(
list(regressor.predict_scores(input_fn=predict_input_fn)))
self.assertAlmostEqual(
_sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions),
scores['my_error'])
# Tests the case where the prediction_key is not "scores".
with self.assertRaisesRegexp(KeyError, 'bad_type'):
regressor.evaluate(
input_fn=_input_fn,
steps=1,
metrics={
'bad_name':
MetricSpec(
metric_fn=metric_ops.streaming_auc,
prediction_key='bad_type')
})
开发者ID:eduardofv,项目名称:tensorflow,代码行数:53,代码来源:debug_test.py
示例14: testBostonAll
def testBostonAll(self):
boston = tf.contrib.learn.datasets.load_boston()
est = tf.contrib.learn.Estimator(model_fn=linear_model_fn)
float64_target = boston.target.astype(np.float64)
est.fit(x=boston.data, y=float64_target, steps=100)
scores = est.evaluate(
x=boston.data, y=float64_target, metrics={"MSE": tf.contrib.metrics.streaming_mean_squared_error}
)
predictions = est.predict(x=boston.data)
other_score = _sklearn.mean_squared_error(predictions, boston.target)
self.assertAllClose(other_score, scores["MSE"])
self.assertTrue("global_step" in scores)
self.assertEqual(scores["global_step"], 100)
开发者ID:abhishekns,项目名称:tensorflow,代码行数:13,代码来源:estimator_test.py
示例15: testBostonAll
def testBostonAll(self):
boston = tf.contrib.learn.datasets.load_boston()
est = tf.contrib.learn.SKCompat(tf.contrib.learn.Estimator(model_fn=linear_model_fn))
float64_labels = boston.target.astype(np.float64)
est.fit(x=boston.data, y=float64_labels, steps=100)
scores = est.score(
x=boston.data, y=float64_labels, metrics={"MSE": tf.contrib.metrics.streaming_mean_squared_error}
)
predictions = np.array(list(est.predict(x=boston.data)))
other_score = _sklearn.mean_squared_error(predictions, boston.target)
self.assertAllClose(scores["MSE"], other_score)
self.assertTrue("global_step" in scores)
self.assertEqual(100, scores["global_step"])
开发者ID:yuikns,项目名称:tensorflow,代码行数:13,代码来源:estimator_test.py
示例16: testBostonAll
def testBostonAll(self):
boston = base.load_boston()
est = estimator.SKCompat(estimator.Estimator(model_fn=linear_model_fn))
float64_labels = boston.target.astype(np.float64)
est.fit(x=boston.data, y=float64_labels, steps=100)
scores = est.score(
x=boston.data,
y=float64_labels,
metrics={'MSE': metric_ops.streaming_mean_squared_error})
predictions = np.array(list(est.predict(x=boston.data)))
other_score = _sklearn.mean_squared_error(predictions, boston.target)
self.assertAllClose(scores['MSE'], other_score)
self.assertTrue('global_step' in scores)
self.assertEqual(100, scores['global_step'])
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:14,代码来源:estimator_input_test.py
示例17: testCustomMetrics
def testCustomMetrics(self):
"""Tests custom evaluation metrics."""
def _input_fn(num_epochs=None):
# Create 4 rows, one of them (y = x), three of them (y=Not(x))
labels = tf.constant([[1.], [0.], [0.], [0.]])
features = {
'x':
tf.train.limit_epochs(
tf.ones(shape=[4, 1], dtype=tf.float32),
num_epochs=num_epochs),
}
return features, labels
def _my_metric_op(predictions, labels):
return tf.reduce_sum(tf.mul(predictions, labels))
regressor = tf.contrib.learn.DNNRegressor(
feature_columns=[tf.contrib.layers.real_valued_column('x')],
hidden_units=[3, 3],
config=tf.contrib.learn.RunConfig(tf_random_seed=1))
regressor.fit(input_fn=_input_fn, steps=5)
scores = regressor.evaluate(
input_fn=_input_fn,
steps=1,
metrics={
'my_error': tf.contrib.metrics.streaming_mean_squared_error,
'my_metric': _my_metric_op
})
self.assertIn('loss', set(scores.keys()))
self.assertIn('my_error', set(scores.keys()))
self.assertIn('my_metric', set(scores.keys()))
predict_input_fn = functools.partial(_input_fn, num_epochs=1)
predictions = np.array(
list(regressor.predict(input_fn=predict_input_fn)))
self.assertAlmostEqual(
_sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions),
scores['my_error'])
# Tests that when the key is a tuple, an error is raised.
with self.assertRaises(KeyError):
regressor.evaluate(
input_fn=_input_fn,
steps=1,
metrics={
('my_error', 'predictions'):
tf.contrib.metrics.streaming_mean_squared_error
})
开发者ID:HKUST-SING,项目名称:tensorflow,代码行数:49,代码来源:dnn_test.py
示例18: testBostonAllDictionaryInput
def testBostonAllDictionaryInput(self):
boston = tf.contrib.learn.datasets.load_boston()
est = tf.contrib.learn.Estimator(model_fn=linear_model_fn)
boston_input = {'input': boston.data}
float64_target = {'labels': boston.target.astype(np.float64)}
est.fit(x=boston_input, y=float64_target, steps=100)
scores = est.evaluate(
x=boston_input,
y=float64_target,
metrics={'MSE': tf.contrib.metrics.streaming_mean_squared_error})
predictions = np.array(list(est.predict(x=boston_input)))
other_score = _sklearn.mean_squared_error(predictions, boston.target)
self.assertAllClose(other_score, scores['MSE'])
self.assertTrue('global_step' in scores)
self.assertEqual(scores['global_step'], 100)
开发者ID:tensorflow,项目名称:tensorflow,代码行数:15,代码来源:estimator_test.py
示例19: testBostonDNN
def testBostonDNN(self):
boston = tf.contrib.learn.datasets.load_boston()
regressor = tf.contrib.learn.TensorFlowDNNRegressor(
hidden_units=[10, 20, 10], n_classes=0,
batch_size=boston.data.shape[0], steps=300, learning_rate=0.01)
regressor.fit(boston.data, boston.target)
score = mean_squared_error(boston.target, regressor.predict(boston.data))
self.assertLess(score, 110, "Failed with score = {0}".format(score))
weights = regressor.weights_
self.assertEqual(weights[0].shape, (13, 10))
self.assertEqual(weights[1].shape, (10, 20))
self.assertEqual(weights[2].shape, (20, 10))
self.assertEqual(weights[3].shape, (10, 1))
biases = regressor.bias_
self.assertEqual(len(biases), 5)
开发者ID:2020zyc,项目名称:tensorflow,代码行数:15,代码来源:nonlinear_test.py
示例20: testBostonDNN
def testBostonDNN(self):
boston = tf.contrib.learn.datasets.load_boston()
feature_columns = [tf.contrib.layers.real_valued_column("", dimension=13)]
regressor = tf.contrib.learn.DNNRegressor(
feature_columns=feature_columns, hidden_units=[10, 20, 10],
config=tf.contrib.learn.RunConfig(tf_random_seed=1))
regressor.fit(
boston.data, boston.target, steps=300, batch_size=boston.data.shape[0])
score = mean_squared_error(boston.target, regressor.predict(boston.data))
self.assertLess(score, 110, "Failed with score = {0}".format(score))
weights = regressor.weights_
self.assertEqual(weights[0].shape, (13, 10))
self.assertEqual(weights[1].shape, (10, 20))
self.assertEqual(weights[2].shape, (20, 10))
self.assertEqual(weights[3].shape, (10, 1))
biases = regressor.bias_
self.assertEqual(len(biases), 5)
开发者ID:apollos,项目名称:tensorflow,代码行数:17,代码来源:nonlinear_test.py
注:本文中的tensorflow.contrib.learn.python.learn.estimators._sklearn.mean_squared_error函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论