• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python utils.smart_cond函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.contrib.layers.python.layers.utils.smart_cond函数的典型用法代码示例。如果您正苦于以下问题:Python smart_cond函数的具体用法?Python smart_cond怎么用?Python smart_cond使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了smart_cond函数的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_value

 def test_value(self):
   fn1 = lambda: 'fn1'
   fn2 = lambda: 'fn2'
   expected = lambda v: 'fn1' if v else 'fn2'
   for v in [True, False, 1, 0]:
     o = utils.smart_cond(constant_op.constant(v), fn1, fn2)
     self.assertEqual(o, expected(v))
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:7,代码来源:utils_test.py


示例2: test_tensors

 def test_tensors(self):
   fn1 = lambda: constant_op.constant(0) - constant_op.constant(1)
   fn2 = lambda: constant_op.constant(0) - constant_op.constant(2)
   expected = lambda v: -1 if v else -2
   for v in [True, False, 1, 0]:
     o = utils.smart_cond(constant_op.constant(v), fn1, fn2)
     with self.test_session():
       self.assertEqual(o.eval(), expected(v))
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:8,代码来源:utils_test.py


示例3: test_constant

 def test_constant(self):
   fn1 = lambda: constant_op.constant('fn1')
   fn2 = lambda: constant_op.constant('fn2')
   expected = lambda v: b'fn1' if v else b'fn2'
   for v in [True, False, 1, 0]:
     o = utils.smart_cond(constant_op.constant(v), fn1, fn2)
     with self.test_session():
       self.assertEqual(o.eval(), expected(v))
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:8,代码来源:utils_test.py


示例4: test_variable

 def test_variable(self):
   fn1 = lambda: variables.Variable('fn1')
   fn2 = lambda: variables.Variable('fn2')
   expected = lambda v: b'fn1' if v else b'fn2'
   for v in [True, False, 1, 0]:
     o = utils.smart_cond(constant_op.constant(v), fn1, fn2)
     with self.test_session() as sess:
       sess.run(variables.global_variables_initializer())
       self.assertEqual(o.eval(), expected(v))
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:9,代码来源:utils_test.py


示例5: test_constant

 def test_constant(self):
   fn1 = lambda: tf.constant('fn1')
   fn2 = lambda: tf.constant('fn2')
   expected = lambda v: b'fn1' if v else b'fn2'
   p = tf.placeholder(tf.bool, [])
   for v in [True, False, 1, 0]:
     o = utils.smart_cond(p, fn1, fn2)
     with self.test_session():
       self.assertEqual(o.eval(feed_dict={p: v}), expected(v))
开发者ID:821760408-sp,项目名称:tensorflow,代码行数:9,代码来源:utils_test.py


示例6: test_variable

 def test_variable(self):
   fn1 = lambda: tf.Variable('fn1')
   fn2 = lambda: tf.Variable('fn2')
   expected = lambda v: b'fn1' if v else b'fn2'
   p = tf.placeholder(tf.bool, [])
   for v in [True, False, 1, 0]:
     o = utils.smart_cond(p, fn1, fn2)
     with self.test_session() as sess:
       sess.run(tf.initialize_all_variables())
       self.assertEqual(o.eval(feed_dict={p: v}), expected(v))
开发者ID:821760408-sp,项目名称:tensorflow,代码行数:10,代码来源:utils_test.py


示例7: batch_norm_mine_old


#.........这里部分代码省略.........
          'moving_mean', init_ops.zeros_initializer())
      moving_mean = variables.model_variable(
          'moving_mean',
          shape=params_shape,
          dtype=dtype,
          initializer=moving_mean_initializer,
          trainable=False,
          collections=moving_mean_collections)
      moving_variance_collections = utils.get_variable_collections(
          variables_collections, 'moving_variance')
      moving_variance_initializer = param_initializers.get(
          'moving_variance', init_ops.ones_initializer())
      moving_variance = variables.model_variable(
          'moving_variance',
          shape=params_shape,
          dtype=dtype,
          initializer=moving_variance_initializer,
          trainable=False,
          collections=moving_variance_collections)
    finally:
      variable_scope.get_variable_scope().set_partitioner(partitioner)

    # If `is_training` doesn't have a constant value, because it is a `Tensor`,
    # a `Variable` or `Placeholder` then is_training_value will be None and
    # `needs_moments` will be true.
    is_training_value = utils.constant_value(is_training)
    need_moments = is_training_value is None or is_training_value
    if need_moments:
      # Calculate the moments based on the individual batch.
      if batch_weights is None:
        if data_format == DATA_FORMAT_NCHW:
          mean, _ = nn.moments(inputs, moments_axes, keep_dims=True)
          variance,_ = nn.moments( (inputs-moving_mean)**2, moments_axes, keep_dims=True)
          mean = array_ops.reshape(mean, [-1])
          variance = array_ops.reshape(variance, [-1])
        else:
          mean, _ = nn.moments(inputs, moments_axes)
          variance, _ = nn.moments( (inputs-moving_mean)**2, moments_axes)
      else:
        if data_format == DATA_FORMAT_NCHW:
          mean, _ = nn.weighted_moments(inputs, moments_axes,
                                               batch_weights, keep_dims=True)
          variance, _ = nn.weighted_moments( (inputs-moving_mean)**2, moments_axes,
                                               batch_weights, keep_dims=True)
          mean = array_ops.reshape(mean, [-1])
          variance = array_ops.reshape(variance, [-1])
        else:
          mean, _ = nn.weighted_moments(inputs, moments_axes,
                                               batch_weights)
          variance, _ = nn.weighted_moments( (inputs-moving_mean)**2, moments_axes,
                                               batch_weights)

      moving_vars_fn = lambda: (moving_mean, moving_variance)
      if updates_collections is None:
        def _force_updates():
          """Internal function forces updates moving_vars if is_training."""
          update_moving_mean = moving_averages.assign_moving_average(
              moving_mean, mean, decay, zero_debias=zero_debias_moving_mean)
          update_moving_variance = moving_averages.assign_moving_average(
              moving_variance, variance, decay, zero_debias=False)
          with ops.control_dependencies([update_moving_mean,
                                         update_moving_variance]):
            return array_ops.identity(mean), array_ops.identity(variance)
        mean, variance = utils.smart_cond(is_training,
                                          _force_updates,
                                          moving_vars_fn)
      else:
        def _delay_updates():
          """Internal function that delay updates moving_vars if is_training."""
          update_moving_mean = moving_averages.assign_moving_average(
              moving_mean, mean, decay, zero_debias=zero_debias_moving_mean)
          update_moving_variance = moving_averages.assign_moving_average(
              moving_variance, variance, decay, zero_debias=False)
          return update_moving_mean, update_moving_variance

        update_mean, update_variance = utils.smart_cond(is_training,
                                                        _delay_updates,
                                                        moving_vars_fn)
        ops.add_to_collections(updates_collections, update_mean)
        ops.add_to_collections(updates_collections, update_variance)
        # Use computed moments during training and moving_vars otherwise.
        vars_fn = lambda: (mean, variance)
        mean, variance = utils.smart_cond(is_training, vars_fn, moving_vars_fn)
    else:
      mean, variance = moving_mean, moving_variance
    if data_format == DATA_FORMAT_NCHW:
      mean = array_ops.reshape(mean, params_shape_broadcast)
      variance = array_ops.reshape(variance, params_shape_broadcast)
      beta = array_ops.reshape(beta, params_shape_broadcast)
      if gamma is not None:
        gamma = array_ops.reshape(gamma, params_shape_broadcast)

    # Compute batch_normalization.
    outputs = nn.batch_normalization(inputs, mean, variance, beta, gamma,
                                     epsilon)
    outputs.set_shape(inputs_shape)
    if activation_fn is not None:
      outputs = activation_fn(outputs)
    return utils.collect_named_outputs(outputs_collections,
                                       sc.original_name_scope, outputs)
开发者ID:mkabra,项目名称:poseTF,代码行数:101,代码来源:batch_norm.py



注:本文中的tensorflow.contrib.layers.python.layers.utils.smart_cond函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap