本文整理汇总了Python中tensorflow.contrib.layers.python.layers.regularizers.l2_regularizer函数的典型用法代码示例。如果您正苦于以下问题:Python l2_regularizer函数的具体用法?Python l2_regularizer怎么用?Python l2_regularizer使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了l2_regularizer函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_3d_reg_shape
def test_3d_reg_shape(self):
x = self.get_3d_input()
unet_block_op = UNetBlock(
'DOWNSAMPLE', (32, 64), (3, 3), with_downsample_branch=True,
w_regularizer=regularizers.l2_regularizer(0.3))
out_1, out_2 = unet_block_op(x, is_training=True)
print(unet_block_op)
print(out_1)
print(out_2)
unet_block_op = UNetBlock(
'UPSAMPLE', (32, 64), (3, 3), with_downsample_branch=False,
w_regularizer=regularizers.l2_regularizer(0.3))
out_3, _ = unet_block_op(x, is_training=True)
print(unet_block_op)
print(out_3)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
out_1 = sess.run(out_1)
self.assertAllClose((2, 8, 8, 8, 64), out_1.shape)
out_2 = sess.run(out_2)
self.assertAllClose((2, 16, 16, 16, 64), out_2.shape)
out_3 = sess.run(out_3)
self.assertAllClose((2, 32, 32, 32, 64), out_3.shape)
开发者ID:fepegar,项目名称:NiftyNet,代码行数:26,代码来源:unetblock_test.py
示例2: test_3d_reg_shape
def test_3d_reg_shape(self):
x = self.get_3d_data()
vnet_block_op = VNetBlock('DOWNSAMPLE', 2, 16, 8,
w_regularizer=regularizers.l2_regularizer(
0.2))
out_1, out_2 = vnet_block_op(x, x)
print(vnet_block_op)
vnet_block_op = VNetBlock('UPSAMPLE', 2, 16, 8,
w_regularizer=regularizers.l2_regularizer(
0.2))
out_3, out_4 = vnet_block_op(x, x)
print(vnet_block_op)
vnet_block_op = VNetBlock('SAME', 2, 16, 8,
w_regularizer=regularizers.l2_regularizer(
0.2))
out_5, out_6 = vnet_block_op(x, x)
print(vnet_block_op)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
out_1 = sess.run(out_1)
self.assertAllClose((2, 16, 16, 16, 16), out_1.shape)
out_2 = sess.run(out_2)
self.assertAllClose((2, 8, 8, 8, 8), out_2.shape)
out_3 = sess.run(out_3)
self.assertAllClose((2, 16, 16, 16, 16), out_3.shape)
out_4 = sess.run(out_4)
self.assertAllClose((2, 32, 32, 32, 8), out_4.shape)
out_5 = sess.run(out_5)
self.assertAllClose((2, 16, 16, 16, 16), out_5.shape)
out_6 = sess.run(out_6)
self.assertAllClose((2, 16, 16, 16, 8), out_6.shape)
开发者ID:fepegar,项目名称:NiftyNet,代码行数:34,代码来源:vnetblock_test.py
示例3: __init__
def __init__(self,
decay=1e-6,
affine_w_initializer=None,
affine_b_initializer=None,
acti_func='relu',
name='inet-affine'):
"""
This network estimates affine transformations from
a pair of moving and fixed image:
Hu et al., Label-driven weakly-supervised learning for
multimodal deformable image registration, arXiv:1711.01666
https://arxiv.org/abs/1711.01666
:param decay:
:param affine_w_initializer:
:param affine_b_initializer:
:param acti_func:
:param name:
"""
BaseNet.__init__(self, name=name)
self.fea = [4, 8, 16, 32, 64]
self.k_conv = 3
self.affine_w_initializer = affine_w_initializer
self.affine_b_initializer = affine_b_initializer
self.res_param = {
'w_initializer': GlorotUniform.get_instance(''),
'w_regularizer': regularizers.l2_regularizer(decay),
'acti_func': acti_func}
self.affine_param = {
'w_regularizer': regularizers.l2_regularizer(decay),
'b_regularizer': None}
开发者ID:fepegar,项目名称:NiftyNet,代码行数:34,代码来源:interventional_affine_net.py
示例4: test_fc_2d_bias_reg_shape
def test_fc_2d_bias_reg_shape(self):
input_param = {'n_output_chns': 10,
'with_bias': True,
'w_regularizer': regularizers.l2_regularizer(0.5),
'b_regularizer': regularizers.l2_regularizer(0.5)}
self._test_fc_output_shape(rank=2,
param_dict=input_param,
output_shape=(2, 10))
开发者ID:fepegar,项目名称:NiftyNet,代码行数:8,代码来源:fully_connected_test.py
示例5: test_fclayer_3d_bias_reg_shape
def test_fclayer_3d_bias_reg_shape(self):
input_param = {'n_output_chns': 10,
'with_bn': False,
'w_regularizer': regularizers.l2_regularizer(0.5),
'b_regularizer': regularizers.l2_regularizer(0.5)}
self._test_fc_layer_output_shape(rank=3,
param_dict=input_param,
output_shape=(2, 10))
开发者ID:fepegar,项目名称:NiftyNet,代码行数:8,代码来源:fully_connected_test.py
示例6: test_deconv_3d_bias_reg_shape
def test_deconv_3d_bias_reg_shape(self):
input_param = {'n_output_chns': 10,
'kernel_size': 3,
'stride': [2, 2, 1],
'with_bias': True,
'w_regularizer': regularizers.l2_regularizer(0.5),
'b_regularizer': regularizers.l2_regularizer(0.5)}
self._test_deconv_output_shape(rank=3,
param_dict=input_param,
output_shape=(2, 32, 32, 16, 10))
开发者ID:fepegar,项目名称:NiftyNet,代码行数:10,代码来源:deconvolution_test.py
示例7: test_fclayer_2d_bn_reg_shape
def test_fclayer_2d_bn_reg_shape(self):
input_param = {'n_output_chns': 10,
'with_bias': False,
'with_bn': True,
'w_regularizer': regularizers.l2_regularizer(0.5),
'b_regularizer': regularizers.l2_regularizer(0.5)}
self._test_fc_layer_output_shape(rank=2,
param_dict=input_param,
output_shape=(2, 10),
is_training=True)
开发者ID:fepegar,项目名称:NiftyNet,代码行数:10,代码来源:fully_connected_test.py
示例8: test_convlayer_2d_bias_reg_shape
def test_convlayer_2d_bias_reg_shape(self):
input_param = {'n_output_chns': 10,
'kernel_size': [3, 5],
'stride': [2, 1],
'with_bias': True,
'with_bn': False,
'w_regularizer': regularizers.l2_regularizer(0.5),
'b_regularizer': regularizers.l2_regularizer(0.5)}
self._test_conv_layer_output_shape(rank=2,
param_dict=input_param,
output_shape=(2, 8, 16, 10))
开发者ID:fepegar,项目名称:NiftyNet,代码行数:11,代码来源:convolution_test.py
示例9: test_convlayer_3d_bn_reg_shape
def test_convlayer_3d_bn_reg_shape(self):
input_param = {'n_output_chns': 10,
'kernel_size': [5, 1, 2],
'stride': 1,
'with_bias': False,
'with_bn': True,
'w_regularizer': regularizers.l2_regularizer(0.5),
'b_regularizer': regularizers.l2_regularizer(0.5)}
self._test_conv_layer_output_shape(rank=3,
param_dict=input_param,
output_shape=(2, 16, 16, 16, 10),
is_training=True)
开发者ID:fepegar,项目名称:NiftyNet,代码行数:12,代码来源:convolution_test.py
示例10: test_2d_reg_shape
def test_2d_reg_shape(self):
input_shape = (2, 57, 57, 1)
x = tf.ones(input_shape)
deepmedic_instance = DeepMedic(
num_classes=160,
w_regularizer=regularizers.l2_regularizer(0.5),
b_regularizer=regularizers.l2_regularizer(0.5))
out = deepmedic_instance(x, is_training=True)
# print(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
out = sess.run(out)
self.assertAllClose((2, 9, 9, 160), out.shape)
开发者ID:fepegar,项目名称:NiftyNet,代码行数:15,代码来源:deepmedic_test.py
示例11: test_2d_reg_shape
def test_2d_reg_shape(self):
input_shape = (2, 20, 20, 1)
x = tf.ones(input_shape)
holistic_net_instance = HolisticNet(
num_classes=3,
w_regularizer=regularizers.l2_regularizer(0.5),
b_regularizer=regularizers.l2_regularizer(0.5))
out = holistic_net_instance(x, is_training=False)
# print(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
out = sess.run(out)
self.assertAllClose((2, 20, 20, 3), out.shape)
开发者ID:fepegar,项目名称:NiftyNet,代码行数:15,代码来源:holistic_net_test.py
示例12: slim_net_original
def slim_net_original(image, keep_prob):
with arg_scope([layers.conv2d, layers.fully_connected], biases_initializer=tf.random_normal_initializer(stddev=0.1)):
# conv2d(inputs, num_outputs, kernel_size, stride=1, padding='SAME',
# activation_fn=nn.relu, normalizer_fn=None, normalizer_params=None,
# weights_initializer=initializers.xavier_initializer(), weights_regularizer=None,
# biases_initializer=init_ops.zeros_initializer, biases_regularizer=None, scope=None):
net = layers.conv2d(image, 32, [5, 5], scope='conv1', weights_regularizer=regularizers.l1_regularizer(0.5))
# max_pool(inputs, kernel_size, stride=2, padding='VALID', scope=None)
net = layers.max_pool2d(net, 2, scope='pool1')
net = layers.conv2d(net, 64, [5, 5], scope='conv2', weights_regularizer=regularizers.l2_regularizer(0.5))
summaries.summarize_tensor(net, tag='conv2')
net = layers.max_pool2d(net, 2, scope='pool2')
net = layers.flatten(net, scope='flatten1')
# fully_connected(inputs, num_outputs, activation_fn=nn.relu, normalizer_fn=None,
# normalizer_params=None, weights_initializer=initializers.xavier_initializer(),
# weights_regularizer=None, biases_initializer=init_ops.zeros_initializer,
# biases_regularizer=None, scope=None):
net = layers.fully_connected(net, 1024, scope='fc1')
# dropout(inputs, keep_prob=0.5, is_training=True, scope=None)
net = layers.dropout(net, keep_prob=keep_prob, scope='dropout1')
net = layers.fully_connected(net, 10, scope='fc2')
return net
开发者ID:BenJamesbabala,项目名称:FirstContactWithTensorFlow,代码行数:30,代码来源:slim_contrib.py
示例13: resnet_arg_scope
def resnet_arg_scope(is_training=True,
weight_decay=cfg.TRAIN.WEIGHT_DECAY,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
# NOTE 'is_training' here does not work because inside resnet it gets reset:
# https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v1.py#L187
'is_training': False,
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'trainable': cfg.RESNET.BN_TRAIN,
'updates_collections': ops.GraphKeys.UPDATE_OPS
}
with arg_scope(
[slim.conv2d],
weights_regularizer=regularizers.l2_regularizer(weight_decay),
weights_initializer=initializers.variance_scaling_initializer(),
trainable=is_training,
activation_fn=nn_ops.relu,
normalizer_fn=layers.batch_norm,
normalizer_params=batch_norm_params):
with arg_scope([layers.batch_norm], **batch_norm_params) as arg_sc:
return arg_sc
开发者ID:jacke121,项目名称:tf_rfcn,代码行数:26,代码来源:resnet_v1.py
示例14: test_3d_reg_shape
def test_3d_reg_shape(self):
input_shape = (2, 32, 32, 32, 1)
x = tf.ones(input_shape)
# vnet_instance = VNet(num_classes=160)
vnet_instance = VNet(
num_classes=160,
w_regularizer=regularizers.l2_regularizer(0.4),
b_regularizer=regularizers.l2_regularizer(0.4))
out = vnet_instance(x, is_training=True)
print(vnet_instance.num_trainable_params())
# print(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
out = sess.run(out)
self.assertAllClose((2, 32, 32, 32, 160), out.shape)
开发者ID:fepegar,项目名称:NiftyNet,代码行数:17,代码来源:vnet_test.py
示例15: initialise_network
def initialise_network(self):
w_regularizer = None
b_regularizer = None
reg_type = self.net_param.reg_type.lower()
decay = self.net_param.decay
if reg_type == 'l2' and decay > 0:
from tensorflow.contrib.layers.python.layers import regularizers
w_regularizer = regularizers.l2_regularizer(decay)
b_regularizer = regularizers.l2_regularizer(decay)
elif reg_type == 'l1' and decay > 0:
from tensorflow.contrib.layers.python.layers import regularizers
w_regularizer = regularizers.l1_regularizer(decay)
b_regularizer = regularizers.l1_regularizer(decay)
self.net = ApplicationNetFactory.create(self.net_param.name)(
w_regularizer=w_regularizer,
b_regularizer=b_regularizer)
开发者ID:fepegar,项目名称:NiftyNet,代码行数:17,代码来源:autoencoder_application.py
示例16: test_apply_zero_regularization
def test_apply_zero_regularization(self):
regularizer = regularizers.l2_regularizer(0.0)
array_weights_list = [[1.5], [2, 3, 4.2], [10, 42, 666.6]]
tensor_weights_list = [constant_op.constant(x) for x in array_weights_list]
with self.cached_session():
result = regularizers.apply_regularization(regularizer,
tensor_weights_list)
self.assertAllClose(0.0, result.eval())
开发者ID:AnishShah,项目名称:tensorflow,代码行数:8,代码来源:regularizers_test.py
示例17: alexnet_v2_arg_scope
def alexnet_v2_arg_scope(weight_decay=0.0005):
with arg_scope(
[layers.conv2d, layers_lib.fully_connected],
activation_fn=nn_ops.relu,
biases_initializer=init_ops.constant_initializer(0.1),
weights_regularizer=regularizers.l2_regularizer(weight_decay)):
with arg_scope([layers.conv2d], padding='SAME'):
with arg_scope([layers_lib.max_pool2d], padding='VALID') as arg_sc:
return arg_sc
开发者ID:1000sprites,项目名称:tensorflow,代码行数:9,代码来源:alexnet.py
示例18: test_fclayer_3d_bn_reg_dropout_valid_shape
def test_fclayer_3d_bn_reg_dropout_valid_shape(self):
input_param = {'n_output_chns': 10,
'with_bias': False,
'with_bn': True,
'w_regularizer': regularizers.l2_regularizer(0.5),
'acti_func': 'prelu', }
self._test_fc_layer_output_shape(rank=3,
param_dict=input_param,
output_shape=(2, 10),
is_training=True,
dropout_prob=0.4)
开发者ID:fepegar,项目名称:NiftyNet,代码行数:11,代码来源:fully_connected_test.py
示例19: test_3d_prelu_reg_shape
def test_3d_prelu_reg_shape(self):
x = self.get_3d_input()
prelu_layer = ActiLayer(func='prelu',
regularizer=regularizers.l2_regularizer(0.5),
name='regularized')
out_prelu = prelu_layer(x)
print(prelu_layer)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
out = sess.run(out_prelu)
self.assertAllClose((2, 16, 16, 16, 8), out.shape)
开发者ID:fepegar,项目名称:NiftyNet,代码行数:11,代码来源:activation_test.py
示例20: test_convlayer_2d_bn_reg_prelu_shape
def test_convlayer_2d_bn_reg_prelu_shape(self):
input_param = {'n_output_chns': 10,
'kernel_size': 3,
'stride': 1,
'with_bias': False,
'with_bn': True,
'acti_func': 'prelu',
'w_regularizer': regularizers.l2_regularizer(0.5)}
self._test_conv_layer_output_shape(rank=2,
param_dict=input_param,
output_shape=(2, 16, 16, 10),
is_training=True)
开发者ID:fepegar,项目名称:NiftyNet,代码行数:12,代码来源:convolution_test.py
注:本文中的tensorflow.contrib.layers.python.layers.regularizers.l2_regularizer函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论