本文整理汇总了Python中tensorflow.contrib.layers.python.layers.feature_column.embedding_column函数的典型用法代码示例。如果您正苦于以下问题:Python embedding_column函数的具体用法?Python embedding_column怎么用?Python embedding_column使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了embedding_column函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testInitEmbeddingColumnWeightsFromCkpt
def testInitEmbeddingColumnWeightsFromCkpt(self):
sparse_col = fc.sparse_column_with_hash_bucket(
column_name="object_in_image", hash_bucket_size=4)
# Create _EmbeddingColumn which randomly initializes embedding of size
# [4, 16].
embedding_col = fc.embedding_column(sparse_col, dimension=16)
# Creating a SparseTensor which has all the ids possible for the given
# vocab.
input_tensor = sparse_tensor_lib.SparseTensor(
indices=[[0, 0], [1, 1], [2, 2], [3, 3]],
values=[0, 1, 2, 3],
dense_shape=[4, 4])
# Invoking 'layers.input_from_feature_columns' will create the embedding
# variable. Creating under scope 'run_1' so as to prevent name conflicts
# when creating embedding variable for 'embedding_column_pretrained'.
with variable_scope.variable_scope("run_1"):
with variable_scope.variable_scope(embedding_col.name):
# This will return a [4, 16] tensor which is same as embedding variable.
embeddings = feature_column_ops.input_from_feature_columns({
embedding_col: input_tensor
}, [embedding_col])
save = saver.Saver()
ckpt_dir_prefix = os.path.join(self.get_temp_dir(),
"init_embedding_col_w_from_ckpt")
ckpt_dir = tempfile.mkdtemp(prefix=ckpt_dir_prefix)
checkpoint_path = os.path.join(ckpt_dir, "model.ckpt")
with self.test_session() as sess:
sess.run(variables.global_variables_initializer())
saved_embedding = embeddings.eval()
save.save(sess, checkpoint_path)
embedding_col_initialized = fc.embedding_column(
sparse_id_column=sparse_col,
dimension=16,
ckpt_to_load_from=checkpoint_path,
tensor_name_in_ckpt=("run_1/object_in_image_embedding/"
"input_from_feature_columns/object"
"_in_image_embedding/weights"))
with variable_scope.variable_scope("run_2"):
# This will initialize the embedding from provided checkpoint and return a
# [4, 16] tensor which is same as embedding variable. Since we didn't
# modify embeddings, this should be same as 'saved_embedding'.
pretrained_embeddings = feature_column_ops.input_from_feature_columns({
embedding_col_initialized: input_tensor
}, [embedding_col_initialized])
with self.test_session() as sess:
sess.run(variables.global_variables_initializer())
loaded_embedding = pretrained_embeddings.eval()
self.assertAllClose(saved_embedding, loaded_embedding)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:56,代码来源:feature_column_test.py
示例2: testRegression_TensorData
def testRegression_TensorData(self):
"""Tests regression using tensor data as input."""
def _input_fn(num_epochs=None):
features = {
'age':
input_lib.limit_epochs(
constant_op.constant([[.8], [.15], [0.]]),
num_epochs=num_epochs),
'language':
sparse_tensor.SparseTensor(
values=input_lib.limit_epochs(
['en', 'fr', 'zh'], num_epochs=num_epochs),
indices=[[0, 0], [0, 1], [2, 0]],
dense_shape=[3, 2])
}
return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32)
language_column = feature_column.sparse_column_with_hash_bucket(
'language', hash_bucket_size=20)
feature_columns = [
feature_column.embedding_column(
language_column, dimension=1),
feature_column.real_valued_column('age')
]
regressor = dnn.DNNRegressor(
feature_columns=feature_columns,
hidden_units=[3, 3],
config=run_config.RunConfig(tf_random_seed=1))
regressor.fit(input_fn=_input_fn, steps=200)
scores = regressor.evaluate(input_fn=_input_fn, steps=1)
self.assertIn('loss', scores)
开发者ID:willdzeng,项目名称:tensorflow,代码行数:35,代码来源:dnn_test.py
示例3: testExport
def testExport(self):
"""Tests export model for servo."""
def input_fn():
return {
'age':
constant_op.constant([1]),
'language':
sparse_tensor.SparseTensor(
values=['english'], indices=[[0, 0]], dense_shape=[1, 1])
}, constant_op.constant([[1]])
language = feature_column.sparse_column_with_hash_bucket('language', 100)
feature_columns = [
feature_column.real_valued_column('age'),
feature_column.embedding_column(
language, dimension=1)
]
classifier = dnn.DNNClassifier(
feature_columns=feature_columns, hidden_units=[3, 3])
classifier.fit(input_fn=input_fn, steps=5)
export_dir = tempfile.mkdtemp()
classifier.export(export_dir)
开发者ID:willdzeng,项目名称:tensorflow,代码行数:25,代码来源:dnn_test.py
示例4: testEmbeddingColumn
def testEmbeddingColumn(self):
a = fc.sparse_column_with_hash_bucket(
"aaa", hash_bucket_size=100, combiner="sum")
b = fc.embedding_column(a, dimension=4, combiner="mean")
self.assertEqual(b.sparse_id_column.name, "aaa")
self.assertEqual(b.dimension, 4)
self.assertEqual(b.combiner, "mean")
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:7,代码来源:feature_column_test.py
示例5: testExport
def testExport(self):
"""Tests export model for servo."""
def input_fn():
return {
'age':
constant_op.constant([1]),
'language':
sparse_tensor.SparseTensor(
values=['english'], indices=[[0, 0]], dense_shape=[1, 1])
}, constant_op.constant([[1]])
language = feature_column.sparse_column_with_hash_bucket('language', 100)
feature_columns = [
feature_column.real_valued_column('age'),
feature_column.embedding_column(
language, dimension=1)
]
classifier = debug.DebugClassifier(config=run_config.RunConfig(
tf_random_seed=1))
classifier.fit(input_fn=input_fn, steps=5)
def default_input_fn(unused_estimator, examples):
return feature_column_ops.parse_feature_columns_from_examples(
examples, feature_columns)
export_dir = tempfile.mkdtemp()
classifier.export(export_dir, input_fn=default_input_fn)
开发者ID:eduardofv,项目名称:tensorflow,代码行数:29,代码来源:debug_test.py
示例6: testMultipliesGradient
def testMultipliesGradient(self):
embedding_language = feature_column.embedding_column(
feature_column.sparse_column_with_hash_bucket('language', 10),
dimension=1,
initializer=init_ops.constant_initializer(0.1))
embedding_wire = feature_column.embedding_column(
feature_column.sparse_column_with_hash_bucket('wire', 10),
dimension=1,
initializer=init_ops.constant_initializer(0.1))
params = {
'feature_columns': [embedding_language, embedding_wire],
'head': head_lib._multi_class_head(2),
'hidden_units': [1],
# Set lr mult to 0. to keep embeddings constant.
'embedding_lr_multipliers': {
embedding_language: 0.0
},
}
features = {
'language':
sparse_tensor.SparseTensor(
values=['en', 'fr', 'zh'],
indices=[[0, 0], [1, 0], [2, 0]],
dense_shape=[3, 1]),
'wire':
sparse_tensor.SparseTensor(
values=['omar', 'stringer', 'marlo'],
indices=[[0, 0], [1, 0], [2, 0]],
dense_shape=[3, 1]),
}
labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32)
model_ops = dnn._dnn_model_fn(features, labels, model_fn.ModeKeys.TRAIN,
params)
with monitored_session.MonitoredSession() as sess:
language_var = dnn_linear_combined._get_embedding_variable(
embedding_language, 'dnn', 'dnn/input_from_feature_columns')
wire_var = dnn_linear_combined._get_embedding_variable(
embedding_wire, 'dnn', 'dnn/input_from_feature_columns')
for _ in range(2):
_, language_value, wire_value = sess.run(
[model_ops.train_op, language_var, wire_var])
initial_value = np.full_like(language_value, 0.1)
self.assertTrue(np.all(np.isclose(language_value, initial_value)))
self.assertFalse(np.all(np.isclose(wire_value, initial_value)))
开发者ID:willdzeng,项目名称:tensorflow,代码行数:45,代码来源:dnn_test.py
示例7: testEmbeddingColumnDeepCopy
def testEmbeddingColumnDeepCopy(self):
a = fc.sparse_column_with_hash_bucket(
"aaa", hash_bucket_size=100, combiner="sum")
column = fc.embedding_column(a, dimension=4, combiner="mean")
column_copy = copy.deepcopy(column)
self.assertEqual(column_copy.name, "aaa_embedding")
self.assertEqual(column_copy.sparse_id_column.name, "aaa")
self.assertEqual(column_copy.dimension, 4)
self.assertEqual(column_copy.combiner, "mean")
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:9,代码来源:feature_column_test.py
示例8: testEmbeddingMultiplier
def testEmbeddingMultiplier(self):
embedding_language = feature_column.embedding_column(
feature_column.sparse_column_with_hash_bucket('language', 10),
dimension=1,
initializer=init_ops.constant_initializer(0.1))
classifier = dnn.DNNClassifier(
feature_columns=[embedding_language],
hidden_units=[3, 3],
embedding_lr_multipliers={embedding_language: 0.8})
self.assertEqual({
embedding_language: 0.8
}, classifier._estimator.params['embedding_lr_multipliers'])
开发者ID:willdzeng,项目名称:tensorflow,代码行数:12,代码来源:dnn_test.py
示例9: testCreateSequenceFeatureSpec
def testCreateSequenceFeatureSpec(self):
sparse_col = fc.sparse_column_with_hash_bucket(
"sparse_column", hash_bucket_size=100)
embedding_col = fc.embedding_column(
fc.sparse_column_with_hash_bucket(
"sparse_column_for_embedding", hash_bucket_size=10),
dimension=4)
sparse_id_col = fc.sparse_column_with_keys("id_column",
["marlo", "omar", "stringer"])
weighted_id_col = fc.weighted_sparse_column(sparse_id_col,
"id_weights_column")
real_valued_col1 = fc.real_valued_column("real_valued_column", dimension=2)
real_valued_col2 = fc.real_valued_column(
"real_valued_default_column", dimension=5, default_value=3.0)
real_valued_col3 = fc._real_valued_var_len_column(
"real_valued_var_len_column", default_value=3.0, is_sparse=True)
real_valued_col4 = fc._real_valued_var_len_column(
"real_valued_var_len_dense_column", default_value=4.0, is_sparse=False)
feature_columns = set([
sparse_col, embedding_col, weighted_id_col, real_valued_col1,
real_valued_col2, real_valued_col3, real_valued_col4
])
feature_spec = fc._create_sequence_feature_spec_for_parsing(feature_columns)
expected_feature_spec = {
"sparse_column":
parsing_ops.VarLenFeature(dtypes.string),
"sparse_column_for_embedding":
parsing_ops.VarLenFeature(dtypes.string),
"id_column":
parsing_ops.VarLenFeature(dtypes.string),
"id_weights_column":
parsing_ops.VarLenFeature(dtypes.float32),
"real_valued_column":
parsing_ops.FixedLenSequenceFeature(
shape=[2], dtype=dtypes.float32, allow_missing=False),
"real_valued_default_column":
parsing_ops.FixedLenSequenceFeature(
shape=[5], dtype=dtypes.float32, allow_missing=True),
"real_valued_var_len_column":
parsing_ops.VarLenFeature(dtype=dtypes.float32),
"real_valued_var_len_dense_column":
parsing_ops.FixedLenSequenceFeature(
shape=[], dtype=dtypes.float32, allow_missing=True,
default_value=4.0),
}
self.assertDictEqual(expected_feature_spec, feature_spec)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:50,代码来源:feature_column_test.py
示例10: testTrainWithPartitionedVariables
def testTrainWithPartitionedVariables(self):
"""Tests training with partitioned variables."""
def _input_fn(num_epochs=None):
features = {
'age':
input_lib.limit_epochs(
constant_op.constant([[.8], [.2], [.1]]),
num_epochs=num_epochs),
'language':
sparse_tensor.SparseTensor(
values=input_lib.limit_epochs(
['en', 'fr', 'zh'], num_epochs=num_epochs),
indices=[[0, 0], [0, 1], [2, 0]],
dense_shape=[3, 2])
}
return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32)
# The given hash_bucket_size results in variables larger than the
# default min_slice_size attribute, so the variables are partitioned.
sparse_column = feature_column.sparse_column_with_hash_bucket(
'language', hash_bucket_size=2e7)
feature_columns = [
feature_column.embedding_column(
sparse_column, dimension=1)
]
tf_config = {
'cluster': {
run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1']
}
}
with test.mock.patch.dict('os.environ',
{'TF_CONFIG': json.dumps(tf_config)}):
config = run_config.RunConfig(tf_random_seed=1)
# Because we did not start a distributed cluster, we need to pass an
# empty ClusterSpec, otherwise the device_setter will look for
# distributed jobs, such as "/job:ps" which are not present.
config._cluster_spec = server_lib.ClusterSpec({})
classifier = dnn.DNNClassifier(
n_classes=3,
feature_columns=feature_columns,
hidden_units=[3, 3],
config=config)
classifier.fit(input_fn=_input_fn, steps=5)
scores = classifier.evaluate(input_fn=_input_fn, steps=1)
self._assertInRange(0.0, 1.0, scores['accuracy'])
self.assertIn('loss', scores)
开发者ID:willdzeng,项目名称:tensorflow,代码行数:50,代码来源:dnn_test.py
示例11: benchmarkLogisticFloatLabel
def benchmarkLogisticFloatLabel(self):
def _input_fn(num_epochs=None):
features = {
'age':
input_lib.limit_epochs(
constant_op.constant(((50,), (20,), (10,))),
num_epochs=num_epochs),
'language':
sparse_tensor.SparseTensor(
values=input_lib.limit_epochs(
('en', 'fr', 'zh'), num_epochs=num_epochs),
indices=((0, 0), (0, 1), (2, 0)),
dense_shape=(3, 2))
}
return features, constant_op.constant(
((0.8,), (0.,), (0.2,)), dtype=dtypes.float32)
lang_column = feature_column.sparse_column_with_hash_bucket(
'language', hash_bucket_size=20)
n_classes = 2
classifier = dnn.DNNClassifier(
n_classes=n_classes,
feature_columns=(feature_column.embedding_column(
lang_column, dimension=1),
feature_column.real_valued_column('age')),
hidden_units=(3, 3),
config=run_config.RunConfig(tf_random_seed=1))
steps = 1000
metrics = classifier.fit(input_fn=_input_fn, steps=steps).evaluate(
input_fn=_input_fn, steps=1)
estimator_test_utils.assert_in_range(steps, steps + 5, 'global_step',
metrics)
# Prediction probabilities mirror the labels column, which proves that the
# classifier learns from float input.
self._report_metrics(metrics)
self._report_predictions(
classifier=classifier,
input_fn=functools.partial(_input_fn, num_epochs=1),
iters=metrics['global_step'],
n_examples=3,
n_classes=n_classes,
expected_probabilities=((0.2, 0.8), (1., 0.), (0.8, 0.2)),
expected_classes=(1, 0, 0),
benchmark_name_override=(
'DNNClassifierBenchmark.benchmarkLogisticFloatLabel_predictions'))
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:47,代码来源:dnn_benchmark_test.py
示例12: testPredict_AsIterable
def testPredict_AsIterable(self):
"""Tests predict and predict_prob methods with as_iterable=True."""
def _input_fn(num_epochs=None):
features = {
'age':
input_lib.limit_epochs(
constant_op.constant([[.8], [.2], [.1]]),
num_epochs=num_epochs),
'language':
sparse_tensor.SparseTensor(
values=input_lib.limit_epochs(
['en', 'fr', 'zh'], num_epochs=num_epochs),
indices=[[0, 0], [0, 1], [2, 0]],
dense_shape=[3, 2])
}
return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32)
language_column = feature_column.sparse_column_with_hash_bucket(
'language', hash_bucket_size=20)
feature_columns = [
feature_column.embedding_column(
language_column, dimension=1),
feature_column.real_valued_column('age')
]
classifier = dnn.DNNClassifier(
n_classes=3,
feature_columns=feature_columns,
hidden_units=[3, 3],
config=run_config.RunConfig(tf_random_seed=1))
classifier.fit(input_fn=_input_fn, steps=200)
scores = classifier.evaluate(input_fn=_input_fn, steps=1)
self._assertInRange(0.0, 1.0, scores['accuracy'])
self.assertIn('loss', scores)
predict_input_fn = functools.partial(_input_fn, num_epochs=1)
predictions = list(
classifier.predict(
input_fn=predict_input_fn, as_iterable=True))
self.assertListEqual(predictions, [1, 0, 0])
predictions = list(
classifier.predict_proba(
input_fn=predict_input_fn, as_iterable=True))
self.assertAllClose(
predictions, [[0., 1., 0.], [1., 0., 0.], [1., 0., 0.]], atol=0.3)
开发者ID:willdzeng,项目名称:tensorflow,代码行数:47,代码来源:dnn_test.py
示例13: testPrepareInputsForRnnSparseAndDense
def testPrepareInputsForRnnSparseAndDense(self):
num_unroll = 2
embedding_dimension = 8
dense_dimension = 2
expected = [
np.array([[1., 1., 1., 1., 1., 1., 1., 1., 111., 112.],
[1., 1., 1., 1., 1., 1., 1., 1., 211., 212.],
[1., 1., 1., 1., 1., 1., 1., 1., 311., 312.]]),
np.array([[1., 1., 1., 1., 1., 1., 1., 1., 121., 122.],
[2., 2., 2., 2., 2., 2., 2., 2., 221., 222.],
[1., 1., 1., 1., 1., 1., 1., 1., 321., 322.]])
]
sequence_features = {
'wire_cast':
sparse_tensor.SparseTensor(
indices=[[0, 0, 0], [0, 1, 0], [1, 0, 0], [1, 1, 0], [1, 1, 1],
[2, 0, 0], [2, 1, 1]],
values=[
b'marlo', b'stringer', b'omar', b'stringer', b'marlo',
b'marlo', b'omar'
],
dense_shape=[3, 2, 2]),
'seq_feature0':
constant_op.constant([[[111., 112.], [121., 122.]],
[[211., 212.], [221., 222.]],
[[311., 312.], [321., 322.]]])
}
wire_cast = feature_column.sparse_column_with_keys(
'wire_cast', ['marlo', 'omar', 'stringer'])
wire_cast_embedded = feature_column.embedding_column(
wire_cast,
dimension=embedding_dimension,
combiner='sum',
initializer=init_ops.ones_initializer())
seq_feature0_column = feature_column.real_valued_column(
'seq_feature0', dimension=dense_dimension)
sequence_feature_columns = [seq_feature0_column, wire_cast_embedded]
context_features = None
self._test_prepare_inputs_for_rnn(sequence_features, context_features,
sequence_feature_columns, num_unroll,
expected)
开发者ID:finardi,项目名称:tensorflow,代码行数:47,代码来源:state_saving_rnn_estimator_test.py
示例14: testTrainSaveLoad
def testTrainSaveLoad(self):
"""Tests that insures you can save and reload a trained model."""
def _input_fn(num_epochs=None):
features = {
'age':
input_lib.limit_epochs(
constant_op.constant([[.8], [.2], [.1]]),
num_epochs=num_epochs),
'language':
sparse_tensor.SparseTensor(
values=input_lib.limit_epochs(
['en', 'fr', 'zh'], num_epochs=num_epochs),
indices=[[0, 0], [0, 1], [2, 0]],
dense_shape=[3, 2])
}
return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32)
sparse_column = feature_column.sparse_column_with_hash_bucket(
'language', hash_bucket_size=20)
feature_columns = [
feature_column.embedding_column(
sparse_column, dimension=1)
]
model_dir = tempfile.mkdtemp()
classifier = dnn.DNNClassifier(
model_dir=model_dir,
n_classes=3,
feature_columns=feature_columns,
hidden_units=[3, 3],
config=run_config.RunConfig(tf_random_seed=1))
classifier.fit(input_fn=_input_fn, steps=5)
predict_input_fn = functools.partial(_input_fn, num_epochs=1)
predictions1 = classifier.predict(input_fn=predict_input_fn)
del classifier
classifier2 = dnn.DNNClassifier(
model_dir=model_dir,
n_classes=3,
feature_columns=feature_columns,
hidden_units=[3, 3],
config=run_config.RunConfig(tf_random_seed=1))
predictions2 = classifier2.predict(input_fn=predict_input_fn)
self.assertEqual(list(predictions1), list(predictions2))
开发者ID:willdzeng,项目名称:tensorflow,代码行数:46,代码来源:dnn_test.py
示例15: setUp
def setUp(self):
super(DynamicRnnEstimatorTest, self).setUp()
self.rnn_cell = core_rnn_cell_impl.BasicRNNCell(self.NUM_RNN_CELL_UNITS)
self.mock_target_column = MockTargetColumn(
num_label_columns=self.NUM_LABEL_COLUMNS)
location = feature_column.sparse_column_with_keys(
'location', keys=['west_side', 'east_side', 'nyc'])
location_onehot = feature_column.one_hot_column(location)
self.context_feature_columns = [location_onehot]
wire_cast = feature_column.sparse_column_with_keys(
'wire_cast', ['marlo', 'omar', 'stringer'])
wire_cast_embedded = feature_column.embedding_column(wire_cast, dimension=8)
measurements = feature_column.real_valued_column(
'measurements', dimension=2)
self.sequence_feature_columns = [measurements, wire_cast_embedded]
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:17,代码来源:dynamic_rnn_estimator_test.py
示例16: test_make_parsing_export_strategy
def test_make_parsing_export_strategy(self):
"""Only tests that an ExportStrategy instance is created."""
sparse_col = fc.sparse_column_with_hash_bucket(
"sparse_column", hash_bucket_size=100)
embedding_col = fc.embedding_column(
fc.sparse_column_with_hash_bucket(
"sparse_column_for_embedding", hash_bucket_size=10),
dimension=4)
real_valued_col1 = fc.real_valued_column("real_valued_column1")
bucketized_col1 = fc.bucketized_column(
fc.real_valued_column("real_valued_column_for_bucketization1"), [0, 4])
feature_columns = [sparse_col, embedding_col, real_valued_col1,
bucketized_col1]
export_strategy = saved_model_export_utils.make_parsing_export_strategy(
feature_columns=feature_columns)
self.assertTrue(
isinstance(export_strategy, export_strategy_lib.ExportStrategy))
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:18,代码来源:saved_model_export_utils_test.py
示例17: benchmarkLogisticTensorData
def benchmarkLogisticTensorData(self):
def _input_fn(num_epochs=None):
features = {
'age':
input_lib.limit_epochs(
constant_op.constant(((.8,), (0.2,), (.1,))),
num_epochs=num_epochs),
'language':
sparse_tensor.SparseTensor(
values=input_lib.limit_epochs(
('en', 'fr', 'zh'), num_epochs=num_epochs),
indices=((0, 0), (0, 1), (2, 0)),
dense_shape=(3, 2))
}
return features, constant_op.constant(
((1,), (0,), (0,)), dtype=dtypes.int32)
lang_column = feature_column.sparse_column_with_hash_bucket(
'language', hash_bucket_size=20)
classifier = dnn.DNNClassifier(
feature_columns=(feature_column.embedding_column(
lang_column, dimension=1),
feature_column.real_valued_column('age')),
hidden_units=(3, 3),
config=run_config.RunConfig(tf_random_seed=1))
steps = 100
metrics = classifier.fit(input_fn=_input_fn, steps=steps).evaluate(
input_fn=_input_fn, steps=1)
estimator_test_utils.assert_in_range(steps, steps + 5, 'global_step',
metrics)
estimator_test_utils.assert_in_range(0.9, 1.0, 'accuracy', metrics)
estimator_test_utils.assert_in_range(0.0, 0.3, 'loss', metrics)
self._report_metrics(metrics)
self._report_predictions(
classifier=classifier,
input_fn=functools.partial(_input_fn, num_epochs=1),
iters=metrics['global_step'],
n_examples=3,
n_classes=2,
expected_classes=(1, 0, 0),
benchmark_name_override=(
'DNNClassifierBenchmark.benchmarkLogisticTensorData_predictions'))
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:44,代码来源:dnn_benchmark_test.py
示例18: testLogisticRegression_FloatLabel
def testLogisticRegression_FloatLabel(self):
"""Tests binary classification with float labels."""
def _input_fn_float_label(num_epochs=None):
features = {
'age':
input_lib.limit_epochs(
constant_op.constant([[50], [20], [10]]),
num_epochs=num_epochs),
'language':
sparse_tensor.SparseTensor(
values=input_lib.limit_epochs(
['en', 'fr', 'zh'], num_epochs=num_epochs),
indices=[[0, 0], [0, 1], [2, 0]],
dense_shape=[3, 2])
}
labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32)
return features, labels
language_column = feature_column.sparse_column_with_hash_bucket(
'language', hash_bucket_size=20)
feature_columns = [
feature_column.embedding_column(
language_column, dimension=1),
feature_column.real_valued_column('age')
]
classifier = dnn.DNNClassifier(
n_classes=2,
feature_columns=feature_columns,
hidden_units=[3, 3],
config=run_config.RunConfig(tf_random_seed=1))
classifier.fit(input_fn=_input_fn_float_label, steps=50)
predict_input_fn = functools.partial(_input_fn_float_label, num_epochs=1)
predictions = list(
classifier.predict(
input_fn=predict_input_fn, as_iterable=True))
self._assertBinaryPredictions(3, predictions)
predictions_proba = list(
classifier.predict_proba(
input_fn=predict_input_fn, as_iterable=True))
self._assertProbabilities(3, 2, predictions_proba)
开发者ID:willdzeng,项目名称:tensorflow,代码行数:44,代码来源:dnn_test.py
示例19: testLogisticRegression_TensorData
def testLogisticRegression_TensorData(self):
"""Tests binary classification using tensor data as input."""
def _input_fn(num_epochs=None):
features = {
'age':
input_lib.limit_epochs(
constant_op.constant([[.8], [0.2], [.1]]),
num_epochs=num_epochs),
'language':
sparse_tensor.SparseTensor(
values=input_lib.limit_epochs(
['en', 'fr', 'zh'], num_epochs=num_epochs),
indices=[[0, 0], [0, 1], [2, 0]],
dense_shape=[3, 2])
}
return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32)
language_column = feature_column.sparse_column_with_hash_bucket(
'language', hash_bucket_size=20)
feature_columns = [
feature_column.embedding_column(
language_column, dimension=1),
feature_column.real_valued_column('age')
]
classifier = dnn.DNNClassifier(
n_classes=2,
feature_columns=feature_columns,
hidden_units=[10, 10],
config=run_config.RunConfig(tf_random_seed=1))
classifier.fit(input_fn=_input_fn, steps=50)
scores = classifier.evaluate(input_fn=_input_fn, steps=1)
self._assertInRange(0.0, 1.0, scores['accuracy'])
self.assertIn('loss', scores)
predict_input_fn = functools.partial(_input_fn, num_epochs=1)
predictions = list(
classifier.predict(
input_fn=predict_input_fn, as_iterable=True))
self._assertBinaryPredictions(3, predictions)
开发者ID:willdzeng,项目名称:tensorflow,代码行数:42,代码来源:dnn_test.py
示例20: testPredict_AsIterableFalse
def testPredict_AsIterableFalse(self):
"""Tests predict and predict_prob methods with as_iterable=False."""
def _input_fn(num_epochs=None):
features = {
'age':
input_lib.limit_epochs(
constant_op.constant([[.8], [.2], [.1]]),
num_epochs=num_epochs),
'language':
sparse_tensor.SparseTensor(
values=input_lib.limit_epochs(
['en', 'fr', 'zh'], num_epochs=num_epochs),
indices=[[0, 0], [0, 1], [2, 0]],
dense_shape=[3, 2])
}
return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32)
sparse_column = feature_column.sparse_column_with_hash_bucket(
'language', hash_bucket_size=20)
feature_columns = [
feature_column.embedding_column(
sparse_column, dimension=1)
]
n_classes = 3
classifier = dnn.DNNClassifier(
n_classes=n_classes,
feature_columns=feature_columns,
hidden_units=[10, 10],
config=run_config.RunConfig(tf_random_seed=1))
classifier.fit(input_fn=_input_fn, steps=100)
scores = classifier.evaluate(input_fn=_input_fn, steps=1)
self._assertInRange(0.0, 1.0, scores['accuracy'])
self.assertIn('loss', scores)
predictions = classifier.predict(input_fn=_input_fn, as_iterable=False)
self._assertBinaryPredictions(3, predictions)
probabilities = classifier.predict_proba(
input_fn=_input_fn, as_iterable=False)
self._assertProbabilities(3, n_classes, probabilities)
开发者ID:willdzeng,项目名称:tensorflow,代码行数:42,代码来源:dnn_test.py
注:本文中的tensorflow.contrib.layers.python.layers.feature_column.embedding_column函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论