• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python feature_column.create_feature_spec_for_parsing函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.contrib.layers.python.layers.feature_column.create_feature_spec_for_parsing函数的典型用法代码示例。如果您正苦于以下问题:Python create_feature_spec_for_parsing函数的具体用法?Python create_feature_spec_for_parsing怎么用?Python create_feature_spec_for_parsing使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了create_feature_spec_for_parsing函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: make_parsing_export_strategy

def make_parsing_export_strategy(feature_columns,
                                 default_output_alternative_key=None,
                                 assets_extra=None,
                                 as_text=False,
                                 exports_to_keep=5,
                                 target_core=False,
                                 strip_default_attrs=False):
  # pylint: disable=line-too-long
  """Create an ExportStrategy for use with Experiment, using `FeatureColumn`s.

  Creates a SavedModel export that expects to be fed with a single string
  Tensor containing serialized tf.Examples.  At serving time, incoming
  tf.Examples will be parsed according to the provided `FeatureColumn`s.

  Args:
    feature_columns: An iterable of `FeatureColumn`s representing the features
      that must be provided at serving time (excluding labels!).
    default_output_alternative_key: the name of the head to serve when an
      incoming serving request does not explicitly request a specific head.
      Must be `None` if the estimator inherits from ${tf.estimator.Estimator}
      or for single-headed models.
    assets_extra: A dict specifying how to populate the assets.extra directory
      within the exported SavedModel.  Each key should give the destination
      path (including the filename) relative to the assets.extra directory.
      The corresponding value gives the full path of the source file to be
      copied.  For example, the simple case of copying a single file without
      renaming it is specified as
      `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`.
    as_text: whether to write the SavedModel proto in text format.
    exports_to_keep: Number of exports to keep.  Older exports will be
      garbage-collected.  Defaults to 5.  Set to None to disable garbage
      collection.
    target_core: If True, prepare an ExportStrategy for use with
      tensorflow.python.estimator.*.  If False (default), prepare an
      ExportStrategy for use with tensorflow.contrib.learn.python.learn.*.
    strip_default_attrs: Boolean. If `True`, default-valued attributes will be
      removed from the NodeDefs. For a detailed guide, see
      [Stripping Default-Valued Attributes](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md#stripping-default-valued-attributes).

  Returns:
    An ExportStrategy that can be passed to the Experiment constructor.
  """
  # pylint: enable=line-too-long
  feature_spec = feature_column.create_feature_spec_for_parsing(feature_columns)
  if target_core:
    serving_input_fn = (
        core_export.build_parsing_serving_input_receiver_fn(feature_spec))
  else:
    serving_input_fn = (
        input_fn_utils.build_parsing_serving_input_fn(feature_spec))
  return make_export_strategy(
      serving_input_fn,
      default_output_alternative_key=default_output_alternative_key,
      assets_extra=assets_extra,
      as_text=as_text,
      exports_to_keep=exports_to_keep,
      strip_default_attrs=strip_default_attrs)
开发者ID:Lin-jipeng,项目名称:tensorflow,代码行数:57,代码来源:saved_model_export_utils.py


示例2: parse_feature_columns_from_examples

def parse_feature_columns_from_examples(serialized,
                                        feature_columns,
                                        name=None,
                                        example_names=None):
  """Parses tf.Examples to extract tensors for given feature_columns.

  This is a wrapper of 'tf.parse_example'. A typical usage is as follows:

  ```python
  columns_to_tensor = parse_feature_columns_from_examples(
      serialized=my_data,
      feature_columns=my_features)

  # Where my_features are:
  # Define features and transformations
  country = sparse_column_with_keys(column_name="native_country",
                                    keys=["US", "BRA", ...])
  country_emb = embedding_column(sparse_id_column=country, dimension=3,
                                 combiner="sum")
  occupation = sparse_column_with_hash_bucket(column_name="occupation",
                                              hash_bucket_size=1000)
  occupation_emb = embedding_column(sparse_id_column=occupation, dimension=16,
                                   combiner="sum")
  occupation_x_country = crossed_column(columns=[occupation, country],
                                        hash_bucket_size=10000)
  age = real_valued_column("age")
  age_buckets = bucketized_column(
      source_column=age,
      boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65])

  my_features = [occupation_emb, age_buckets, country_emb]
  ```

  Args:
    serialized: A vector (1-D Tensor) of strings, a batch of binary
      serialized `Example` protos.
    feature_columns: An iterable containing all the feature columns. All items
      should be instances of classes derived from _FeatureColumn.
    name: A name for this operation (optional).
    example_names: A vector (1-D Tensor) of strings (optional), the names of
      the serialized protos in the batch.

  Returns:
    A `dict` mapping FeatureColumn to `Tensor` and `SparseTensor` values.
  """
  check_feature_columns(feature_columns)
  columns_to_tensors = parsing_ops.parse_example(
      serialized=serialized,
      features=fc.create_feature_spec_for_parsing(feature_columns),
      name=name,
      example_names=example_names)

  transformer = _Transformer(columns_to_tensors)
  for column in sorted(set(feature_columns), key=lambda x: x.key):
    transformer.transform(column)
  return columns_to_tensors
开发者ID:JamesFysh,项目名称:tensorflow,代码行数:56,代码来源:feature_column_ops.py


示例3: parse_feature_columns_from_sequence_examples

def parse_feature_columns_from_sequence_examples(
    serialized,
    context_feature_columns,
    sequence_feature_columns,
    name=None,
    example_name=None):
  """Parses tf.SequenceExamples to extract tensors for given `FeatureColumn`s.

  Args:
    serialized: A scalar (0-D Tensor) of type string, a single serialized
      `SequenceExample` proto.
    context_feature_columns: An iterable containing the feature columns for
      context features. All items should be instances of classes derived from
      `_FeatureColumn`. Can be `None`.
    sequence_feature_columns: An iterable containing the feature columns for
      sequence features. All items should be instances of classes derived from
      `_FeatureColumn`. Can be `None`.
    name: A name for this operation (optional).
    example_name: A scalar (0-D Tensor) of type string (optional), the names of
      the serialized proto.

  Returns:
    A tuple consisting of (context_features, sequence_features)

    *  context_features: a dict mapping `FeatureColumns` from
        `context_feature_columns` to their parsed `Tensors`/`SparseTensor`s.
    *  sequence_features: a dict mapping `FeatureColumns` from
        `sequence_feature_columns` to their parsed `Tensors`/`SparseTensor`s.
  """
  # Sequence example parsing requires a single (scalar) example.
  try:
    serialized = array_ops.reshape(serialized, [])
  except ValueError as e:
    raise ValueError(
        'serialized must contain as single sequence example. Batching must be '
        'done after parsing for sequence examples. Error: {}'.format(e))

  if context_feature_columns is None:
    context_feature_columns = []
  if sequence_feature_columns is None:
    sequence_feature_columns = []

  check_feature_columns(context_feature_columns)
  context_feature_spec = fc.create_feature_spec_for_parsing(
      context_feature_columns)

  check_feature_columns(sequence_feature_columns)
  sequence_feature_spec = fc._create_sequence_feature_spec_for_parsing(  # pylint: disable=protected-access
      sequence_feature_columns, allow_missing_by_default=False)

  return parsing_ops.parse_single_sequence_example(serialized,
                                                   context_feature_spec,
                                                   sequence_feature_spec,
                                                   example_name,
                                                   name)
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:55,代码来源:feature_column_ops.py


示例4: parse_feature_columns_from_examples

def parse_feature_columns_from_examples(serialized,
                                        feature_columns,
                                        name=None,
                                        example_names=None):
  """Parses tf.Examples to extract tensors for given feature_columns.

  This is a wrapper of 'tf.parse_example'. A typical usage is as follows:
  ```
  columns_to_tensor = tf.contrib.layers.parse_feature_columns_from_examples(
      serialized=my_data,
      feature_columns=my_features)

  # Where my_features are:
  # Define features and transformations
  country = sparse_column_with_keys("country", ["US", "BRA", ...])
  country_embedding = embedding_column(query_word, dimension=3, combiner="sum")
  query_word = sparse_column_with_hash_bucket(
    "query_word", hash_bucket_size=int(1e6))
  query_embedding = embedding_column(query_word, dimension=16, combiner="sum")
  age_bucket = bucketized_column(real_valued_column("age"),
                                 boundaries=[18+i*5 for i in range(10)])

    my_features = [query_embedding, age_bucket, country_embedding]
  ```

  Args:
    serialized: A vector (1-D Tensor) of strings, a batch of binary
      serialized `Example` protos.
    feature_columns: An iterable containing all the feature columns. All items
      should be instances of classes derived from _FeatureColumn.
    name: A name for this operation (optional).
    example_names: A vector (1-D Tensor) of strings (optional), the names of
      the serialized protos in the batch.

  Returns:
    A `dict` mapping FeatureColumn to `Tensor` and `SparseTensor` values.
  """

  columns_to_tensors = parsing_ops.parse_example(
      serialized=serialized,
      features=fc.create_feature_spec_for_parsing(feature_columns),
      name=name,
      example_names=example_names)

  transformer = _Transformer(columns_to_tensors)
  for column in sorted(set(feature_columns), key=lambda x: x.key):
    transformer.transform(column)
  return columns_to_tensors
开发者ID:0ruben,项目名称:tensorflow,代码行数:48,代码来源:feature_column_ops.py


示例5: testCreateFeatureSpec_ExperimentalColumns

  def testCreateFeatureSpec_ExperimentalColumns(self):
    real_valued_col0 = fc._real_valued_var_len_column(
        "real_valued_column0", is_sparse=True)
    real_valued_col1 = fc._real_valued_var_len_column(
        "real_valued_column1", dtype=dtypes.int64, default_value=0,
        is_sparse=False)
    feature_columns = set([real_valued_col0, real_valued_col1])
    expected_config = {
        "real_valued_column0": parsing_ops.VarLenFeature(dtype=dtypes.float32),
        "real_valued_column1":
            parsing_ops.FixedLenSequenceFeature(
                [], dtype=dtypes.int64, allow_missing=True, default_value=0),
    }

    config = fc.create_feature_spec_for_parsing(feature_columns)
    self.assertDictEqual(expected_config, config)
开发者ID:Dr4KK,项目名称:tensorflow,代码行数:16,代码来源:feature_column_test.py


示例6: testCreateFeatureSpec_RealValuedColumnWithDefaultValue

 def testCreateFeatureSpec_RealValuedColumnWithDefaultValue(self):
   real_valued_col1 = fc.real_valued_column(
       "real_valued_column1", default_value=2)
   real_valued_col2 = fc.real_valued_column(
       "real_valued_column2", 5, default_value=4)
   real_valued_col3 = fc.real_valued_column(
       "real_valued_column3", default_value=[8])
   real_valued_col4 = fc.real_valued_column(
       "real_valued_column4", 3, default_value=[1, 0, 6])
   real_valued_col5 = fc._real_valued_var_len_column(
       "real_valued_column5", default_value=2, is_sparse=True)
   real_valued_col6 = fc._real_valued_var_len_column(
       "real_valued_column6",
       dtype=dtypes.int64,
       default_value=1,
       is_sparse=False)
   feature_columns = [
       real_valued_col1, real_valued_col2, real_valued_col3, real_valued_col4,
       real_valued_col5, real_valued_col6
   ]
   config = fc.create_feature_spec_for_parsing(feature_columns)
   self.assertEqual(6, len(config))
   self.assertDictEqual(
       {
           "real_valued_column1":
               parsing_ops.FixedLenFeature(
                   [1], dtype=dtypes.float32, default_value=[2.]),
           "real_valued_column2":
               parsing_ops.FixedLenFeature(
                   [5],
                   dtype=dtypes.float32,
                   default_value=[4., 4., 4., 4., 4.]),
           "real_valued_column3":
               parsing_ops.FixedLenFeature(
                   [1], dtype=dtypes.float32, default_value=[8.]),
           "real_valued_column4":
               parsing_ops.FixedLenFeature(
                   [3], dtype=dtypes.float32, default_value=[1., 0., 6.]),
           "real_valued_column5":
               parsing_ops.VarLenFeature(dtype=dtypes.float32),
           "real_valued_column6":
               parsing_ops.FixedLenSequenceFeature(
                   [], dtype=dtypes.int64, allow_missing=True, default_value=1)
       },
       config)
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:45,代码来源:feature_column_test.py


示例7: _build_estimator_for_resource_export_test

def _build_estimator_for_resource_export_test():

  def _input_fn():
    iris = base.load_iris()
    return {
        'feature': constant_op.constant(iris.data, dtype=dtypes.float32)
    }, constant_op.constant(
        iris.target, shape=[150], dtype=dtypes.int32)

  feature_columns = [
      feature_column_lib.real_valued_column('feature', dimension=4)
  ]

  def resource_constant_model_fn(unused_features, unused_labels, mode):
    """A model_fn that loads a constant from a resource and serves it."""
    assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL,
                    model_fn.ModeKeys.INFER)

    const = constant_op.constant(-1, dtype=dtypes.int64)
    table = lookup.MutableHashTable(
        dtypes.string, dtypes.int64, const, name='LookupTableModel')
    update_global_step = variables.get_global_step().assign_add(1)
    if mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL):
      key = constant_op.constant(['key'])
      value = constant_op.constant([42], dtype=dtypes.int64)
      train_op_1 = table.insert(key, value)
      training_state = lookup.MutableHashTable(
          dtypes.string, dtypes.int64, const, name='LookupTableTrainingState')
      training_op_2 = training_state.insert(key, value)
      return (const, const,
              control_flow_ops.group(train_op_1, training_op_2,
                                     update_global_step))
    if mode == model_fn.ModeKeys.INFER:
      key = constant_op.constant(['key'])
      prediction = table.lookup(key)
      return prediction, const, update_global_step

  est = estimator.Estimator(model_fn=resource_constant_model_fn)
  est.fit(input_fn=_input_fn, steps=1)

  feature_spec = feature_column_lib.create_feature_spec_for_parsing(
      feature_columns)
  serving_input_fn = input_fn_utils.build_parsing_serving_input_fn(feature_spec)
  return est, serving_input_fn
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:44,代码来源:estimator_test.py


示例8: make_parsing_export_strategy

def make_parsing_export_strategy(feature_columns, exports_to_keep=5):
  """Create an ExportStrategy for use with Experiment, using `FeatureColumn`s.

  Creates a SavedModel export that expects to be fed with a single string
  Tensor containing serialized tf.Examples.  At serving time, incoming
  tf.Examples will be parsed according to the provided `FeatureColumn`s.

  Args:
    feature_columns: An iterable of `FeatureColumn`s representing the features
      that must be provided at serving time (excluding labels!).
    exports_to_keep: Number of exports to keep.  Older exports will be
      garbage-collected.  Defaults to 5.  Set to None to disable garbage
      collection.

  Returns:
    An ExportStrategy that can be passed to the Experiment constructor.
  """
  feature_spec = feature_column.create_feature_spec_for_parsing(feature_columns)
  serving_input_fn = input_fn_utils.build_parsing_serving_input_fn(feature_spec)
  return make_export_strategy(serving_input_fn, exports_to_keep=exports_to_keep)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:20,代码来源:saved_model_export_utils.py


示例9: make_parsing_export_strategy

def make_parsing_export_strategy(feature_columns,
                                 default_output_alternative_key=None,
                                 assets_extra=None,
                                 as_text=False,
                                 exports_to_keep=5):
  """Create an ExportStrategy for use with Experiment, using `FeatureColumn`s.

  Creates a SavedModel export that expects to be fed with a single string
  Tensor containing serialized tf.Examples.  At serving time, incoming
  tf.Examples will be parsed according to the provided `FeatureColumn`s.

  Args:
    feature_columns: An iterable of `FeatureColumn`s representing the features
      that must be provided at serving time (excluding labels!).
    default_output_alternative_key: the name of the head to serve when an
      incoming serving request does not explicitly request a specific head.
      Must be `None` if the estimator inherits from ${tf.estimator.Estimator}
      or for single-headed models.
    assets_extra: A dict specifying how to populate the assets.extra directory
      within the exported SavedModel.  Each key should give the destination
      path (including the filename) relative to the assets.extra directory.
      The corresponding value gives the full path of the source file to be
      copied.  For example, the simple case of copying a single file without
      renaming it is specified as
      `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`.
    as_text: whether to write the SavedModel proto in text format.
    exports_to_keep: Number of exports to keep.  Older exports will be
      garbage-collected.  Defaults to 5.  Set to None to disable garbage
      collection.

  Returns:
    An ExportStrategy that can be passed to the Experiment constructor.
  """
  feature_spec = feature_column.create_feature_spec_for_parsing(feature_columns)
  serving_input_fn = input_fn_utils.build_parsing_serving_input_fn(feature_spec)
  return make_export_strategy(
      serving_input_fn,
      default_output_alternative_key=default_output_alternative_key,
      assets_extra=assets_extra,
      as_text=as_text,
      exports_to_keep=exports_to_keep)
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:41,代码来源:saved_model_export_utils.py


示例10: _build_estimator_for_export_tests

def _build_estimator_for_export_tests(tmpdir):

  def _input_fn():
    iris = base.load_iris()
    return {
        'feature': constant_op.constant(
            iris.data, dtype=dtypes.float32)
    }, constant_op.constant(
        iris.target, shape=[150], dtype=dtypes.int32)

  feature_columns = [
      feature_column_lib.real_valued_column(
          'feature', dimension=4)
  ]

  est = linear.LinearRegressor(feature_columns)
  est.fit(input_fn=_input_fn, steps=20)

  feature_spec = feature_column_lib.create_feature_spec_for_parsing(
      feature_columns)
  serving_input_fn = input_fn_utils.build_parsing_serving_input_fn(feature_spec)

  # hack in an op that uses an asset, in order to test asset export.
  # this is not actually valid, of course.
  def serving_input_fn_with_asset():
    features, labels, inputs = serving_input_fn()

    vocab_file_name = os.path.join(tmpdir, 'my_vocab_file')
    vocab_file = gfile.GFile(vocab_file_name, mode='w')
    vocab_file.write(VOCAB_FILE_CONTENT)
    vocab_file.close()
    hashtable = lookup.HashTable(
        lookup.TextFileStringTableInitializer(vocab_file_name), 'x')
    features['bogus_lookup'] = hashtable.lookup(
        math_ops.to_int64(features['feature']))

    return input_fn_utils.InputFnOps(features, labels, inputs)

  return est, serving_input_fn_with_asset
开发者ID:Immexxx,项目名称:tensorflow,代码行数:39,代码来源:estimator_test.py


示例11: testCreateFeatureSpec_RealValuedColumnWithDefaultValue

 def testCreateFeatureSpec_RealValuedColumnWithDefaultValue(self):
   real_valued_col1 = fc.real_valued_column(
       "real_valued_column1", default_value=2)
   real_valued_col2 = fc.real_valued_column(
       "real_valued_column2", 5, default_value=4)
   real_valued_col3 = fc.real_valued_column(
       "real_valued_column3", default_value=[8])
   real_valued_col4 = fc.real_valued_column(
       "real_valued_column4", 3, default_value=[1, 0, 6])
   real_valued_col5 = fc.real_valued_column(
       "real_valued_column5", dimension=None, default_value=2)
   feature_columns = [
       real_valued_col1, real_valued_col2, real_valued_col3, real_valued_col4,
       real_valued_col5
   ]
   config = fc.create_feature_spec_for_parsing(feature_columns)
   self.assertEqual(5, len(config))
   self.assertDictEqual(
       {
           "real_valued_column1":
               parsing_ops.FixedLenFeature(
                   [1], dtype=dtypes.float32, default_value=[2.]),
           "real_valued_column2":
               parsing_ops.FixedLenFeature(
                   [5],
                   dtype=dtypes.float32,
                   default_value=[4., 4., 4., 4., 4.]),
           "real_valued_column3":
               parsing_ops.FixedLenFeature(
                   [1], dtype=dtypes.float32, default_value=[8.]),
           "real_valued_column4":
               parsing_ops.FixedLenFeature(
                   [3], dtype=dtypes.float32, default_value=[1., 0., 6.]),
           "real_valued_column5":
               parsing_ops.VarLenFeature(dtype=dtypes.float32)
       },
       config)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:37,代码来源:feature_column_test.py


示例12: parse_feature_columns_from_examples

def parse_feature_columns_from_examples(serialized,
                                        feature_columns,
                                        name=None,
                                        example_names=None):
  """Parses tf.Examples to extract tensors for given feature_columns.

  This is a wrapper of 'tf.parse_example'.

  Example:

  ```python
  columns_to_tensor = parse_feature_columns_from_examples(
      serialized=my_data,
      feature_columns=my_features)

  # Where my_features are:
  # Define features and transformations
  sparse_feature_a = sparse_column_with_keys(
      column_name="sparse_feature_a", keys=["AB", "CD", ...])

  embedding_feature_a = embedding_column(
      sparse_id_column=sparse_feature_a, dimension=3, combiner="sum")

  sparse_feature_b = sparse_column_with_hash_bucket(
      column_name="sparse_feature_b", hash_bucket_size=1000)

  embedding_feature_b = embedding_column(
      sparse_id_column=sparse_feature_b, dimension=16, combiner="sum")

  crossed_feature_a_x_b = crossed_column(
      columns=[sparse_feature_a, sparse_feature_b], hash_bucket_size=10000)

  real_feature = real_valued_column("real_feature")
  real_feature_buckets = bucketized_column(
      source_column=real_feature, boundaries=[...])

  my_features = [embedding_feature_b, real_feature_buckets, embedding_feature_a]
  ```

  Args:
    serialized: A vector (1-D Tensor) of strings, a batch of binary
      serialized `Example` protos.
    feature_columns: An iterable containing all the feature columns. All items
      should be instances of classes derived from _FeatureColumn.
    name: A name for this operation (optional).
    example_names: A vector (1-D Tensor) of strings (optional), the names of
      the serialized protos in the batch.

  Returns:
    A `dict` mapping FeatureColumn to `Tensor` and `SparseTensor` values.
  """
  check_feature_columns(feature_columns)
  columns_to_tensors = parsing_ops.parse_example(
      serialized=serialized,
      features=fc.create_feature_spec_for_parsing(feature_columns),
      name=name,
      example_names=example_names)

  transformer = _Transformer(columns_to_tensors)
  for column in sorted(set(feature_columns), key=lambda x: x.key):
    transformer.transform(column)
  return columns_to_tensors
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:62,代码来源:feature_column_ops.py


示例13: testCreateFeatureSpec

  def testCreateFeatureSpec(self):
    sparse_col = fc.sparse_column_with_hash_bucket(
        "sparse_column", hash_bucket_size=100)
    embedding_col = fc.embedding_column(
        fc.sparse_column_with_hash_bucket(
            "sparse_column_for_embedding", hash_bucket_size=10),
        dimension=4)
    sparse_id_col = fc.sparse_column_with_keys("id_column",
                                               ["marlo", "omar", "stringer"])
    weighted_id_col = fc.weighted_sparse_column(sparse_id_col,
                                                "id_weights_column")
    real_valued_col1 = fc.real_valued_column("real_valued_column1")
    real_valued_col2 = fc.real_valued_column("real_valued_column2", 5)
    real_valued_col3 = fc.real_valued_column(
        "real_valued_column3", dimension=None)
    bucketized_col1 = fc.bucketized_column(
        fc.real_valued_column("real_valued_column_for_bucketization1"), [0, 4])
    bucketized_col2 = fc.bucketized_column(
        fc.real_valued_column("real_valued_column_for_bucketization2", 4),
        [0, 4])
    a = fc.sparse_column_with_hash_bucket("cross_aaa", hash_bucket_size=100)
    b = fc.sparse_column_with_hash_bucket("cross_bbb", hash_bucket_size=100)
    cross_col = fc.crossed_column(set([a, b]), hash_bucket_size=10000)
    feature_columns = set([
        sparse_col, embedding_col, weighted_id_col, real_valued_col1,
        real_valued_col2, real_valued_col3, bucketized_col1, bucketized_col2,
        cross_col
    ])
    expected_config = {
        "sparse_column":
            parsing_ops.VarLenFeature(dtypes.string),
        "sparse_column_for_embedding":
            parsing_ops.VarLenFeature(dtypes.string),
        "id_column":
            parsing_ops.VarLenFeature(dtypes.string),
        "id_weights_column":
            parsing_ops.VarLenFeature(dtypes.float32),
        "real_valued_column1":
            parsing_ops.FixedLenFeature(
                [1], dtype=dtypes.float32),
        "real_valued_column2":
            parsing_ops.FixedLenFeature(
                [5], dtype=dtypes.float32),
        "real_valued_column3":
            parsing_ops.VarLenFeature(dtype=dtypes.float32),
        "real_valued_column_for_bucketization1":
            parsing_ops.FixedLenFeature(
                [1], dtype=dtypes.float32),
        "real_valued_column_for_bucketization2":
            parsing_ops.FixedLenFeature(
                [4], dtype=dtypes.float32),
        "cross_aaa":
            parsing_ops.VarLenFeature(dtypes.string),
        "cross_bbb":
            parsing_ops.VarLenFeature(dtypes.string)
    }

    config = fc.create_feature_spec_for_parsing(feature_columns)
    self.assertDictEqual(expected_config, config)

    # Test that the same config is parsed out if we pass a dictionary.
    feature_columns_dict = {
        str(i): val
        for i, val in enumerate(feature_columns)
    }
    config = fc.create_feature_spec_for_parsing(feature_columns_dict)
    self.assertDictEqual(expected_config, config)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:67,代码来源:feature_column_test.py


示例14: testCreateFeatureSpec

  def testCreateFeatureSpec(self):
    sparse_col = fc.sparse_column_with_hash_bucket(
        "sparse_column", hash_bucket_size=100)
    embedding_col = fc.embedding_column(
        fc.sparse_column_with_hash_bucket(
            "sparse_column_for_embedding", hash_bucket_size=10),
        dimension=4)
    str_sparse_id_col = fc.sparse_column_with_keys(
        "str_id_column", ["marlo", "omar", "stringer"])
    int32_sparse_id_col = fc.sparse_column_with_keys(
        "int32_id_column", [42, 1, -1000], dtype=dtypes.int32)
    int64_sparse_id_col = fc.sparse_column_with_keys(
        "int64_id_column", [42, 1, -1000], dtype=dtypes.int64)
    weighted_id_col = fc.weighted_sparse_column(str_sparse_id_col,
                                                "str_id_weights_column")
    real_valued_col1 = fc.real_valued_column("real_valued_column1")
    real_valued_col2 = fc.real_valued_column("real_valued_column2", 5)
    real_valued_col3 = fc._real_valued_var_len_column(
        "real_valued_column3", is_sparse=True)
    real_valued_col4 = fc._real_valued_var_len_column(
        "real_valued_column4", dtype=dtypes.int64, default_value=0,
        is_sparse=False)
    bucketized_col1 = fc.bucketized_column(
        fc.real_valued_column("real_valued_column_for_bucketization1"), [0, 4])
    bucketized_col2 = fc.bucketized_column(
        fc.real_valued_column("real_valued_column_for_bucketization2", 4),
        [0, 4])
    a = fc.sparse_column_with_hash_bucket("cross_aaa", hash_bucket_size=100)
    b = fc.sparse_column_with_hash_bucket("cross_bbb", hash_bucket_size=100)
    cross_col = fc.crossed_column(set([a, b]), hash_bucket_size=10000)
    one_hot_col = fc.one_hot_column(fc.sparse_column_with_hash_bucket(
        "sparse_column_for_one_hot", hash_bucket_size=100))
    scattered_embedding_col = fc.scattered_embedding_column(
        "scattered_embedding_column", size=100, dimension=10, hash_key=1)
    feature_columns = set([
        sparse_col, embedding_col, weighted_id_col, int32_sparse_id_col,
        int64_sparse_id_col, real_valued_col1, real_valued_col2,
        real_valued_col3, real_valued_col4, bucketized_col1, bucketized_col2,
        cross_col, one_hot_col, scattered_embedding_col
    ])
    expected_config = {
        "sparse_column":
            parsing_ops.VarLenFeature(dtypes.string),
        "sparse_column_for_embedding":
            parsing_ops.VarLenFeature(dtypes.string),
        "str_id_column":
            parsing_ops.VarLenFeature(dtypes.string),
        "int32_id_column":
            parsing_ops.VarLenFeature(dtypes.int32),
        "int64_id_column":
            parsing_ops.VarLenFeature(dtypes.int64),
        "str_id_weights_column":
            parsing_ops.VarLenFeature(dtypes.float32),
        "real_valued_column1":
            parsing_ops.FixedLenFeature(
                [1], dtype=dtypes.float32),
        "real_valued_column2":
            parsing_ops.FixedLenFeature(
                [5], dtype=dtypes.float32),
        "real_valued_column3":
            parsing_ops.VarLenFeature(dtype=dtypes.float32),
        "real_valued_column4":
            parsing_ops.FixedLenSequenceFeature(
                [], dtype=dtypes.int64, allow_missing=True, default_value=0),
        "real_valued_column_for_bucketization1":
            parsing_ops.FixedLenFeature(
                [1], dtype=dtypes.float32),
        "real_valued_column_for_bucketization2":
            parsing_ops.FixedLenFeature(
                [4], dtype=dtypes.float32),
        "cross_aaa":
            parsing_ops.VarLenFeature(dtypes.string),
        "cross_bbb":
            parsing_ops.VarLenFeature(dtypes.string),
        "sparse_column_for_one_hot":
            parsing_ops.VarLenFeature(dtypes.string),
        "scattered_embedding_column":
            parsing_ops.VarLenFeature(dtypes.string),
    }

    config = fc.create_feature_spec_for_parsing(feature_columns)
    self.assertDictEqual(expected_config, config)

    # Test that the same config is parsed out if we pass a dictionary.
    feature_columns_dict = {
        str(i): val
        for i, val in enumerate(feature_columns)
    }
    config = fc.create_feature_spec_for_parsing(feature_columns_dict)
    self.assertDictEqual(expected_config, config)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:90,代码来源:feature_column_test.py


示例15: testCreateFeatureSpec

  def testCreateFeatureSpec(self):
    sparse_col = fc.sparse_column_with_hash_bucket(
        "sparse_column", hash_bucket_size=100)
    embedding_col = fc.embedding_column(
        fc.sparse_column_with_hash_bucket(
            "sparse_column_for_embedding", hash_bucket_size=10),
        dimension=4)
    str_sparse_id_col = fc.sparse_column_with_keys(
        "str_id_column", ["marlo", "omar", "stringer"])
    int32_sparse_id_col = fc.sparse_column_with_keys(
        "int32_id_column", [42, 1, -1000], dtype=dtypes.int32)
    int64_sparse_id_col = fc.sparse_column_with_keys(
        "int64_id_column", [42, 1, -1000], dtype=dtypes.int64)
    weighted_id_col = fc.weighted_sparse_column(str_sparse_id_col,
                                                "str_id_weights_column")
    real_valued_col1 = fc.real_valued_column("real_valued_column1")
    real_valued_col2 = fc.real_valued_column("real_valued_column2", 5)
    bucketized_col1 = fc.bucketized_column(
        fc.real_valued_column("real_valued_column_for_bucketization1"), [0, 4])
    bucketized_col2 = fc.bucketized_column(
        fc.real_valued_column("real_valued_column_for_bucketization2", 4),
        [0, 4])
    a = fc.sparse_column_with_hash_bucket("cross_aaa", hash_bucket_size=100)
    b = fc.sparse_column_with_hash_bucket("cross_bbb", hash_bucket_size=100)
    cross_col = fc.crossed_column(set([a, b]), hash_bucket_size=10000)
    one_hot_col = fc.one_hot_column(fc.sparse_column_with_hash_bucket(
        "sparse_column_for_one_hot", hash_bucket_size=100))
    scattered_embedding_col = fc.scattered_embedding_column(
        "scattered_embedding_column", size=100, dimension=10, hash_key=1)
    feature_columns = set([
        sparse_col, embedding_col, weighted_id_col, int32_sparse_id_col,
        int64_sparse_id_col, real_valued_col1, real_valued_col2,
        bucketized_col1, bucketized_col2, cross_col, one_hot_col,
        scattered_embedding_col
    ])
    expected_config = {
        "sparse_column":
            parsing_ops.VarLenFeature(dtypes.string),
        "sparse_column_for_embedding":
            parsing_ops.VarLenFeature(dtypes.string),
        "str_id_column":
            parsing_ops.VarLenFeature(dtypes.string),
        "int32_id_column":
            parsing_ops.VarLenFeature(dtypes.int32),
        "int64_id_column":
            parsing_ops.VarLenFeature(dtypes.int64),
        "str_id_weights_column":
            parsing_ops.VarLenFeature(dtypes.float32),
        "real_valued_column1":
            parsing_ops.FixedLenFeature(
                [1], dtype=dtypes.float32),
        "real_valued_column2":
            parsing_ops.FixedLenFeature(
                [5], dtype=dtypes.float32),
        "real_valued_column_for_bucketization1":
            parsing_ops.FixedLenFeature(
                [1], dtype=dtypes.float32),
        "real_valued_column_for_bucketization2":
            parsing_ops.FixedLenFeature(
                [4], dtype=dtypes.float32),
        "cross_aaa":
            parsing_ops.VarLenFeature(dtypes.string),
        "cross_bbb":
            parsing_ops.VarLenFeature(dtypes.string),
        "sparse_column_for_one_hot":
            parsing_ops.VarLenFeature(dtypes.string),
        "scattered_embedding_column":
            parsing_ops.VarLenFeature(dtypes.string),
    }

    config = fc.create_feature_spec_for_parsing(feature_columns)
    self.assertDictEqual(expected_config, config)

    # Tests that contrib feature columns work with core library:
    config_core = fc_core.make_parse_example_spec(feature_columns)
    self.assertDictEqual(expected_config, config_core)

    # Test that the same config is parsed out if we pass a dictionary.
    feature_columns_dict = {
        str(i): val
        for i, val in enumerate(feature_columns)
    }
    config = fc.create_feature_spec_for_parsing(feature_columns_dict)
    self.assertDictEqual(expected_config, config)
开发者ID:Dr4KK,项目名称:tensorflow,代码行数:84,代码来源:feature_column_test.py



注:本文中的tensorflow.contrib.layers.python.layers.feature_column.create_feature_spec_for_parsing函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python feature_column.crossed_column函数代码示例发布时间:2022-05-27
下一篇:
Python feature_column.bucketized_column函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap