本文整理汇总了Python中tensorflow.contrib.layers.input_from_feature_columns函数的典型用法代码示例。如果您正苦于以下问题:Python input_from_feature_columns函数的具体用法?Python input_from_feature_columns怎么用?Python input_from_feature_columns使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了input_from_feature_columns函数的18个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: _dnn_logits
def _dnn_logits(self, features, is_training=False):
net = layers.input_from_feature_columns(
features,
self._get_dnn_feature_columns(),
weight_collections=[self._dnn_weight_collection])
for layer_id, num_hidden_units in enumerate(self._dnn_hidden_units):
net = layers.legacy_fully_connected(
net,
num_hidden_units,
activation_fn=self._dnn_activation_fn,
weight_collections=[self._dnn_weight_collection],
bias_collections=[self._dnn_weight_collection],
name="hiddenlayer_%d" % layer_id)
if self._dnn_dropout is not None and is_training:
net = layers.dropout(
net,
keep_prob=(1.0 - self._dnn_dropout))
self._add_hidden_layer_summary(net, "hiddenlayer_%d" % layer_id)
logit = layers.legacy_fully_connected(
net,
self._num_label_columns(),
weight_collections=[self._dnn_weight_collection],
bias_collections=[self._dnn_weight_collection],
name="dnn_logit")
self._add_hidden_layer_summary(logit, "dnn_logit")
return logit
开发者ID:Ambier,项目名称:tensorflow,代码行数:26,代码来源:dnn_linear_combined.py
示例2: build_model
def build_model(self, features, feature_columns, is_training):
"""See base class."""
self._feature_columns = feature_columns
input_layer_partitioner = (
partitioned_variables.min_max_variable_partitioner(
max_partitions=self._num_ps_replicas,
min_slice_size=64 << 20))
with variable_scope.variable_scope(
self._scope + "/input_from_feature_columns",
values=features.values(),
partitioner=input_layer_partitioner) as scope:
net = layers.input_from_feature_columns(
features,
self._get_feature_columns(),
weight_collections=[self._scope],
trainable=self._trainable,
scope=scope)
hidden_layer_partitioner = (
partitioned_variables.min_max_variable_partitioner(
max_partitions=self._num_ps_replicas))
for layer_id, num_hidden_units in enumerate(self._hidden_units):
with variable_scope.variable_scope(
self._scope + "/hiddenlayer_%d" % layer_id,
values=[net],
partitioner=hidden_layer_partitioner) as scope:
net = layers.fully_connected(
net,
num_hidden_units,
activation_fn=self._activation_fn,
variables_collections=[self._scope],
trainable=self._trainable,
scope=scope)
if self._dropout is not None and is_training:
net = layers.dropout(
net,
keep_prob=(1.0 - self._dropout))
self._add_hidden_layer_summary(net, scope.name)
with variable_scope.variable_scope(
self._scope + "/logits",
values=[net],
partitioner=hidden_layer_partitioner) as scope:
logits = layers.fully_connected(
net,
self._num_label_columns,
activation_fn=None,
variables_collections=[self._scope],
trainable=self._trainable,
scope=scope)
self._add_hidden_layer_summary(logits, "logits")
return logits
开发者ID:ComeOnGetMe,项目名称:tensorflow,代码行数:53,代码来源:composable_model.py
示例3: _get_exogenous_embedding_shape
def _get_exogenous_embedding_shape(self):
"""Computes the shape of the vector returned by _process_exogenous_features.
Returns:
The shape as a list. Does not include a batch dimension.
"""
if not self._exogenous_feature_columns:
return (0,)
with ops.Graph().as_default():
placeholder_features = (
feature_column.make_place_holder_tensors_for_base_features(
self._exogenous_feature_columns))
embedded = layers.input_from_feature_columns(
columns_to_tensors=placeholder_features,
feature_columns=self._exogenous_feature_columns)
return embedded.get_shape().as_list()[1:]
开发者ID:dananjayamahesh,项目名称:tensorflow,代码行数:16,代码来源:model.py
示例4: _get_model_input
def _get_model_input(self, features, weight_collections=None, scope=None):
# TODO(jamieas): add option to use context to construct initial state rather
# than appending it to sequence input.
initial_state = features.get(self._initial_state_key)
sequence_input = layers.sequence_input_from_feature_columns(
columns_to_tensors=features,
feature_columns=self._sequence_feature_columns,
weight_collections=weight_collections,
scope=scope)
if self._context_feature_columns is not None:
context_input = layers.input_from_feature_columns(
columns_to_tensors=features,
feature_columns=self._context_feature_columns,
weight_collections=weight_collections,
scope=scope)
sequence_input = _concatenate_context_input(sequence_input, context_input)
return initial_state, sequence_input
开发者ID:821760408-sp,项目名称:tensorflow,代码行数:21,代码来源:dynamic_rnn_estimator.py
示例5: build_sequence_input
def build_sequence_input(features,
sequence_feature_columns,
context_feature_columns,
weight_collections=None,
scope=None):
"""Combine sequence and context features into input for an RNN.
Args:
features: A `dict` containing the input and (optionally) sequence length
information and initial state.
sequence_feature_columns: An iterable containing all the feature columns
describing sequence features. All items in the set should be instances
of classes derived from `FeatureColumn`.
context_feature_columns: An iterable containing all the feature columns
describing context features i.e. features that apply across all time
steps. All items in the set should be instances of classes derived from
`FeatureColumn`.
weight_collections: List of graph collections to which weights are added.
scope: Optional scope, passed through to parsing ops.
Returns:
A `Tensor` of dtype `float32` and shape `[batch_size, padded_length, ?]`.
This will be used as input to an RNN.
"""
features = features.copy()
features.update(layers.transform_features(
features,
list(sequence_feature_columns) + list(context_feature_columns or [])))
sequence_input = layers.sequence_input_from_feature_columns(
columns_to_tensors=features,
feature_columns=sequence_feature_columns,
weight_collections=weight_collections,
scope=scope)
if context_feature_columns is not None:
context_input = layers.input_from_feature_columns(
columns_to_tensors=features,
feature_columns=context_feature_columns,
weight_collections=weight_collections,
scope=scope)
sequence_input = _concatenate_context_input(sequence_input, context_input)
return sequence_input
开发者ID:sandeepgupta2k4,项目名称:tensorflow,代码行数:40,代码来源:dynamic_rnn_estimator.py
示例6: _dnn_logits
def _dnn_logits(self, features):
net = layers.input_from_feature_columns(
features,
self._get_dnn_feature_columns(),
weight_collections=[self._dnn_weight_collection])
for layer_id, num_hidden_units in enumerate(self._dnn_hidden_units):
net = layers.legacy_fully_connected(
net,
num_hidden_units,
activation_fn=self._dnn_activation_fn,
weight_collections=[self._dnn_weight_collection],
bias_collections=[self._dnn_weight_collection],
name="hiddenlayer_%d" % layer_id)
self._add_hidden_layer_summary(net, "hiddenlayer_%d" % layer_id)
logit = layers.legacy_fully_connected(
net,
self._num_label_columns(),
weight_collections=[self._dnn_weight_collection],
bias_collections=[self._dnn_weight_collection],
name="dnn_logit")
self._add_hidden_layer_summary(logit, "dnn_logit")
return logit
开发者ID:01-,项目名称:tensorflow,代码行数:22,代码来源:dnn_linear_combined.py
示例7: build_model
def build_model(self, features, feature_columns, is_training):
"""See base class."""
features = self._get_feature_dict(features)
self._feature_columns = feature_columns
net = layers.input_from_feature_columns(
features,
self._get_feature_columns(),
weight_collections=[self._weight_collection_name])
for layer_id, num_hidden_units in enumerate(self._hidden_units):
with variable_scope.variable_op_scope(
[net], "hiddenlayer_%d" % layer_id,
partitioner=partitioned_variables.min_max_variable_partitioner(
max_partitions=self._config.num_ps_replicas)) as scope:
net = layers.fully_connected(
net,
num_hidden_units,
activation_fn=self._activation_fn,
variables_collections=[self._weight_collection_name],
scope=scope)
if self._dropout is not None and is_training:
net = layers.dropout(
net,
keep_prob=(1.0 - self._dropout))
self._add_hidden_layer_summary(net, scope.name)
with variable_scope.variable_op_scope(
[net], "dnn_logits",
partitioner=partitioned_variables.min_max_variable_partitioner(
max_partitions=self._config.num_ps_replicas)) as scope:
logits = layers.fully_connected(
net,
self._num_label_columns,
activation_fn=None,
variables_collections=[self._weight_collection_name],
scope=scope)
self._add_hidden_layer_summary(logits, "dnn_logits")
return logits
开发者ID:Brandon-Tai,项目名称:tensorflow,代码行数:37,代码来源:dnn_linear_combined.py
示例8: _dnn_logits
def _dnn_logits(self, features, is_training=False):
net = layers.input_from_feature_columns(
features, self._get_dnn_feature_columns(), weight_collections=[self._dnn_weight_collection]
)
for layer_id, num_hidden_units in enumerate(self._dnn_hidden_units):
with variable_scope.variable_op_scope(
[net],
"hiddenlayer_%d" % layer_id,
partitioner=partitioned_variables.min_max_variable_partitioner(
max_partitions=self._config.num_ps_replicas
),
) as scope:
net = layers.fully_connected(
net,
num_hidden_units,
activation_fn=self._dnn_activation_fn,
variables_collections=[self._dnn_weight_collection],
scope=scope,
)
if self._dnn_dropout is not None and is_training:
net = layers.dropout(net, keep_prob=(1.0 - self._dnn_dropout))
self._add_hidden_layer_summary(net, scope.name)
with variable_scope.variable_op_scope(
[net],
"dnn_logit",
partitioner=partitioned_variables.min_max_variable_partitioner(max_partitions=self._config.num_ps_replicas),
) as scope:
logit = layers.fully_connected(
net,
self._target_column.num_label_columns,
activation_fn=None,
variables_collections=[self._dnn_weight_collection],
scope=scope,
)
self._add_hidden_layer_summary(logit, "dnn_logit")
return logit
开发者ID:285219011,项目名称:liuwenfeng,代码行数:36,代码来源:dnn_linear_combined.py
示例9: _dnn_model_fn
def _dnn_model_fn(features, labels, mode, params, config=None):
"""Deep Neural Net model_fn.
Args:
features: `Tensor` or dict of `Tensor` (depends on data passed to `fit`).
labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of
dtype `int32` or `int64` in the range `[0, n_classes)`.
mode: Defines whether this is training, evaluation or prediction.
See `ModeKeys`.
params: A dict of hyperparameters.
The following hyperparameters are expected:
* head: A `_Head` instance.
* hidden_units: List of hidden units per layer.
* feature_columns: An iterable containing all the feature columns used by
the model.
* optimizer: string, `Optimizer` object, or callable that defines the
optimizer to use for training. If `None`, will use the Adagrad
optimizer with a default learning rate of 0.05.
* activation_fn: Activation function applied to each layer. If `None`,
will use `tf.nn.relu`.
* dropout: When not `None`, the probability we will drop out a given
coordinate.
* gradient_clip_norm: A float > 0. If provided, gradients are
clipped to their global norm with this clipping ratio.
* embedding_lr_multipliers: Optional. A dictionary from
`EmbeddingColumn` to a `float` multiplier. Multiplier will be used to
multiply with learning rate for the embedding variables.
* input_layer_min_slice_size: Optional. The min slice size of input layer
partitions. If not provided, will use the default of 64M.
config: `RunConfig` object to configure the runtime settings.
Returns:
predictions: A dict of `Tensor` objects.
loss: A scalar containing the loss of the step.
train_op: The op for training.
"""
head = params["head"]
hidden_units = params["hidden_units"]
feature_columns = params["feature_columns"]
optimizer = params.get("optimizer") or "Adagrad"
activation_fn = params.get("activation_fn")
dropout = params.get("dropout")
gradient_clip_norm = params.get("gradient_clip_norm")
input_layer_min_slice_size = (
params.get("input_layer_min_slice_size") or 64 << 20)
num_ps_replicas = config.num_ps_replicas if config else 0
embedding_lr_multipliers = params.get("embedding_lr_multipliers", {})
features = _get_feature_dict(features)
parent_scope = "dnn"
partitioner = partitioned_variables.min_max_variable_partitioner(
max_partitions=num_ps_replicas)
with variable_scope.variable_scope(
parent_scope,
values=tuple(six.itervalues(features)),
partitioner=partitioner):
input_layer_partitioner = (
partitioned_variables.min_max_variable_partitioner(
max_partitions=num_ps_replicas,
min_slice_size=input_layer_min_slice_size))
with variable_scope.variable_scope(
"input_from_feature_columns",
values=tuple(six.itervalues(features)),
partitioner=input_layer_partitioner) as input_layer_scope:
if all([
isinstance(fc, feature_column._FeatureColumn) # pylint: disable=protected-access
for fc in feature_columns
]):
net = layers.input_from_feature_columns(
columns_to_tensors=features,
feature_columns=feature_columns,
weight_collections=[parent_scope],
scope=input_layer_scope)
else:
net = fc_core.input_layer(
features=features,
feature_columns=feature_columns,
weight_collections=[parent_scope])
for layer_id, num_hidden_units in enumerate(hidden_units):
with variable_scope.variable_scope(
"hiddenlayer_%d" % layer_id,
values=(net,)) as hidden_layer_scope:
net = layers.fully_connected(
net,
num_hidden_units,
activation_fn=activation_fn,
variables_collections=[parent_scope],
scope=hidden_layer_scope)
if dropout is not None and mode == model_fn.ModeKeys.TRAIN:
net = layers.dropout(net, keep_prob=(1.0 - dropout))
_add_hidden_layer_summary(net, hidden_layer_scope.name)
with variable_scope.variable_scope(
"logits",
values=(net,)) as logits_scope:
logits = layers.fully_connected(
net,
head.logits_dimension,
#.........这里部分代码省略.........
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:101,代码来源:dnn.py
示例10: _dnn_tree_combined_model_fn
#.........这里部分代码省略.........
A `ModelFnOps` object.
Raises:
ValueError: if inputs are not valid.
"""
if not isinstance(features, dict):
raise ValueError("features should be a dictionary of `Tensor`s. "
"Given type: {}".format(type(features)))
if not dnn_feature_columns:
raise ValueError("dnn_feature_columns must be specified")
if dnn_to_tree_distillation_param:
if not predict_with_tree_only:
logging.warning("update predict_with_tree_only to True since distillation"
"is specified.")
predict_with_tree_only = True
# Build DNN Logits.
dnn_parent_scope = "dnn"
dnn_partitioner = dnn_input_layer_partitioner or (
partitioned_variables.min_max_variable_partitioner(
max_partitions=config.num_ps_replicas, min_slice_size=64 << 20))
if (output_type == model.ModelBuilderOutputType.ESTIMATOR_SPEC and
not use_core_versions):
raise ValueError("You must use core versions with Estimator Spec")
with variable_scope.variable_scope(
dnn_parent_scope,
values=tuple(six.itervalues(features)),
partitioner=dnn_partitioner):
with variable_scope.variable_scope(
"input_from_feature_columns",
values=tuple(six.itervalues(features)),
partitioner=dnn_partitioner) as input_layer_scope:
if use_core_versions:
input_layer = feature_column_lib.input_layer(
features=features,
feature_columns=dnn_feature_columns,
weight_collections=[dnn_parent_scope])
else:
input_layer = layers.input_from_feature_columns(
columns_to_tensors=features,
feature_columns=dnn_feature_columns,
weight_collections=[dnn_parent_scope],
scope=input_layer_scope)
previous_layer = input_layer
for layer_id, num_hidden_units in enumerate(dnn_hidden_units):
with variable_scope.variable_scope(
"hiddenlayer_%d" % layer_id,
values=(previous_layer,)) as hidden_layer_scope:
net = layers.fully_connected(
previous_layer,
num_hidden_units,
activation_fn=dnn_activation_fn,
variables_collections=[dnn_parent_scope],
scope=hidden_layer_scope)
if dnn_dropout is not None and mode == model_fn.ModeKeys.TRAIN:
net = layers.dropout(net, keep_prob=(1.0 - dnn_dropout))
_add_hidden_layer_summary(net, hidden_layer_scope.name)
previous_layer = net
with variable_scope.variable_scope(
"logits", values=(previous_layer,)) as logits_scope:
dnn_logits = layers.fully_connected(
previous_layer,
开发者ID:StephenOman,项目名称:tensorflow,代码行数:67,代码来源:dnn_tree_combined_estimator.py
示例11: _process_exogenous_features
def _process_exogenous_features(self, times, features):
"""Create a single vector from exogenous features.
Args:
times: A [batch size, window size] vector of times for this batch,
primarily used to check the shape information of exogenous features.
features: A dictionary of exogenous features corresponding to the columns
in self._exogenous_feature_columns. Each value should have a shape
prefixed by [batch size, window size].
Returns:
A Tensor with shape [batch size, window size, exogenous dimension], where
the size of the exogenous dimension depends on the exogenous feature
columns passed to the model's constructor.
Raises:
ValueError: If an exogenous feature has an unknown rank.
"""
if self._exogenous_feature_columns:
exogenous_features_single_batch_dimension = {}
for name, tensor in features.items():
if tensor.get_shape().ndims is None:
# input_from_feature_columns does not support completely unknown
# feature shapes, so we save on a bit of logic and provide a better
# error message by checking that here.
raise ValueError(
("Features with unknown rank are not supported. Got shape {} for "
"feature {}.").format(tensor.get_shape(), name))
tensor_shape_dynamic = array_ops.shape(tensor)
tensor = array_ops.reshape(
tensor,
array_ops.concat([[tensor_shape_dynamic[0]
* tensor_shape_dynamic[1]],
tensor_shape_dynamic[2:]], axis=0))
# Avoid shape warnings when embedding "scalar" exogenous features (those
# with only batch and window dimensions); input_from_feature_columns
# expects input ranks to match the embedded rank.
if tensor.get_shape().ndims == 1:
exogenous_features_single_batch_dimension[name] = tensor[:, None]
else:
exogenous_features_single_batch_dimension[name] = tensor
embedded_exogenous_features_single_batch_dimension = (
layers.input_from_feature_columns(
columns_to_tensors=exogenous_features_single_batch_dimension,
feature_columns=self._exogenous_feature_columns,
trainable=True))
exogenous_regressors = array_ops.reshape(
embedded_exogenous_features_single_batch_dimension,
array_ops.concat(
[
array_ops.shape(times), array_ops.shape(
embedded_exogenous_features_single_batch_dimension)[1:]
],
axis=0))
exogenous_regressors.set_shape(times.get_shape().concatenate(
embedded_exogenous_features_single_batch_dimension.get_shape()[1:]))
exogenous_regressors = math_ops.cast(
exogenous_regressors, dtype=self.dtype)
else:
# Not having any exogenous features is a special case so that models can
# avoid superfluous updates, which may not be free of side effects due to
# bias terms in transformations.
exogenous_regressors = None
return exogenous_regressors
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:62,代码来源:model.py
示例12: _dnn_tree_combined_model_fn
def _dnn_tree_combined_model_fn(
features, labels, mode, head, dnn_hidden_units,
dnn_feature_columns, tree_learner_config, num_trees,
tree_examples_per_layer,
config=None, dnn_optimizer="Adagrad",
dnn_activation_fn=nn.relu, dnn_dropout=None,
dnn_input_layer_partitioner=None,
dnn_input_layer_to_tree=True, dnn_steps_to_train=10000,
tree_feature_columns=None,
tree_center_bias=True):
"""DNN and GBDT combined model_fn.
Args:
features: `dict` of `Tensor` objects.
labels: Labels used to train on.
mode: Mode we are in. (TRAIN/EVAL/INFER)
head: A `Head` instance.
dnn_hidden_units: List of hidden units per layer.
dnn_feature_columns: An iterable containing all the feature columns
used by the model's DNN.
tree_learner_config: A config for the tree learner.
num_trees: Number of trees to grow model to after training DNN.
tree_examples_per_layer: Number of examples to accumulate before
growing the tree a layer. This value has a big impact on model
quality and should be set equal to the number of examples in
training dataset if possible. It can also be a function that computes
the number of examples based on the depth of the layer that's
being built.
config: `RunConfig` of the estimator.
dnn_optimizer: string, `Optimizer` object, or callable that defines the
optimizer to use for training the DNN. If `None`, will use the Adagrad
optimizer with default learning rate of 0.001.
dnn_activation_fn: Activation function applied to each layer of the DNN.
If `None`, will use `tf.nn.relu`.
dnn_dropout: When not `None`, the probability to drop out a given
unit in the DNN.
dnn_input_layer_partitioner: Partitioner for input layer of the DNN.
Defaults to `min_max_variable_partitioner` with `min_slice_size` 64 << 20.
dnn_input_layer_to_tree: Whether to provide the DNN's input layer
as a feature to the tree.
dnn_steps_to_train: Number of steps to train dnn for before switching
to gbdt.
tree_feature_columns: An iterable containing all the feature columns
used by the model's boosted trees. If dnn_input_layer_to_tree is
set to True, these features are in addition to dnn_feature_columns.
tree_center_bias: Whether a separate tree should be created for
first fitting the bias.
Returns:
A `ModelFnOps` object.
Raises:
ValueError: if inputs are not valid.
"""
if not isinstance(features, dict):
raise ValueError("features should be a dictionary of `Tensor`s. "
"Given type: {}".format(type(features)))
if not dnn_feature_columns:
raise ValueError("dnn_feature_columns must be specified")
# Build DNN Logits.
dnn_parent_scope = "dnn"
dnn_partitioner = dnn_input_layer_partitioner or (
partitioned_variables.min_max_variable_partitioner(
max_partitions=config.num_ps_replicas,
min_slice_size=64 << 20))
with variable_scope.variable_scope(
dnn_parent_scope,
values=tuple(six.itervalues(features)),
partitioner=dnn_partitioner):
with variable_scope.variable_scope(
"input_from_feature_columns",
values=tuple(six.itervalues(features)),
partitioner=dnn_partitioner) as input_layer_scope:
input_layer = layers.input_from_feature_columns(
columns_to_tensors=features,
feature_columns=dnn_feature_columns,
weight_collections=[dnn_parent_scope],
scope=input_layer_scope)
previous_layer = input_layer
for layer_id, num_hidden_units in enumerate(dnn_hidden_units):
with variable_scope.variable_scope(
"hiddenlayer_%d" % layer_id,
values=(previous_layer,)) as hidden_layer_scope:
net = layers.fully_connected(
previous_layer,
num_hidden_units,
activation_fn=dnn_activation_fn,
variables_collections=[dnn_parent_scope],
scope=hidden_layer_scope)
if dnn_dropout is not None and mode == model_fn.ModeKeys.TRAIN:
net = layers.dropout(net, keep_prob=(1.0 - dnn_dropout))
_add_hidden_layer_summary(net, hidden_layer_scope.name)
previous_layer = net
with variable_scope.variable_scope(
"logits",
values=(previous_layer,)) as logits_scope:
dnn_logits = layers.fully_connected(
#.........这里部分代码省略.........
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:101,代码来源:dnn_tree_combined_estimator.py
示例13: _dnn_linear_combined_model_fn
def _dnn_linear_combined_model_fn(features, labels, mode, params):
"""Deep Neural Net and Linear combined model_fn.
Args:
features: `Tensor` or dict of `Tensor` (depends on data passed to `fit`).
labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of dtype
`int32` or `int64` in the range `[0, n_classes)`.
mode: Defines whether this is training, evaluation or prediction.
See `ModeKeys`.
params: A dict of hyperparameters.
The following hyperparameters are expected:
* head: A `Head` instance.
* linear_feature_columns: An iterable containing all the feature columns
used by the Linear model.
* linear_optimizer: string, `Optimizer` object, or callable that defines
the optimizer to use for training the Linear model.
* joint_linear_weights: If True a single (possibly partitioned) variable
will be used to store the linear model weights. It's faster, but
requires all columns are sparse and have the 'sum' combiner.
* dnn_feature_columns: An iterable containing all the feature columns used
by the DNN model.
* dnn_optimizer: string, `Optimizer` object, or callable that defines the
optimizer to use for training the DNN model.
* dnn_hidden_units: List of hidden units per DNN layer.
* dnn_activation_fn: Activation function applied to each DNN layer. If
`None`, will use `tf.nn.relu`.
* dnn_dropout: When not `None`, the probability we will drop out a given
DNN coordinate.
* gradient_clip_norm: A float > 0. If provided, gradients are
clipped to their global norm with this clipping ratio.
* num_ps_replicas: The number of parameter server replicas.
Returns:
`estimator.ModelFnOps`
Raises:
ValueError: If both `linear_feature_columns` and `dnn_features_columns`
are empty at the same time.
"""
head = params["head"]
linear_feature_columns = params.get("linear_feature_columns")
linear_optimizer = params.get("linear_optimizer")
joint_linear_weights = params.get("joint_linear_weights")
dnn_feature_columns = params.get("dnn_feature_columns")
dnn_optimizer = params.get("dnn_optimizer")
dnn_hidden_units = params.get("dnn_hidden_units")
dnn_activation_fn = params.get("dnn_activation_fn")
dnn_dropout = params.get("dnn_dropout")
gradient_clip_norm = params.get("gradient_clip_norm")
num_ps_replicas = params["num_ps_replicas"]
if not linear_feature_columns and not dnn_feature_columns:
raise ValueError(
"Either linear_feature_columns or dnn_feature_columns must be defined.")
features = _get_feature_dict(features)
# Build DNN Logits.
dnn_parent_scope = "dnn"
if not dnn_feature_columns:
dnn_logits = None
else:
input_layer_partitioner = (
partitioned_variables.min_max_variable_partitioner(
max_partitions=num_ps_replicas,
min_slice_size=64 << 20))
with variable_scope.variable_scope(
dnn_parent_scope + "/input_from_feature_columns",
values=features.values(),
partitioner=input_layer_partitioner) as scope:
net = layers.input_from_feature_columns(
columns_to_tensors=features,
feature_columns=dnn_feature_columns,
weight_collections=[dnn_parent_scope],
scope=scope)
hidden_layer_partitioner = (
partitioned_variables.min_max_variable_partitioner(
max_partitions=num_ps_replicas))
for layer_id, num_hidden_units in enumerate(dnn_hidden_units):
with variable_scope.variable_scope(
dnn_parent_scope + "/hiddenlayer_%d" % layer_id,
values=[net],
partitioner=hidden_layer_partitioner) as scope:
net = layers.fully_connected(
net,
num_hidden_units,
activation_fn=dnn_activation_fn,
variables_collections=[dnn_parent_scope],
scope=scope)
if dnn_dropout is not None and mode == estimator.ModeKeys.TRAIN:
net = layers.dropout(
net,
keep_prob=(1.0 - dnn_dropout))
# TODO(b/31209633): Consider adding summary before dropout.
_add_hidden_layer_summary(net, scope.name)
with variable_scope.variable_scope(
dnn_parent_scope + "/logits",
#.........这里部分代码省略.........
开发者ID:DavidNemeskey,项目名称:tensorflow,代码行数:101,代码来源:dnn_linear_combined.py
示例14: dnn_sampled_softmax_classifier_model_fn
def dnn_sampled_softmax_classifier_model_fn(features, target_indices,
mode, params):
"""model_fn that uses candidate sampling.
Args:
features: Single Tensor or dict of Tensor (depends on data passed to `fit`)
target_indices: A single Tensor of shape [batch_size, n_labels] containing
the target indices.
mode: Represents if this training, evaluation or prediction. See `ModeKeys`.
params: A dict of hyperparameters that are listed below.
hidden_units- List of hidden units per layer. All layers are fully
connected. Ex. `[64, 32]` means first layer has 64 nodes and second one
has 32.
feature_columns- An iterable containing all the feature columns used by
the model. All items in the set should be instances of classes derived
from `FeatureColumn`.
n_classes- number of target classes. It must be greater than 2.
n_samples- number of sample target classes. Needs to be tuned - A good
starting point could be 2% of n_classes.
n_labels- number of labels in each example.
top_k- The number of classes to predict.
optimizer- An instance of `tf.Optimizer` used to train the model. If
`None`, will use an Adagrad optimizer.
dropout- When not `None`, the probability we will drop out a given
coordinate.
gradient_clip_norm- A float > 0. If provided, gradients are
clipped to their global norm with this clipping ratio. See
tf.clip_by_global_norm for more details.
num_ps_replicas- The number of parameter server replicas.
Returns:
predictions: A single Tensor or a dict of Tensors.
loss: A scalar containing the loss of the step.
train_op: The op for training.
"""
hidden_units = params["hidden_units"]
feature_columns = params["feature_columns"]
n_classes = params["n_classes"]
n_samples = params["n_samples"]
n_labels = params["n_labels"]
top_k = params["top_k"]
optimizer = params["optimizer"]
dropout = params["dropout"]
gradient_clip_norm = params["gradient_clip_norm"]
num_ps_replicas = params["num_ps_replicas"]
parent_scope = "dnn_ss"
# Setup the input layer partitioner.
input_layer_partitioner = (
partitioned_variables.min_max_variable_partitioner(
max_partitions=num_ps_replicas,
min_slice_size=64 << 20))
# Create the input layer.
with variable_scope.variable_scope(
parent_scope + "/input_from_feature_columns",
features.values(),
partitioner=input_layer_partitioner) as scope:
net = layers.input_from_feature_columns(
features,
feature_columns,
weight_collections=[parent_scope],
scope=scope)
# Setup the hidden layer partitioner.
hidden_layer_partitioner = (
partitioned_variables.min_max_variable_partitioner(
max_partitions=num_ps_replicas))
final_hidden_layer_dim = None
# Create hidden layers using fully_connected.
for layer_id, num_hidden_units in enumerate(hidden_units):
with variable_scope.variable_scope(
parent_scope + "/hiddenlayer_%d" % layer_id, [net],
partitioner=hidden_layer_partitioner) as scope:
net = layers.fully_connected(net,
num_hidden_units,
variables_collections=[parent_scope],
scope=scope)
final_hidden_layer_dim = num_hidden_units
# Add dropout if it is enabled.
if dropout is not None and mode == estimator.ModeKeys.TRAIN:
net = layers.dropout(net, keep_prob=(1.0 - dropout))
# Create the weights and biases for the logit layer.
with variable_scope.variable_scope(
parent_scope + "/logits", [net],
partitioner=hidden_layer_partitioner) as scope:
dtype = net.dtype.base_dtype
weights_shape = [n_classes, final_hidden_layer_dim]
weights = variables.model_variable(
"weights",
shape=weights_shape,
dtype=dtype,
initializer=initializers.xavier_initializer(),
trainable=True,
collections=[parent_scope])
biases = variables.model_variable(
#.........这里部分代码省略.........
开发者ID:alexisVallet,项目名称:tensorflow,代码行数:101,代码来源:dnn_sampled_softmax_classifier.py
示例15: _dnn_model_fn
def _dnn_model_fn(features, labels, mode, params):
"""Deep Neural Net model_fn.
Args:
features: `Tensor` or dict of `Tensor` (depends on data passed to `fit`).
labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of
dtype `int32` or `int64` in the range `[0, n_classes)`.
mode: Defines whether this is training, evaluation or prediction.
See `ModeKeys`.
params: A dict of hyperparameters.
The following hyperparameters are expected:
* head: A `_Head` instance.
* hidden_units: List of hidden units per layer.
* feature_columns: An iterable containing all the feature columns used by
the model.
* optimizer: string, `Optimizer` object, or callable that defines the
optimizer to use for training. If `None`, will use the Adagrad
optimizer with a default learning rate of 0.05.
* activation_fn: Activation function applied to each layer. If `None`,
will use `tf.nn.relu`.
* dropout: When not `None`, the probability we will drop out a given
coordinate.
* gradient_clip_norm: A float > 0. If provided, gradients are
clipped to their global norm with this clipping ratio.
* num_ps_replicas: The number of parameter server replicas.
Returns:
predictions: A dict of `Tensor` objects.
loss: A scalar containing the loss of the step.
train_op: The op for training.
"""
head = params["head"]
hidden_units = params["hidden_units"]
feature_columns = params["feature_columns"]
optimizer = params.get("optimizer") or "Adagrad"
activation_fn = params.get("activation_fn")
dropout = params.get("dropout")
gradient_clip_norm = params.get("gradient_clip_norm")
num_ps_replicas = params.get("num_ps_replicas", 0)
features = _get_feature_dict(features)
parent_scope = "dnn"
input_layer_partitioner = (
partitioned_variables.min_max_variable_partitioner(
max_partitions=num_ps_replicas,
min_slice_size=64 << 20))
with variable_scope.variable_scope(
parent_scope + "/input_from_feature_columns",
values=features.values(),
partitioner=input_layer_partitioner) as scope:
net = layers.input_from_feature_columns(
columns_to_tensors=features,
feature_columns=feature_columns,
weight_collections=[parent_scope],
scope=scope)
hidden_layer_partitioner = (
partitioned_variables.min_max_variable_partitioner(
max_partitions=num_ps_replicas))
for layer_id, num_hidden_units in enumerate(hidden_units):
with variable_scope.variable_scope(
parent_scope + "/hiddenlayer_%d" % layer_id,
values=[net],
partitioner=hidden_layer_partitioner) as scope:
net = layers.fully_connected(
net,
num_hidden_units,
activation_fn=activation_fn,
variables_collections=[parent_scope],
scope=scope)
if dropout is not None and mode == model_fn.ModeKeys.TRAIN:
net = layers.dropout(
net,
keep_prob=(1.0 - dropout))
_add_hidden_layer_summary(net, scope.name)
with variable_scope.variable_scope(
parent_scope + "/logits",
values=[net],
partitioner=hidden_layer_partitioner) as scope:
logits = layers.fully_connected(
net,
head.logits_dimension,
activation_fn=None,
variables_collections=[parent_scope],
scope=scope)
_add_hidden_layer_summary(logits, scope.name)
def _train_op_fn(loss):
"""Returns the op to optimize the loss."""
return optimizers.optimize_loss(
loss=loss,
global_step=contrib_variables.get_global_step(),
learning_rate=_LEARNING_RATE,
optimizer=_get_optimizer(optimizer),
clip_gradients=gradient_clip_norm,
name=parent_scope,
# Empty summaries to prevent optimizers from logging the training_loss.
summaries=[])
#.........这里部分代码省略.........
开发者ID:HKUST-SING,项目名称:tensorflow,代码行数:101,代码来源:dnn.py
示例16: _training_examples_and_variables
def _training_examples_and_variables():
"""Returns dictionaries for training examples and variables."""
batch_size = targets.get_shape()[0]
# Iterate over all feature columns and create appropriate lists for dense
# and sparse features as well as dense and sparse weights (variables) for
# SDCA.
# TODO(sibyl-vie3Poto): Reshape variables stored as values in column_to_variables
# dict as 1-dimensional tensors.
dense_features, sparse_features, sparse_feature_with_values = [], [], []
dense_feature_weights = []
sparse_feature_weights, sparse_feature_with_values_weights = [], []
# pylint: disable=protected-access
for column in sorted(columns_to_variables.keys(), key=lambda x: x.key):
transformed_tensor = features[column]
if isinstance(column, layers.feature_column._RealValuedColumn):
# A real-valued column corresponds to a dense feature in SDCA. A
# transformed tensor corresponding to a RealValuedColumn has rank 2
# (its shape is typically [batch_size, column.dimension]) and so it
# can be passed to SDCA as is.
dense_features.append(transformed_tensor)
# For real valued columns, the variables list contains exactly one
# element.
dense_feature_weights.append(columns_to_variables[column][0])
elif isinstance(column, layers.feature_column._BucketizedColumn):
# A bucketized column corresponds to a sparse feature in SDCA. The
# bucketized feature is "sparsified" for SDCA by converting it to a
# SparseFeatureColumn respresenting the one-hot encoding of the
# bucketized feature.
dense_bucket_tensor = layers.input_from_feature_columns(
{column: transformed_tensor}, [column])
sparse_feature_column = _tensor_to_sparse_feature_column(
dense_bucket_tensor)
sparse_feature_with_values.append(sparse_feature_column)
# For bucketized columns, the variables list contains exactly one
# element.
sparse_feature_with_values_weights.append(
columns_to_variables[column][0])
elif isinstance(column, (layers.feature_column._CrossedColumn,
layers.feature_column._SparseColumn)):
sparse_features.append(sdca_ops.SparseFeatureColumn(
array_ops.reshape(
array_ops.split(1, 2,
|
请发表评论