本文整理汇总了Python中tensorflow.contrib.layers.flatten函数的典型用法代码示例。如果您正苦于以下问题:Python flatten函数的具体用法?Python flatten怎么用?Python flatten使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了flatten函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: build_atari
def build_atari(minimap, screen, info, msize, ssize, num_action):
# Extract features
mconv1 = layers.conv2d(tf.transpose(minimap, [0, 2, 3, 1]),
num_outputs=16,
kernel_size=8,
stride=4,
scope='mconv1')
mconv2 = layers.conv2d(mconv1,
num_outputs=32,
kernel_size=4,
stride=2,
scope='mconv2')
sconv1 = layers.conv2d(tf.transpose(screen, [0, 2, 3, 1]),
num_outputs=16,
kernel_size=8,
stride=4,
scope='sconv1')
sconv2 = layers.conv2d(sconv1,
num_outputs=32,
kernel_size=4,
stride=2,
scope='sconv2')
info_fc = layers.fully_connected(layers.flatten(info),
num_outputs=256,
activation_fn=tf.tanh,
scope='info_fc')
# Compute spatial actions, non spatial actions and value
feat_fc = tf.concat([layers.flatten(mconv2), layers.flatten(sconv2), info_fc], axis=1)
feat_fc = layers.fully_connected(feat_fc,
num_outputs=256,
activation_fn=tf.nn.relu,
scope='feat_fc')
spatial_action_x = layers.fully_connected(feat_fc,
num_outputs=ssize,
activation_fn=tf.nn.softmax,
scope='spatial_action_x')
spatial_action_y = layers.fully_connected(feat_fc,
num_outputs=ssize,
activation_fn=tf.nn.softmax,
scope='spatial_action_y')
spatial_action_x = tf.reshape(spatial_action_x, [-1, 1, ssize])
spatial_action_x = tf.tile(spatial_action_x, [1, ssize, 1])
spatial_action_y = tf.reshape(spatial_action_y, [-1, ssize, 1])
spatial_action_y = tf.tile(spatial_action_y, [1, 1, ssize])
spatial_action = layers.flatten(spatial_action_x * spatial_action_y)
non_spatial_action = layers.fully_connected(feat_fc,
num_outputs=num_action,
activation_fn=tf.nn.softmax,
scope='non_spatial_action')
value = tf.reshape(layers.fully_connected(feat_fc,
num_outputs=1,
activation_fn=None,
scope='value'), [-1])
return spatial_action, non_spatial_action, value
开发者ID:fanyp17,项目名称:pysc2-agents,代码行数:58,代码来源:network.py
示例2: Build_SEnet
def Build_SEnet(self, input_x):
input_x = tf.pad(input_x, [[0, 0], [32, 32], [32, 32], [0, 0]])
# size 32 -> 96
# only cifar10 architecture
x = self.Stem(input_x, scope='stem')
for i in range(4) :
x = self.Inception_A(x, scope='Inception_A'+str(i))
channel = int(np.shape(x)[-1])
x = self.Squeeze_excitation_layer(x, out_dim=channel, ratio=reduction_ratio, layer_name='SE_A'+str(i))
x = self.Reduction_A(x, scope='Reduction_A')
for i in range(7) :
x = self.Inception_B(x, scope='Inception_B'+str(i))
channel = int(np.shape(x)[-1])
x = self.Squeeze_excitation_layer(x, out_dim=channel, ratio=reduction_ratio, layer_name='SE_B'+str(i))
x = self.Reduction_B(x, scope='Reduction_B')
for i in range(3) :
x = self.Inception_C(x, scope='Inception_C'+str(i))
channel = int(np.shape(x)[-1])
x = self.Squeeze_excitation_layer(x, out_dim=channel, ratio=reduction_ratio, layer_name='SE_C'+str(i))
x = Global_Average_Pooling(x)
x = Dropout(x, rate=0.2, training=self.training)
x = flatten(x)
x = Fully_connected(x, layer_name='final_fully_connected')
return x
开发者ID:aznikline,项目名称:SENet-Tensorflow,代码行数:32,代码来源:SE_Inception_v4.py
示例3: q_func_builder
def q_func_builder(input_placeholder, num_actions, scope, reuse=False):
with tf.variable_scope(scope, reuse=reuse):
latent = network(input_placeholder)
if isinstance(latent, tuple):
if latent[1] is not None:
raise NotImplementedError("DQN is not compatible with recurrent policies yet")
latent = latent[0]
latent = layers.flatten(latent)
with tf.variable_scope("action_value"):
action_out = latent
for hidden in hiddens:
action_out = layers.fully_connected(action_out, num_outputs=hidden, activation_fn=None)
if layer_norm:
action_out = layers.layer_norm(action_out, center=True, scale=True)
action_out = tf.nn.relu(action_out)
action_scores = layers.fully_connected(action_out, num_outputs=num_actions, activation_fn=None)
if dueling:
with tf.variable_scope("state_value"):
state_out = latent
for hidden in hiddens:
state_out = layers.fully_connected(state_out, num_outputs=hidden, activation_fn=None)
if layer_norm:
state_out = layers.layer_norm(state_out, center=True, scale=True)
state_out = tf.nn.relu(state_out)
state_score = layers.fully_connected(state_out, num_outputs=1, activation_fn=None)
action_scores_mean = tf.reduce_mean(action_scores, 1)
action_scores_centered = action_scores - tf.expand_dims(action_scores_mean, 1)
q_out = state_score + action_scores_centered
else:
q_out = action_scores
return q_out
开发者ID:MrGoogol,项目名称:baselines,代码行数:34,代码来源:models.py
示例4: lenet3_traffic
def lenet3_traffic(features, keep_prob):
"""
Define simple Lenet-like model with one convolution layer and three fully
connected layers.
"""
# Convolutional layer 1
l1_strides = (1, 1, 1, 1)
l1_padding = 'VALID'
l1_conv = tf.nn.conv2d(features, L1_W, l1_strides, l1_padding)
l1_biases = tf.nn.bias_add(l1_conv, L1_B)
# Activation.
l1_relu = tf.nn.relu(l1_biases)
# Pooling. Input = 28x28xL1_DEPTH. Output = 14x14xL1_DEPTH.
l1_pool = tf.nn.max_pool(l1_relu, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], \
padding='VALID')
# Flatten. Input = 14x14xL1_DEPTH. Output = L1_SIZE.
flat = flatten(l1_pool)
print("Flatten dimensions:", flat.get_shape())
# Layer 2: Fully Connected. Input = L1_SIZE. Output = L2_SIZE.
l2_linear = tf.add(tf.matmul(flat, L2_W), L2_B)
# Activation.
l2_relu = tf.nn.relu(l2_linear)
l2_drop = tf.nn.dropout(l2_relu, keep_prob)
# Layer 3: Fully Connected. Input = 500. Output = 43.
return tf.add(tf.matmul(l2_drop, L3_W), L3_B)
开发者ID:qpham01,项目名称:GitHub,代码行数:31,代码来源:lenet3_simple.py
示例5: Dense_net
def Dense_net(self, input_x):
x = conv_layer(input_x, filter=2 * self.filters, kernel=[7,7], stride=2, layer_name='conv0')
x = Max_Pooling(x, pool_size=[3,3], stride=2)
for i in range(self.nb_blocks) :
# 6 -> 12 -> 48
x = self.dense_block(input_x=x, nb_layers=4, layer_name='dense_'+str(i))
x = self.transition_layer(x, scope='trans_'+str(i))
"""
x = self.dense_block(input_x=x, nb_layers=6, layer_name='dense_1')
x = self.transition_layer(x, scope='trans_1')
x = self.dense_block(input_x=x, nb_layers=12, layer_name='dense_2')
x = self.transition_layer(x, scope='trans_2')
x = self.dense_block(input_x=x, nb_layers=48, layer_name='dense_3')
x = self.transition_layer(x, scope='trans_3')
"""
x = self.dense_block(input_x=x, nb_layers=32, layer_name='dense_final')
# 100 Layer
x = Batch_Normalization(x, training=self.training, scope='linear_batch')
x = Relu(x)
x = Global_Average_Pooling(x)
x = flatten(x)
x = Linear(x)
# x = tf.reshape(x, [-1, 10])
return x
开发者ID:aznikline,项目名称:Densenet-Tensorflow,代码行数:35,代码来源:Densenet_MNIST.py
示例6: _cnn_to_mlp
def _cnn_to_mlp(convs, hiddens, dueling, inpt, num_actions, scope, reuse=False, layer_norm=False):
with tf.variable_scope(scope, reuse=reuse):
out = inpt
with tf.variable_scope("convnet"):
for num_outputs, kernel_size, stride in convs:
out = layers.convolution2d(out,
num_outputs=num_outputs,
kernel_size=kernel_size,
stride=stride,
activation_fn=tf.nn.relu)
conv_out = layers.flatten(out)
with tf.variable_scope("action_value"):
action_out = conv_out
for hidden in hiddens:
action_out = layers.fully_connected(action_out, num_outputs=hidden, activation_fn=None)
if layer_norm:
action_out = layers.layer_norm(action_out, center=True, scale=True)
action_out = tf.nn.relu(action_out)
action_scores = layers.fully_connected(action_out, num_outputs=num_actions, activation_fn=None)
if dueling:
with tf.variable_scope("state_value"):
state_out = conv_out
for hidden in hiddens:
state_out = layers.fully_connected(state_out, num_outputs=hidden, activation_fn=None)
if layer_norm:
state_out = layers.layer_norm(state_out, center=True, scale=True)
state_out = tf.nn.relu(state_out)
state_score = layers.fully_connected(state_out, num_outputs=1, activation_fn=None)
action_scores_mean = tf.reduce_mean(action_scores, 1)
action_scores_centered = action_scores - tf.expand_dims(action_scores_mean, 1)
q_out = state_score + action_scores_centered
else:
q_out = action_scores
return q_out
开发者ID:Divyankpandey,项目名称:baselines,代码行数:35,代码来源:models.py
示例7: dueling_model
def dueling_model(img_in, num_actions, scope, reuse=False, layer_norm=False):
"""As described in https://arxiv.org/abs/1511.06581"""
with tf.variable_scope(scope, reuse=reuse):
out = img_in
with tf.variable_scope("convnet"):
# original architecture
out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
conv_out = layers.flatten(out)
with tf.variable_scope("state_value"):
state_hidden = layers.fully_connected(conv_out, num_outputs=512, activation_fn=None)
if layer_norm:
state_hidden = layer_norm_fn(state_hidden, relu=True)
else:
state_hidden = tf.nn.relu(state_hidden)
state_score = layers.fully_connected(state_hidden, num_outputs=1, activation_fn=None)
with tf.variable_scope("action_value"):
actions_hidden = layers.fully_connected(conv_out, num_outputs=512, activation_fn=None)
if layer_norm:
actions_hidden = layer_norm_fn(actions_hidden, relu=True)
else:
actions_hidden = tf.nn.relu(actions_hidden)
action_scores = layers.fully_connected(actions_hidden, num_outputs=num_actions, activation_fn=None)
action_scores_mean = tf.reduce_mean(action_scores, 1)
action_scores = action_scores - tf.expand_dims(action_scores_mean, 1)
return state_score + action_scores
开发者ID:IcarusTan,项目名称:baselines,代码行数:28,代码来源:model.py
示例8: conv_model
def conv_model(X, Y_, mode):
XX = tf.reshape(X, [-1, 28, 28, 1])
biasInit = tf.constant_initializer(0.1, dtype=tf.float32)
Y1 = layers.conv2d(XX, num_outputs=6, kernel_size=[6, 6], biases_initializer=biasInit)
Y2 = layers.conv2d(Y1, num_outputs=12, kernel_size=[5, 5], stride=2, biases_initializer=biasInit)
Y3 = layers.conv2d(Y2, num_outputs=24, kernel_size=[4, 4], stride=2, biases_initializer=biasInit)
Y4 = layers.flatten(Y3)
Y5 = layers.relu(Y4, 200, biases_initializer=biasInit)
# to deactivate dropout on the dense layer, set keep_prob=1
Y5d = layers.dropout(Y5, keep_prob=0.75, noise_shape=None, is_training=mode==learn.ModeKeys.TRAIN)
Ylogits = layers.linear(Y5d, 10)
predict = tf.nn.softmax(Ylogits)
classes = tf.cast(tf.argmax(predict, 1), tf.uint8)
loss = conv_model_loss(Ylogits, Y_, mode)
train_op = conv_model_train_op(loss, mode)
eval_metrics = conv_model_eval_metrics(classes, Y_, mode)
return learn.ModelFnOps(
mode=mode,
# You can name the fields of your predictions dictionary as you like.
predictions={"predictions": predict, "classes": classes},
loss=loss,
train_op=train_op,
eval_metric_ops=eval_metrics
)
开发者ID:spwcd,项目名称:QTML,代码行数:26,代码来源:task.py
示例9: model
def model(img_in, num_actions, scope, noisy=False, reuse=False,
concat_softmax=False):
with tf.variable_scope(scope, reuse=reuse):
out = img_in
with tf.variable_scope("convnet"):
# original architecture
out = layers.convolution2d(out, num_outputs=32, kernel_size=8,
stride=4, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=4,
stride=2, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=3,
stride=1, activation_fn=tf.nn.relu)
out = layers.flatten(out)
with tf.variable_scope("action_value"):
if noisy:
# Apply noisy network on fully connected layers
# ref: https://arxiv.org/abs/1706.10295
out = noisy_dense(out, name='noisy_fc1', size=512,
activation_fn=tf.nn.relu)
out = noisy_dense(out, name='noisy_fc2', size=num_actions)
else:
out = layers.fully_connected(out, num_outputs=512,
activation_fn=tf.nn.relu)
out = layers.fully_connected(out, num_outputs=num_actions,
activation_fn=None)
# V: Softmax - inspired by deep-rl-attack #
if concat_softmax:
out = tf.nn.softmax(out)
return out
开发者ID:limin24kobe,项目名称:cleverhans,代码行数:30,代码来源:model.py
示例10: dueling_model
def dueling_model(img_in, num_actions, scope, noisy=False, reuse=False,
concat_softmax=False):
"""As described in https://arxiv.org/abs/1511.06581"""
with tf.variable_scope(scope, reuse=reuse):
out = img_in
with tf.variable_scope("convnet"):
# original architecture
out = layers.convolution2d(out, num_outputs=32, kernel_size=8,
stride=4, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=4,
stride=2, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=3,
stride=1, activation_fn=tf.nn.relu)
out = layers.flatten(out)
with tf.variable_scope("state_value"):
if noisy:
# Apply noisy network on fully connected layers
# ref: https://arxiv.org/abs/1706.10295
state_hidden = noisy_dense(out, name='noisy_fc1', size=512,
activation_fn=tf.nn.relu)
state_score = noisy_dense(state_hidden, name='noisy_fc2',
size=1)
else:
state_hidden = layers.fully_connected(
out,
num_outputs=512,
activation_fn=tf.nn.relu
)
state_score = layers.fully_connected(state_hidden,
num_outputs=1,
activation_fn=None)
with tf.variable_scope("action_value"):
if noisy:
# Apply noisy network on fully connected layers
# ref: https://arxiv.org/abs/1706.10295
actions_hidden = noisy_dense(out, name='noisy_fc1', size=512,
activation_fn=tf.nn.relu)
action_scores = noisy_dense(actions_hidden, name='noisy_fc2',
size=num_actions)
else:
actions_hidden = layers.fully_connected(
out,
num_outputs=512,
activation_fn=tf.nn.relu
)
action_scores = layers.fully_connected(
actions_hidden,
num_outputs=num_actions,
activation_fn=None
)
action_scores_mean = tf.reduce_mean(action_scores, 1)
action_scores = action_scores - tf.expand_dims(
action_scores_mean,
1
)
return state_score + action_scores
开发者ID:limin24kobe,项目名称:cleverhans,代码行数:58,代码来源:model.py
示例11: dummy_discriminator_fn
def dummy_discriminator_fn(input_data, num_domains, mode):
del mode
hidden = layers.flatten(input_data)
output_src = math_ops.reduce_mean(hidden, axis=1)
output_cls = layers.fully_connected(
inputs=hidden, num_outputs=num_domains, scope='debug')
return output_src, output_cls
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:9,代码来源:stargan_estimator_test.py
示例12: to_trans
def to_trans(input):
if len(input.get_shape()) == 4:
input = layers.flatten(input)
num_inputs = input.get_shape()[1]
W_init = tf.constant_initializer(np.zeros((num_inputs, 2)))
b_init = tf.constant_initializer(np.array([0.,0.]))
return layers.fully_connected(input, 2,
weights_initializer=W_init,
biases_initializer=b_init)
开发者ID:juho-lee,项目名称:tf_practice,代码行数:9,代码来源:translate.py
示例13: LeNet
def LeNet(x):
# Layer 1: Convolutional. Input = 32x32x3. Output = 28x28x6.
conv1_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 3, 6), mean = 0, stddev = 0.1))
conv1_b = tf.Variable(tf.zeros(6))
conv1 = tf.nn.conv2d(x, conv1_W, strides=[1, 1, 1, 1], padding='VALID') + conv1_b
# Activation 1.
conv1 = tf.nn.relu(conv1)
# Pooling. Input = 28x28x6. Output = 14x14x6.
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
# Layer 2: Convolutional. Input = 14x14x6. Output = 10x10x16.
conv2_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 6, 16), mean = 0, stddev = 0.1))
conv2_b = tf.Variable(tf.zeros(16))
conv2 = tf.nn.conv2d(conv1, conv2_W, strides=[1, 1, 1, 1], padding='VALID') + conv2_b
# Activation 2.
conv2 = tf.nn.relu(conv2)
# Pooling. Input = 10x10x16. Output = 5x5x16.
conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
# Flatten. Input = 5x5x16. Output = 400.
flattened = flatten(conv2)
#Matrix multiplication
#input: 1x400
#weight: 400x120
#Matrix multiplication(dot product rule)
#output = 1x400 * 400*120 => 1x120
# Layer 3: Fully Connected. Input = 400. Output = 120.
fullyc1_W = tf.Variable(tf.truncated_normal(shape=(400, 120), mean = 0, stddev = 0.1))
fullyc1_b = tf.Variable(tf.zeros(120))
fullyc1 = tf.matmul(flattened, fullyc1_W) + fullyc1_b
# Full connected layer activation 1.
fullyc1 = tf.nn.relu(fullyc1)
# Layer 4: Fully Connected. Input = 120. Output = 84.
fullyc2_W = tf.Variable(tf.truncated_normal(shape=(120, 84), mean = 0, stddev = 0.1))
fullyc2_b = tf.Variable(tf.zeros(84))
fullyc2 = tf.matmul(fullyc1, fullyc2_W) + fullyc2_b
# Full connected layer activation 2.
fullyc2 = tf.nn.relu(fullyc2)
# Layer 5: Fully Connected. Input = 84. Output = 43.
fullyc3_W = tf.Variable(tf.truncated_normal(shape=(84, 43), mean = 0, stddev = 0.1))
fullyc3_b = tf.Variable(tf.zeros(43))
logits = tf.matmul(fullyc2, fullyc3_W) + fullyc3_b
return logits
开发者ID:maranemil,项目名称:howto,代码行数:56,代码来源:Traffic_Sign_Classifier844.ipynb.py
示例14: __call__
def __call__(self, x, reuse=False):
with tf.variable_scope(self.name) as scope:
if reuse:
scope.reuse_variables()
size = 64
shared = tcl.conv2d(x, num_outputs=size, kernel_size=4, # bzx64x64x3 -> bzx32x32x64
stride=2, activation_fn=tf.nn.relu)
shared = tcl.conv2d(shared, num_outputs=size * 2, kernel_size=4, # 16x16x128
stride=2, activation_fn=tf.nn.relu, normalizer_fn=tcl.batch_norm)
shared = tcl.conv2d(shared, num_outputs=size * 4, kernel_size=4, # 8x8x256
stride=2, activation_fn=tf.nn.relu, normalizer_fn=tcl.batch_norm)
shared = tcl.conv2d(shared, num_outputs=size * 8, kernel_size=3, # 4x4x512
stride=2, activation_fn=tf.nn.relu, normalizer_fn=tcl.batch_norm)
shared = tcl.fully_connected(tcl.flatten( # reshape, 1
shared), 1024, activation_fn=tf.nn.relu, normalizer_fn=tcl.batch_norm)
v = tcl.fully_connected(tcl.flatten(shared), 128)
return v
开发者ID:1202kbs,项目名称:GAN,代码行数:19,代码来源:nets.py
示例15: MyNet
def MyNet(x):
mu = 0
sigma = 0.1
global conv2_dropout
keep_prob = tf.constant(0.5,dtype=tf.float32)
# Layer 1: Convolutional. Input = 32x32x3. Output = 28x28x6.
conv1_W = tf.Variable(tf.truncated_normal(shape=(5, 5,1, 6), mean = mu, stddev = sigma))
conv1_b = tf.Variable(tf.zeros(6))
conv1 = tf.nn.conv2d(x, conv1_W, strides=[1, 1, 1, 1], padding='VALID') + conv1_b
# Activation.
conv1 = tf.nn.dropout(conv1,keep_prob)
# Pooling. Input = 28x28x6. Output = 14x14x6.
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
# Layer 2: Convolutional. Output = 10x10x16.
conv2_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 6, 16), mean = mu, stddev = sigma))
conv2_b = tf.Variable(tf.zeros(16))
conv2 = tf.nn.conv2d(conv1, conv2_W, strides=[1, 1, 1, 1], padding='VALID') + conv2_b
# Activation.
conv2_dropout = tf.nn.dropout(conv2,keep_prob)
# Pooling. Input = 10x10x16. Output = 5x5x16.
conv2_max = tf.nn.max_pool(conv2_dropout, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
# Flatten. Input = 5x5x16. Output = 400.
fc0 = flatten(conv2_max)
# Layer 3: Fully Connected. Input = 400. Output = 120.
fc1_W = tf.Variable(tf.truncated_normal(shape=(400, 120), mean = mu, stddev = sigma))
fc1_b = tf.Variable(tf.zeros(120))
fc1 = tf.matmul(fc0, fc1_W) + fc1_b
# Activation.
fc1 = tf.nn.sigmoid(fc1)
# Layer 4: Fully Connected. Input = 120. Output = 84.
fc2_W = tf.Variable(tf.truncated_normal(shape=(120, 84), mean = mu, stddev = sigma))
fc2_b = tf.Variable(tf.zeros(84))
fc2 = tf.matmul(fc1, fc2_W) + fc2_b
# Activation.
fc2 = tf.nn.sigmoid(fc2)
# Layer 5: Fully Connected. Input = 84. Output = n_classes.
fc3_W = tf.Variable(tf.truncated_normal(shape=(84, n_classes), mean = mu, stddev = sigma))
fc3_b = tf.Variable(tf.zeros(n_classes))
logits = tf.matmul(fc2, fc3_W) + fc3_b
return logits
开发者ID:maranemil,项目名称:howto,代码行数:55,代码来源:Traffic_Sign_Classifier_G.ipynb.py
示例16: create_linear_inference_op
def create_linear_inference_op(self, images):
"""
Performs a forward pass estimating label maps from RGB images using only a linear classifier.
:param images: The RGB images tensor.
:type images: tf.Tensor
:return: The label maps tensor.
:rtype: tf.Tensor
"""
predicted_labels = fully_connected(flatten(images), 2, activation_fn=None)
return predicted_labels
开发者ID:golmschenk,项目名称:resection_net,代码行数:11,代码来源:resection_net.py
示例17: create_network
def create_network(self, scope):
with tf.variable_scope(scope, reuse=False):
state_input = tf.placeholder('float', [None, 84, 84, 4])
out = layers.convolution2d(state_input, num_outputs=32, kernel_size=8, stride=1, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
conv_out = layers.flatten(out)
value_out = layers.fully_connected(conv_out, num_outputs=256, activation_fn=tf.nn.relu)
q_value = layers.fully_connected(value_out, num_outputs=self.action_dim, activation_fn=None)
return state_input, q_value
开发者ID:bigtreezhudi,项目名称:dqn,代码行数:11,代码来源:DQN.py
示例18: _discriminator_fn
def _discriminator_fn(inputs, num_domains):
"""Differentiable dummy discriminator for StarGAN."""
hidden = layers.flatten(inputs)
output_src = math_ops.reduce_mean(hidden, axis=1)
output_cls = layers.fully_connected(
inputs=hidden,
num_outputs=num_domains,
activation_fn=None,
normalizer_fn=None,
biases_initializer=None)
return output_src, output_cls
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:11,代码来源:tuple_losses_test.py
示例19: LeNet
def LeNet(x):
# Arguments used for tf.truncated_normal, randomly defines variables for the weights and biases for each layer
mu = 0
sigma = 0.1
# SOLUTION: Layer 1: Convolutional. Input = 32x32x3. Output = 28x28x6.
conv1_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 3, 32), mean = mu, stddev = sigma))
conv1_b = tf.Variable(tf.zeros(32))
conv1 = tf.nn.conv2d(x, conv1_W, strides=[1, 1, 1, 1], padding='VALID') + conv1_b
# SOLUTION: Activation.
conv1 = tf.nn.relu(conv1)
# SOLUTION: Pooling. Input = 28x28x32. Output = 14x14x32.
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
# SOLUTION: Layer 2: Convolutional. Output = 10x10x64.
conv2_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 32, 64), mean = mu, stddev = sigma))
conv2_b = tf.Variable(tf.zeros(64))
conv2 = tf.nn.conv2d(conv1, conv2_W, strides=[1, 1, 1, 1], padding='VALID') + conv2_b
# SOLUTION: Activation.
conv2 = tf.nn.relu(conv2)
# SOLUTION: Pooling. Input = 10x10x64. Output = 5x5x64.
conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
# SOLUTION: Flatten. Input = 5x5x64 Output = 1600.
fc0 = flatten(conv2)
# SOLUTION: Layer 3: Fully Connected. Input = 1600. Output = 120.
fc1_W = tf.Variable(tf.truncated_normal(shape=(1600, 120), mean = mu, stddev = sigma))
fc1_b = tf.Variable(tf.zeros(120))
fc1 = tf.matmul(fc0, fc1_W) + fc1_b
# SOLUTION: Activation.
fc1 = tf.nn.relu(fc1)
# SOLUTION: Layer 4: Fully Connected. Input = 120. Output = 84.
fc2_W = tf.Variable(tf.truncated_normal(shape=(120, 84), mean = mu, stddev = sigma))
fc2_b = tf.Variable(tf.zeros(84))
fc2 = tf.matmul(fc1, fc2_W) + fc2_b
# SOLUTION: Activation.
fc2 = tf.nn.relu(fc2)
fc2 = tf.nn.dropout(fc2, dropout)
# SOLUTION: Layer 5: Fully Connected. Input = 84. Output = 10.
fc3_W = tf.Variable(tf.truncated_normal(shape=(84, 43), mean = mu, stddev = sigma))
fc3_b = tf.Variable(tf.zeros(43))
logits = tf.matmul(fc2, fc3_W) + fc3_b
return logits
开发者ID:maranemil,项目名称:howto,代码行数:53,代码来源:Traffic_Sign_Classifier7.ipynb.py
示例20: create_two_layer_inference_op
def create_two_layer_inference_op(self, images):
"""
Performs a forward pass estimating label maps from RGB images using 2 fully connected layers.
:param images: The RGB images tensor.
:type images: tf.Tensor
:return: The label maps tensor.
:rtype: tf.Tensor
"""
fc1_output = fully_connected(flatten(images), 64, activation_fn=leaky_relu)
predicted_labels = fully_connected(fc1_output, 2, activation_fn=None)
return predicted_labels
开发者ID:golmschenk,项目名称:resection_net,代码行数:12,代码来源:resection_net.py
注:本文中的tensorflow.contrib.layers.flatten函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论