本文整理汇总了Python中tensorflow.contrib.layers.conv2d函数的典型用法代码示例。如果您正苦于以下问题:Python conv2d函数的具体用法?Python conv2d怎么用?Python conv2d使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了conv2d函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: conv2d_same
def conv2d_same(inputs, num_outputs, kernel_size, stride, rate=1, scope=None):
"""Strided 2-D convolution with 'SAME' padding.
When stride > 1, then we do explicit zero-padding, followed by conv2d with
'VALID' padding.
Note that
net = conv2d_same(inputs, num_outputs, 3, stride=stride)
is equivalent to
net = tf.contrib.layers.conv2d(inputs, num_outputs, 3, stride=1,
padding='SAME')
net = subsample(net, factor=stride)
whereas
net = tf.contrib.layers.conv2d(inputs, num_outputs, 3, stride=stride,
padding='SAME')
is different when the input's height or width is even, which is why we add the
current function. For more details, see ResnetUtilsTest.testConv2DSameEven().
Args:
inputs: A 4-D tensor of size [batch, height_in, width_in, channels].
num_outputs: An integer, the number of output filters.
kernel_size: An int with the kernel_size of the filters.
stride: An integer, the output stride.
rate: An integer, rate for atrous convolution.
scope: Scope.
Returns:
output: A 4-D tensor of size [batch, height_out, width_out, channels] with
the convolution output.
"""
if stride == 1:
return layers_lib.conv2d(
inputs,
num_outputs,
kernel_size,
stride=1,
rate=rate,
padding='SAME',
scope=scope)
else:
kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
pad_total = kernel_size_effective - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
inputs = array_ops.pad(
inputs, [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]])
return layers_lib.conv2d(
inputs,
num_outputs,
kernel_size,
stride=stride,
rate=rate,
padding='VALID',
scope=scope)
开发者ID:LUTAN,项目名称:tensorflow,代码行数:60,代码来源:resnet_utils.py
示例2: conv_model
def conv_model(X, Y_, mode):
XX = tf.reshape(X, [-1, 28, 28, 1])
biasInit = tf.constant_initializer(0.1, dtype=tf.float32)
Y1 = layers.conv2d(XX, num_outputs=6, kernel_size=[6, 6], biases_initializer=biasInit)
Y2 = layers.conv2d(Y1, num_outputs=12, kernel_size=[5, 5], stride=2, biases_initializer=biasInit)
Y3 = layers.conv2d(Y2, num_outputs=24, kernel_size=[4, 4], stride=2, biases_initializer=biasInit)
Y4 = layers.flatten(Y3)
Y5 = layers.relu(Y4, 200, biases_initializer=biasInit)
# to deactivate dropout on the dense layer, set keep_prob=1
Y5d = layers.dropout(Y5, keep_prob=0.75, noise_shape=None, is_training=mode==learn.ModeKeys.TRAIN)
Ylogits = layers.linear(Y5d, 10)
predict = tf.nn.softmax(Ylogits)
classes = tf.cast(tf.argmax(predict, 1), tf.uint8)
loss = conv_model_loss(Ylogits, Y_, mode)
train_op = conv_model_train_op(loss, mode)
eval_metrics = conv_model_eval_metrics(classes, Y_, mode)
return learn.ModelFnOps(
mode=mode,
# You can name the fields of your predictions dictionary as you like.
predictions={"predictions": predict, "classes": classes},
loss=loss,
train_op=train_op,
eval_metric_ops=eval_metrics
)
开发者ID:spwcd,项目名称:QTML,代码行数:26,代码来源:task.py
示例3: discriminator_stego_nn
def discriminator_stego_nn(self, img, reuse=False):
with tf.variable_scope('S_network'):
if reuse:
tf.get_variable_scope().reuse_variables()
net = img
net = self.image_processing_layer(img)
net = self.batch_norm(net, scope='d_s_bn0')
net = conv2d(net, self.df_dim, kernel_size=[5, 5], stride=[2, 2],
activation_fn=self.leaky_relu, scope='d_s_h0_conv')
net = self.batch_norm(net, scope='d_s_bn1')
net = conv2d(net, self.df_dim * 2, kernel_size=[5, 5], stride=[2, 2],
activation_fn=self.leaky_relu, scope='d_s_h1_conv')
net = self.batch_norm(net, scope='d_s_bn2')
net = conv2d(net, self.df_dim * 4, kernel_size=[5, 5], stride=[2, 2],
activation_fn=self.leaky_relu, scope='d_s_h2_conv')
net = self.batch_norm(net, scope='d_s_bn3')
net = conv2d(net, self.df_dim * 8, kernel_size=[5, 5], stride=[2, 2],
activation_fn=self.leaky_relu, scope='d_s_h3_conv')
net = self.batch_norm(net, scope='d_s_bn4')
net = tf.reshape(net, [self.conf.batch_size, -1])
net = linear(net, 1, activation_fn=tf.nn.sigmoid, scope='d_s_h4_lin',
weights_initializer=tf.random_normal_initializer(stddev=0.02))
return net
开发者ID:dvolkhonskiy,项目名称:Adversarial-Model-For-Steganography,代码行数:31,代码来源:sgan.py
示例4: vgg_a
def vgg_a(inputs,
num_classes=1000,
is_training=True,
dropout_keep_prob=0.5,
spatial_squeeze=True,
scope='vgg_a'):
"""Oxford Net VGG 11-Layers version A Example.
Note: All the fully_connected layers have been transformed to conv2d layers.
To use in classification mode, resize input to 224x224.
Args:
inputs: a tensor of size [batch_size, height, width, channels].
num_classes: number of predicted classes.
is_training: whether or not the model is being trained.
dropout_keep_prob: the probability that activations are kept in the dropout
layers during training.
spatial_squeeze: whether or not should squeeze the spatial dimensions of the
outputs. Useful to remove unnecessary dimensions for classification.
scope: Optional scope for the variables.
Returns:
the last op containing the log predictions and end_points dict.
"""
with variable_scope.variable_scope(scope, 'vgg_a', [inputs]) as sc:
end_points_collection = sc.original_name_scope + '_end_points'
# Collect outputs for conv2d, fully_connected and max_pool2d.
with arg_scope(
[layers.conv2d, layers_lib.max_pool2d],
outputs_collections=end_points_collection):
net = layers_lib.repeat(
inputs, 1, layers.conv2d, 64, [3, 3], scope='conv1')
net = layers_lib.max_pool2d(net, [2, 2], scope='pool1')
net = layers_lib.repeat(net, 1, layers.conv2d, 128, [3, 3], scope='conv2')
net = layers_lib.max_pool2d(net, [2, 2], scope='pool2')
net = layers_lib.repeat(net, 2, layers.conv2d, 256, [3, 3], scope='conv3')
net = layers_lib.max_pool2d(net, [2, 2], scope='pool3')
net = layers_lib.repeat(net, 2, layers.conv2d, 512, [3, 3], scope='conv4')
net = layers_lib.max_pool2d(net, [2, 2], scope='pool4')
net = layers_lib.repeat(net, 2, layers.conv2d, 512, [3, 3], scope='conv5')
net = layers_lib.max_pool2d(net, [2, 2], scope='pool5')
# Use conv2d instead of fully_connected layers.
net = layers.conv2d(net, 4096, [7, 7], padding='VALID', scope='fc6')
net = layers_lib.dropout(
net, dropout_keep_prob, is_training=is_training, scope='dropout6')
net = layers.conv2d(net, 4096, [1, 1], scope='fc7')
net = layers_lib.dropout(
net, dropout_keep_prob, is_training=is_training, scope='dropout7')
net = layers.conv2d(
net,
num_classes, [1, 1],
activation_fn=None,
normalizer_fn=None,
scope='fc8')
# Convert end_points_collection into a end_point dict.
end_points = utils.convert_collection_to_dict(end_points_collection)
if spatial_squeeze:
net = array_ops.squeeze(net, [1, 2], name='fc8/squeezed')
end_points[sc.name + '/fc8'] = net
return net, end_points
开发者ID:1000sprites,项目名称:tensorflow,代码行数:60,代码来源:vgg.py
示例5: bottleneck
def bottleneck(inputs,
depth,
depth_bottleneck,
stride,
rate=1,
outputs_collections=None,
scope=None):
"""Bottleneck residual unit variant with BN before convolutions.
This is the full preactivation residual unit variant proposed in [2]. See
Fig. 1(b) of [2] for its definition. Note that we use here the bottleneck
variant which has an extra bottleneck layer.
When putting together two consecutive ResNet blocks that use this unit, one
should use stride = 2 in the last unit of the first block.
Args:
inputs: A tensor of size [batch, height, width, channels].
depth: The depth of the ResNet unit output.
depth_bottleneck: The depth of the bottleneck layers.
stride: The ResNet unit's stride. Determines the amount of downsampling of
the units output compared to its input.
rate: An integer, rate for atrous convolution.
outputs_collections: Collection to add the ResNet unit output.
scope: Optional variable_scope.
Returns:
The ResNet unit's output.
"""
with variable_scope.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc:
depth_in = utils.last_dimension(inputs.get_shape(), min_rank=4)
preact = layers.batch_norm(
inputs, activation_fn=nn_ops.relu, scope='preact')
if depth == depth_in:
shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
else:
shortcut = layers_lib.conv2d(
preact,
depth, [1, 1],
stride=stride,
normalizer_fn=None,
activation_fn=None,
scope='shortcut')
residual = layers_lib.conv2d(
preact, depth_bottleneck, [1, 1], stride=1, scope='conv1')
residual = resnet_utils.conv2d_same(
residual, depth_bottleneck, 3, stride, rate=rate, scope='conv2')
residual = layers_lib.conv2d(
residual,
depth, [1, 1],
stride=1,
normalizer_fn=None,
activation_fn=None,
scope='conv3')
output = shortcut + residual
return utils.collect_named_outputs(outputs_collections, sc.name, output)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:59,代码来源:resnet_v2.py
示例6: build_atari
def build_atari(minimap, screen, info, msize, ssize, num_action):
# Extract features
mconv1 = layers.conv2d(tf.transpose(minimap, [0, 2, 3, 1]),
num_outputs=16,
kernel_size=8,
stride=4,
scope='mconv1')
mconv2 = layers.conv2d(mconv1,
num_outputs=32,
kernel_size=4,
stride=2,
scope='mconv2')
sconv1 = layers.conv2d(tf.transpose(screen, [0, 2, 3, 1]),
num_outputs=16,
kernel_size=8,
stride=4,
scope='sconv1')
sconv2 = layers.conv2d(sconv1,
num_outputs=32,
kernel_size=4,
stride=2,
scope='sconv2')
info_fc = layers.fully_connected(layers.flatten(info),
num_outputs=256,
activation_fn=tf.tanh,
scope='info_fc')
# Compute spatial actions, non spatial actions and value
feat_fc = tf.concat([layers.flatten(mconv2), layers.flatten(sconv2), info_fc], axis=1)
feat_fc = layers.fully_connected(feat_fc,
num_outputs=256,
activation_fn=tf.nn.relu,
scope='feat_fc')
spatial_action_x = layers.fully_connected(feat_fc,
num_outputs=ssize,
activation_fn=tf.nn.softmax,
scope='spatial_action_x')
spatial_action_y = layers.fully_connected(feat_fc,
num_outputs=ssize,
activation_fn=tf.nn.softmax,
scope='spatial_action_y')
spatial_action_x = tf.reshape(spatial_action_x, [-1, 1, ssize])
spatial_action_x = tf.tile(spatial_action_x, [1, ssize, 1])
spatial_action_y = tf.reshape(spatial_action_y, [-1, ssize, 1])
spatial_action_y = tf.tile(spatial_action_y, [1, 1, ssize])
spatial_action = layers.flatten(spatial_action_x * spatial_action_y)
non_spatial_action = layers.fully_connected(feat_fc,
num_outputs=num_action,
activation_fn=tf.nn.softmax,
scope='non_spatial_action')
value = tf.reshape(layers.fully_connected(feat_fc,
num_outputs=1,
activation_fn=None,
scope='value'), [-1])
return spatial_action, non_spatial_action, value
开发者ID:fanyp17,项目名称:pysc2-agents,代码行数:58,代码来源:network.py
示例7: conv_model
def conv_model(X, Y_):
XX = tf.reshape(X, [-1, 28, 28, 1])
Y1 = layers.conv2d(XX, num_outputs=6, kernel_size=[6, 6])
Y2 = layers.conv2d(Y1, num_outputs=12, kernel_size=[5, 5], stride=2)
Y3 = layers.conv2d(Y2, num_outputs=24, kernel_size=[4, 4], stride=2)
Y4 = layers.flatten(Y3)
Y5 = layers.relu(Y4, 200)
Ylogits = layers.linear(Y5, 10)
predict = tf.nn.softmax(Ylogits)
classes = tf.cast(tf.argmax(predict, 1), tf.uint8)
loss = tf.nn.softmax_cross_entropy_with_logits(Ylogits, tf.one_hot(Y_, 10))
train_op = layers.optimize_loss(loss, framework.get_global_step(), 0.003, "Adam")
return {"predictions":predict, "classes": classes}, loss, train_op
开发者ID:pooneetthaper,项目名称:stuff,代码行数:14,代码来源:hlversion.py
示例8: conv_model
def conv_model(X, Y_, mode):
XX = tf.reshape(X, [-1, 28, 28, 1])
biasInit = tf.constant_initializer(0.1, dtype=tf.float32)
Y1 = layers.conv2d(XX, num_outputs=6, kernel_size=[6, 6], biases_initializer=biasInit)
Y2 = layers.conv2d(Y1, num_outputs=12, kernel_size=[5, 5], stride=2, biases_initializer=biasInit)
Y3 = layers.conv2d(Y2, num_outputs=24, kernel_size=[4, 4], stride=2, biases_initializer=biasInit)
Y4 = layers.flatten(Y3)
Y5 = layers.relu(Y4, 200, biases_initializer=biasInit)
Ylogits = layers.linear(Y5, 10)
predict = tf.nn.softmax(Ylogits)
classes = tf.cast(tf.argmax(predict, 1), tf.uint8)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(Ylogits, tf.one_hot(Y_, 10)))*100
train_op = layers.optimize_loss(loss, framework.get_global_step(), 0.001, "Adam")
return {"predictions":predict, "classes": classes}, loss, train_op
开发者ID:laventura,项目名称:tensorflow-mnist-tutorial,代码行数:14,代码来源:task.py
示例9: resBlock
def resBlock(x, num_outputs, kernel_size = 4, stride=1, activation_fn=tf.nn.relu, normalizer_fn=tcl.batch_norm, scope=None):
assert num_outputs%2==0 #num_outputs must be divided by channel_factor(2 here)
with tf.variable_scope(scope, 'resBlock'):
shortcut = x
if stride != 1 or x.get_shape()[3] != num_outputs:
shortcut = tcl.conv2d(shortcut, num_outputs, kernel_size=1, stride=stride,
activation_fn=None, normalizer_fn=None, scope='shortcut')
x = tcl.conv2d(x, num_outputs/2, kernel_size=1, stride=1, padding='SAME')
x = tcl.conv2d(x, num_outputs/2, kernel_size=kernel_size, stride=stride, padding='SAME')
x = tcl.conv2d(x, num_outputs, kernel_size=1, stride=1, activation_fn=None, padding='SAME', normalizer_fn=None)
x += shortcut
x = normalizer_fn(x)
x = activation_fn(x)
return x
开发者ID:adong7639,项目名称:PRNet,代码行数:15,代码来源:predictor.py
示例10: __call__
def __call__(self, x, reuse=False):
with tf.variable_scope(self.name) as scope:
if reuse:
scope.reuse_variables()
size = 64
shared = tcl.conv2d(x, num_outputs=size, kernel_size=5, # bzx28x28x1 -> bzx14x14x64
stride=2, activation_fn=tf.nn.relu)
shared = tcl.conv2d(shared, num_outputs=size * 2, kernel_size=5, # 7x7x128
stride=2, activation_fn=lrelu, normalizer_fn=tcl.batch_norm)
shared = tcl.fully_connected(tcl.flatten( # reshape, 1
shared), 1024, activation_fn=tf.nn.relu)
#c = tcl.fully_connected(shared, 128, activation_fn=tf.nn.relu, normalizer_fn=tcl.batch_norm)
c = tcl.fully_connected(shared, 10, activation_fn=None) # 10 classes
return c
开发者ID:1202kbs,项目名称:GAN,代码行数:15,代码来源:nets.py
示例11: __call__
def __call__(self, x, reuse=True):
with tf.variable_scope(self.name) as scope:
if reuse:
scope.reuse_variables()
size = 64
d = tcl.conv2d(x, num_outputs=size, kernel_size=3, # bzx64x64x3 -> bzx32x32x64
stride=2, activation_fn=lrelu)
d = tcl.conv2d(d, num_outputs=size * 2, kernel_size=3, # 16x16x128
stride=2, activation_fn=lrelu, normalizer_fn=tcl.batch_norm)
d = tcl.conv2d(d, num_outputs=size * 4, kernel_size=3, # 8x8x256
stride=2, activation_fn=lrelu, normalizer_fn=tcl.batch_norm)
d = tcl.conv2d(d, num_outputs=size * 8, kernel_size=3, # 4x4x512
stride=2, activation_fn=lrelu, normalizer_fn=tcl.batch_norm)
d = tcl.fully_connected(tcl.flatten( # reshape, 1
d), 1, activation_fn=None)
return d
开发者ID:1202kbs,项目名称:GAN,代码行数:16,代码来源:nets.py
示例12: get_bottlenet
def get_bottlenet(self):
"""Form the network"""
# get collections
bottlelayer = namedtuple("bottlelayer",
['kernel_shape','stride','bn_flag','padding','act_fn'])
with tf.name_scope(self.scope):
input_now = self.inputs
for i, kernel in enumerate(self.bottle_params):
with tf.name_scope('bottle_sub'+str('i')):
kernel = bottlelayer._make(kernel)
with tf.name_scope('conv2d'):
residual = conv2d(
inputs=input_now,
num_outputs=kernel.kernel_shape[-1],
kernel_size=kernel.kernel_shape[0:2],
padding=kernel.padding,
stride=kernel.stride,
)
if kernel.bn_flag:
residual = utils.get_batch_norm(residual,
self.is_training,
scope='batch_norm')
if kernel.act_fn is not None:
with tf.name_scope('activate'):
residual = kernel.act_fn(residual)
input_now = residual
# add shortcut
self.get_shortcut(self.stride,scope=self.scope+'_shortcut')
residual = residual + self.shortcut
if self.summary_flag:
tf.summary.histogram('bottle_residual', residual)
return residual
开发者ID:praveenkumarchandaliya,项目名称:res_ae,代码行数:33,代码来源:Bottleneck.py
示例13: autoencoder
def autoencoder(inputs):
# encoder
# 32 x 32 x 1 -> 16 x 16 x 32
# 16 x 16 x 32 -> 8 x 8 x 16
# 8 x 8 x 16 -> 2 x 2 x 8
net = lays.conv2d(inputs, 32, [5, 5], stride=2, padding='SAME')
net = lays.conv2d(net, 16, [5, 5], stride=2, padding='SAME')
net = lays.conv2d(net, 8, [5, 5], stride=4, padding='SAME')
# decoder
# 2 x 2 x 8 -> 8 x 8 x 16
# 8 x 8 x 16 -> 16 x 16 x 32
# 16 x 16 x 32 -> 32 x 32 x 1
net = lays.conv2d_transpose(net, 16, [5, 5], stride=4, padding='SAME')
net = lays.conv2d_transpose(net, 32, [5, 5], stride=2, padding='SAME')
net = lays.conv2d_transpose(net, 1, [5, 5], stride=2, padding='SAME', activation_fn=tf.nn.tanh)
return net
开发者ID:AbsarF,项目名称:machine-learning-course,代码行数:16,代码来源:ae.py
示例14: get_shortcut
def get_shortcut(self, stride, scope='shortcut'):
"""Reshape and repeat to get the shortcut of input
Reference
=========
[1] TensorFlow 实战
"""
def subsample(inputs, factor, scope):
if factor == 1:
return inputs
else:
# avg for auto encoder
return avg_pool2d(inputs,[1,1],
stride=factor,
padding='SAME',
scope=scope)
if self.depth_in == self.depth_out:
self.shortcut = subsample(self.inputs, stride, scope)
else:
self.shortcut = conv2d(
inputs=self.inputs,
num_outputs=self.depth_out,
kernel_size=[1,1],
stride=stride,
padding='SAME',
normalizer_fn=None,
activation_fn=None,
scope=scope)
开发者ID:praveenkumarchandaliya,项目名称:res_ae,代码行数:28,代码来源:Bottleneck_en.py
示例15: conv2d
def conv2d(input, filters=16, kernel_size=3, padding="same", stride=1, activation_fn=relu, reuse=None, name=None, data_format='NHWC',
weights_initializer=xavier_initializer(), biases_initializer=tf.zeros_initializer(), weights_regularizer=None, biases_regularizer=None,
normalizer_fn=None, normalizer_params=None):
return contrib_layers.conv2d(input, num_outputs=filters, kernel_size=kernel_size, padding=padding, stride=stride, scope=name, data_format=data_format,
activation_fn=activation_fn, reuse=reuse, weights_initializer=weights_initializer, biases_initializer=biases_initializer,
weights_regularizer=weights_regularizer, biases_regularizer=biases_regularizer, normalizer_fn=normalizer_fn, normalizer_params=normalizer_params)
开发者ID:Tiyanak,项目名称:lip-reading,代码行数:7,代码来源:layers.py
示例16: inception_v1
def inception_v1(inputs,
num_classes=1000,
is_training=True,
dropout_keep_prob=0.8,
prediction_fn=layers_lib.softmax,
spatial_squeeze=True,
reuse=None,
scope='InceptionV1'):
"""Defines the Inception V1 architecture.
This architecture is defined in:
Going deeper with convolutions
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.
http://arxiv.org/pdf/1409.4842v1.pdf.
The default image size used to train this network is 224x224.
Args:
inputs: a tensor of size [batch_size, height, width, channels].
num_classes: number of predicted classes.
is_training: whether is training or not.
dropout_keep_prob: the percentage of activation values that are retained.
prediction_fn: a function to get predictions out of logits.
spatial_squeeze: if True, logits is of shape is [B, C], if false logits is
of shape [B, 1, 1, C], where B is batch_size and C is number of classes.
reuse: whether or not the network and its variables should be reused. To be
able to reuse 'scope' must be given.
scope: Optional variable_scope.
Returns:
logits: the pre-softmax activations, a tensor of size
[batch_size, num_classes]
end_points: a dictionary from components of the network to the corresponding
activation.
"""
# Final pooling and prediction
with variable_scope.variable_scope(
scope, 'InceptionV1', [inputs, num_classes], reuse=reuse) as scope:
with arg_scope(
[layers_lib.batch_norm, layers_lib.dropout], is_training=is_training):
net, end_points = inception_v1_base(inputs, scope=scope)
with variable_scope.variable_scope('Logits'):
net = layers_lib.avg_pool2d(
net, [7, 7], stride=1, scope='MaxPool_0a_7x7')
net = layers_lib.dropout(net, dropout_keep_prob, scope='Dropout_0b')
logits = layers.conv2d(
net,
num_classes, [1, 1],
activation_fn=None,
normalizer_fn=None,
scope='Conv2d_0c_1x1')
if spatial_squeeze:
logits = array_ops.squeeze(logits, [1, 2], name='SpatialSqueeze')
end_points['Logits'] = logits
end_points['Predictions'] = prediction_fn(logits, scope='Predictions')
return logits, end_points
开发者ID:1000sprites,项目名称:tensorflow,代码行数:59,代码来源:inception_v1.py
示例17: conv_model
def conv_model(features, target):
target = tf.one_hot(target, 10, 1.0, 0.0)
features = tf.expand_dims(features, 3)
features = tf.reduce_max(layers.conv2d(features, 12, [3, 3]), [1, 2])
features = tf.reshape(features, [-1, 12])
prediction, loss = learn.models.logistic_regression(features, target)
train_op = layers.optimize_loss(loss, tf.contrib.framework.get_global_step(), optimizer="SGD", learning_rate=0.01)
return tf.argmax(prediction, dimension=1), loss, train_op
开发者ID:ilblackdragon,项目名称:tf_examples,代码行数:8,代码来源:digits.py
示例18: testConv2DSameOdd
def testConv2DSameOdd(self):
n, n2 = 5, 3
# Input image.
x = create_test_input(1, n, n, 1)
# Convolution kernel.
w = create_test_input(1, 3, 3, 1)
w = array_ops.reshape(w, [3, 3, 1, 1])
variable_scope.get_variable('Conv/weights', initializer=w)
variable_scope.get_variable('Conv/biases', initializer=array_ops.zeros([1]))
variable_scope.get_variable_scope().reuse_variables()
y1 = layers.conv2d(x, 1, [3, 3], stride=1, scope='Conv')
y1_expected = math_ops.cast([[14, 28, 43, 58, 34],
[28, 48, 66, 84, 46],
[43, 66, 84, 102, 55],
[58, 84, 102, 120, 64],
[34, 46, 55, 64, 30]],
dtypes.float32)
y1_expected = array_ops.reshape(y1_expected, [1, n, n, 1])
y2 = resnet_utils.subsample(y1, 2)
y2_expected = math_ops.cast([[14, 43, 34],
[43, 84, 55],
[34, 55, 30]],
dtypes.float32)
y2_expected = array_ops.reshape(y2_expected, [1, n2, n2, 1])
y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv')
y3_expected = y2_expected
y4 = layers.conv2d(x, 1, [3, 3], stride=2, scope='Conv')
y4_expected = y2_expected
with self.cached_session() as sess:
sess.run(variables.global_variables_initializer())
self.assertAllClose(y1.eval(), y1_expected.eval())
self.assertAllClose(y2.eval(), y2_expected.eval())
self.assertAllClose(y3.eval(), y3_expected.eval())
self.assertAllClose(y4.eval(), y4_expected.eval())
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:42,代码来源:resnet_v1_test.py
示例19: network
def network(self):
net = self.images
net = self.image_processing_layer(net)
def get_init():
return tf.truncated_normal_initializer(stddev=0.02)
net = conv2d(net, 10, [7, 7], activation_fn=tf.nn.relu, name='conv1', weights_initializer=get_init())
net = conv2d(net, 20, [5, 5], activation_fn=tf.nn.relu, name='conv2', weights_initializer=get_init())
net = tf.nn.max_pool(net, [1, 4, 4, 1], [1, 1, 1, 1], padding='SAME')
net = conv2d(net, 30, [3, 3], activation_fn=tf.nn.relu, name='conv3', weights_initializer=get_init())
net = conv2d(net, 40, [3, 3], activation_fn=tf.nn.relu, name='conv4', weights_initializer=get_init())
net = tf.nn.max_pool(net, [1, 2, 2, 1], [1, 1, 1, 1], padding='SAME')
net = tf.reshape(net, [self.conf.batch_size, -1])
net = linear(net, 100, activation_fn=tf.nn.tanh, name='FC1')
out = linear(net, 2, activation_fn=tf.nn.softmax, name='out')
return out
开发者ID:dvolkhonskiy,项目名称:Adversarial-Model-For-Steganography,代码行数:22,代码来源:steganalyzer.py
示例20: conv_layer
def conv_layer(net, filters=32, hyperparameter=False, activation=tf.nn.relu,
stride=1, max_pool=True, var_coll=far.HYPERPARAMETERS_COLLECTIONS,
conv_initialization=tf.contrib.layers.xavier_initializer_conv2d(tf.float32)):
max_pool_stride = [1, 2, 2, 1]
bn = lambda _inp: tcl.batch_norm(_inp, variables_collections=var_coll)
net + tcl.conv2d(net.out, num_outputs=filters, stride=stride,
kernel_size=3, normalizer_fn=bn, activation_fn=None,
trainable=not hyperparameter,
variables_collections=var_coll, weights_initializer=conv_initialization)
net + activation(net.out)
if max_pool:
net + tf.nn.max_pool(net.out, max_pool_stride, max_pool_stride, 'VALID')
开发者ID:codealphago,项目名称:FAR-HO,代码行数:14,代码来源:hyper_representation.py
注:本文中的tensorflow.contrib.layers.conv2d函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论