• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python train.gan_train_ops函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.contrib.gan.python.train.gan_train_ops函数的典型用法代码示例。如果您正苦于以下问题:Python gan_train_ops函数的具体用法?Python gan_train_ops怎么用?Python gan_train_ops使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了gan_train_ops函数的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_train_hooks_exist_in_get_hooks_fn

  def test_train_hooks_exist_in_get_hooks_fn(self, create_gan_model_fn):
    model = create_gan_model_fn()
    loss = train.gan_loss(model)

    g_opt = get_sync_optimizer()
    d_opt = get_sync_optimizer()
    train_ops = train.gan_train_ops(
        model,
        loss,
        g_opt,
        d_opt,
        summarize_gradients=True,
        colocate_gradients_with_ops=True)

    sequential_train_hooks = train.get_sequential_train_hooks()(train_ops)
    self.assertLen(sequential_train_hooks, 4)
    sync_opts = [
        hook._sync_optimizer for hook in sequential_train_hooks if
        isinstance(hook, sync_replicas_optimizer._SyncReplicasOptimizerHook)]
    self.assertLen(sync_opts, 2)
    self.assertSetEqual(frozenset(sync_opts), frozenset((g_opt, d_opt)))

    joint_train_hooks = train.get_joint_train_hooks()(train_ops)
    self.assertLen(joint_train_hooks, 5)
    sync_opts = [
        hook._sync_optimizer for hook in joint_train_hooks if
        isinstance(hook, sync_replicas_optimizer._SyncReplicasOptimizerHook)]
    self.assertLen(sync_opts, 2)
    self.assertSetEqual(frozenset(sync_opts), frozenset((g_opt, d_opt)))
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:29,代码来源:train_test.py


示例2: test_unused_update_ops

  def test_unused_update_ops(self, create_gan_model_fn, provide_update_ops):
    model = create_gan_model_fn()
    loss = train.gan_loss(model)

    # Add generator and discriminator update ops.
    with variable_scope.variable_scope(model.generator_scope):
      gen_update_count = variable_scope.get_variable('gen_count', initializer=0)
      gen_update_op = gen_update_count.assign_add(1)
      ops.add_to_collection(ops.GraphKeys.UPDATE_OPS, gen_update_op)
    with variable_scope.variable_scope(model.discriminator_scope):
      dis_update_count = variable_scope.get_variable('dis_count', initializer=0)
      dis_update_op = dis_update_count.assign_add(1)
      ops.add_to_collection(ops.GraphKeys.UPDATE_OPS, dis_update_op)

    # Add an update op outside the generator and discriminator scopes.
    if provide_update_ops:
      kwargs = {
          'update_ops': [
              constant_op.constant(1.0), gen_update_op, dis_update_op
          ]
      }
    else:
      ops.add_to_collection(ops.GraphKeys.UPDATE_OPS, constant_op.constant(1.0))
      kwargs = {}

    g_opt = gradient_descent.GradientDescentOptimizer(1.0)
    d_opt = gradient_descent.GradientDescentOptimizer(1.0)

    with self.assertRaisesRegexp(ValueError, 'There are unused update ops:'):
      train.gan_train_ops(
          model, loss, g_opt, d_opt, check_for_unused_update_ops=True, **kwargs)
    train_ops = train.gan_train_ops(
        model, loss, g_opt, d_opt, check_for_unused_update_ops=False, **kwargs)

    with self.test_session(use_gpu=True) as sess:
      sess.run(variables.global_variables_initializer())
      self.assertEqual(0, gen_update_count.eval())
      self.assertEqual(0, dis_update_count.eval())

      train_ops.generator_train_op.eval()
      self.assertEqual(1, gen_update_count.eval())
      self.assertEqual(0, dis_update_count.eval())

      train_ops.discriminator_train_op.eval()
      self.assertEqual(1, gen_update_count.eval())
      self.assertEqual(1, dis_update_count.eval())
开发者ID:AnishShah,项目名称:tensorflow,代码行数:46,代码来源:train_test.py


示例3: test_sync_replicas

  def test_sync_replicas(self, create_gan_model_fn, create_global_step):
    model = create_gan_model_fn()
    loss = train.gan_loss(model)
    num_trainable_vars = len(variables_lib.get_trainable_variables())

    if create_global_step:
      gstep = variable_scope.get_variable(
          'custom_gstep', dtype=dtypes.int32, initializer=0, trainable=False)
      ops.add_to_collection(ops.GraphKeys.GLOBAL_STEP, gstep)

    g_opt = get_sync_optimizer()
    d_opt = get_sync_optimizer()
    train_ops = train.gan_train_ops(
        model, loss, generator_optimizer=g_opt, discriminator_optimizer=d_opt)
    self.assertIsInstance(train_ops, namedtuples.GANTrainOps)
    # No new trainable variables should have been added.
    self.assertLen(variables_lib.get_trainable_variables(), num_trainable_vars)

    # Sync hooks should be populated in the GANTrainOps.
    self.assertLen(train_ops.train_hooks, 2)
    for hook in train_ops.train_hooks:
      self.assertIsInstance(
          hook, sync_replicas_optimizer._SyncReplicasOptimizerHook)
    sync_opts = [hook._sync_optimizer for hook in train_ops.train_hooks]
    self.assertSetEqual(frozenset(sync_opts), frozenset((g_opt, d_opt)))

    g_sync_init_op = g_opt.get_init_tokens_op(num_tokens=1)
    d_sync_init_op = d_opt.get_init_tokens_op(num_tokens=1)

    # Check that update op is run properly.
    global_step = training_util.get_or_create_global_step()
    with self.test_session(use_gpu=True) as sess:
      variables.global_variables_initializer().run()
      variables.local_variables_initializer().run()

      g_opt.chief_init_op.run()
      d_opt.chief_init_op.run()

      gstep_before = global_step.eval()

      # Start required queue runner for SyncReplicasOptimizer.
      coord = coordinator.Coordinator()
      g_threads = g_opt.get_chief_queue_runner().create_threads(sess, coord)
      d_threads = d_opt.get_chief_queue_runner().create_threads(sess, coord)

      g_sync_init_op.run()
      d_sync_init_op.run()

      train_ops.generator_train_op.eval()
      # Check that global step wasn't incremented.
      self.assertEqual(gstep_before, global_step.eval())

      train_ops.discriminator_train_op.eval()
      # Check that global step wasn't incremented.
      self.assertEqual(gstep_before, global_step.eval())

      coord.request_stop()
      coord.join(g_threads + d_threads)
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:58,代码来源:train_test.py


示例4: _test_run_helper

  def _test_run_helper(self, create_gan_model_fn):
    random_seed.set_random_seed(1234)
    model = create_gan_model_fn()
    loss = train.gan_loss(model)

    g_opt = gradient_descent.GradientDescentOptimizer(1.0)
    d_opt = gradient_descent.GradientDescentOptimizer(1.0)
    train_ops = train.gan_train_ops(model, loss, g_opt, d_opt)

    final_step = train.gan_train(
        train_ops,
        logdir='',
        hooks=[basic_session_run_hooks.StopAtStepHook(num_steps=2)])
    self.assertTrue(np.isscalar(final_step))
    self.assertEqual(2, final_step)
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:15,代码来源:train_test.py


示例5: _test_output_type_helper

  def _test_output_type_helper(self, create_gan_model_fn):
    model = create_gan_model_fn()
    loss = train.gan_loss(model)

    g_opt = gradient_descent.GradientDescentOptimizer(1.0)
    d_opt = gradient_descent.GradientDescentOptimizer(1.0)
    train_ops = train.gan_train_ops(
        model,
        loss,
        g_opt,
        d_opt,
        summarize_gradients=True,
        colocate_gradients_with_ops=True)

    self.assertTrue(isinstance(train_ops, namedtuples.GANTrainOps))
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:15,代码来源:train_test.py


示例6: test_patchgan

  def test_patchgan(self, create_gan_model_fn):
    """Ensure that patch-based discriminators work end-to-end."""
    random_seed.set_random_seed(1234)
    model = create_gan_model_fn()
    loss = train.gan_loss(model)

    g_opt = gradient_descent.GradientDescentOptimizer(1.0)
    d_opt = gradient_descent.GradientDescentOptimizer(1.0)
    train_ops = train.gan_train_ops(model, loss, g_opt, d_opt)

    final_step = train.gan_train(
        train_ops,
        logdir='',
        hooks=[basic_session_run_hooks.StopAtStepHook(num_steps=2)])
    self.assertTrue(np.isscalar(final_step))
    self.assertEqual(2, final_step)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:16,代码来源:train_test.py


示例7: test_output_type

  def test_output_type(self, create_gan_model_fn):
    model = create_gan_model_fn()
    loss = train.gan_loss(model)

    g_opt = gradient_descent.GradientDescentOptimizer(1.0)
    d_opt = gradient_descent.GradientDescentOptimizer(1.0)
    train_ops = train.gan_train_ops(
        model,
        loss,
        g_opt,
        d_opt,
        summarize_gradients=True,
        colocate_gradients_with_ops=True)

    self.assertIsInstance(train_ops, namedtuples.GANTrainOps)

    # Make sure there are no training hooks populated accidentally.
    self.assertEmpty(train_ops.train_hooks)
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:18,代码来源:train_test.py


示例8: test_is_chief_in_train_hooks

  def test_is_chief_in_train_hooks(self, is_chief):
    """Make sure is_chief is propagated correctly to sync hooks."""
    model = create_gan_model()
    loss = train.gan_loss(model)
    g_opt = get_sync_optimizer()
    d_opt = get_sync_optimizer()
    train_ops = train.gan_train_ops(
        model,
        loss,
        g_opt,
        d_opt,
        is_chief=is_chief,
        summarize_gradients=True,
        colocate_gradients_with_ops=True)

    self.assertLen(train_ops.train_hooks, 2)
    for hook in train_ops.train_hooks:
      self.assertIsInstance(
          hook, sync_replicas_optimizer._SyncReplicasOptimizerHook)
    is_chief_list = [hook._is_chief for hook in train_ops.train_hooks]
    self.assertListEqual(is_chief_list, [is_chief, is_chief])
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:21,代码来源:train_test.py



注:本文中的tensorflow.contrib.gan.python.train.gan_train_ops函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python graph_editor.reroute_ts函数代码示例发布时间:2022-05-27
下一篇:
Python train.gan_model函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap