本文整理汇总了Python中tensorflow.contrib.framework.python.ops.variables.get_global_step函数的典型用法代码示例。如果您正苦于以下问题:Python get_global_step函数的具体用法?Python get_global_step怎么用?Python get_global_step使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了get_global_step函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_train_skip_train_if_max_step_already_saved
def test_train_skip_train_if_max_step_already_saved(self):
with ops.Graph().as_default() as g, self.test_session(g):
with ops.control_dependencies(self._build_inference_graph()):
train_op = state_ops.assign_add(variables_lib.get_global_step(), 1)
learn.graph_actions._monitored_train( # pylint: disable=protected-access
g,
output_dir=self._output_dir,
train_op=train_op,
loss_op=constant_op.constant(2.0),
max_steps=10)
step = checkpoint_utils.load_variable(
self._output_dir, variables_lib.get_global_step().name)
self.assertEqual(10, step)
with ops.Graph().as_default() as g, self.test_session(g):
with ops.control_dependencies(self._build_inference_graph()):
train_op = state_ops.assign_add(variables_lib.get_global_step(), 1)
learn.graph_actions._monitored_train( # pylint: disable=protected-access
g,
output_dir=self._output_dir,
train_op=train_op,
loss_op=constant_op.constant(2.0),
max_steps=10)
step = checkpoint_utils.load_variable(
self._output_dir, variables_lib.get_global_step().name)
self.assertEqual(10, step)
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:26,代码来源:graph_actions_test.py
示例2: test_train_max_steps_is_not_incremental
def test_train_max_steps_is_not_incremental(self):
with ops.Graph().as_default() as g, self.test_session(g):
with ops.control_dependencies(self._build_inference_graph()):
train_op = state_ops.assign_add(variables_lib.get_global_step(), 1)
learn.graph_actions.train(
g,
output_dir=self._output_dir,
train_op=train_op,
loss_op=constant_op.constant(2.0),
max_steps=10)
step = checkpoint_utils.load_variable(
self._output_dir, variables_lib.get_global_step().name)
self.assertEqual(10, step)
with ops.Graph().as_default() as g, self.test_session(g):
with ops.control_dependencies(self._build_inference_graph()):
train_op = state_ops.assign_add(variables_lib.get_global_step(), 1)
learn.graph_actions.train(
g,
output_dir=self._output_dir,
train_op=train_op,
loss_op=constant_op.constant(2.0),
max_steps=15)
step = checkpoint_utils.load_variable(
self._output_dir, variables_lib.get_global_step().name)
self.assertEqual(15, step)
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:26,代码来源:graph_actions_test.py
示例3: _make_training_op
def _make_training_op(training_loss):
"""Training op for the DNN linear combined model."""
train_ops = []
if dnn_logits is not None:
train_ops.append(
optimizers.optimize_loss(
loss=training_loss,
global_step=contrib_variables.get_global_step(),
learning_rate=_DNN_LEARNING_RATE,
optimizer=_get_optimizer(dnn_optimizer),
gradient_multipliers=_extract_embedding_lr_multipliers( # pylint: disable=protected-access
embedding_lr_multipliers, dnn_parent_scope,
dnn_input_scope.name),
clip_gradients=gradient_clip_norm,
variables=ops.get_collection(dnn_parent_scope),
name=dnn_parent_scope,
# Empty summaries, because head already logs "loss" summary.
summaries=[]))
if linear_logits is not None:
train_ops.append(
optimizers.optimize_loss(
loss=training_loss,
global_step=contrib_variables.get_global_step(),
learning_rate=_linear_learning_rate(len(linear_feature_columns)),
optimizer=_get_optimizer(linear_optimizer),
clip_gradients=gradient_clip_norm,
variables=ops.get_collection(linear_parent_scope),
name=linear_parent_scope,
# Empty summaries, because head already logs "loss" summary.
summaries=[]))
return control_flow_ops.group(*train_ops)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:32,代码来源:dnn_linear_combined.py
示例4: test_get_global_step
def test_get_global_step(self):
with ops.Graph().as_default() as g:
self.assertEquals(None, variables_lib2.get_global_step())
variables_lib.Variable(
0,
trainable=False,
dtype=dtypes.int32,
name=ops.GraphKeys.GLOBAL_STEP)
self._assert_global_step(
variables_lib2.get_global_step(), expected_dtype=dtypes.int32)
self._assert_global_step(
variables_lib2.get_global_step(g), expected_dtype=dtypes.int32)
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:12,代码来源:variables_test.py
示例5: _model_fn
def _model_fn(features, labels, mode, config):
"""Model function."""
assert labels is None, labels
(all_scores,
model_predictions,
losses, training_op,
init_op,
is_initialized) = gmm_ops.gmm(self._parse_tensor_or_dict(features),
self._training_initial_clusters,
self._num_clusters, self._random_seed,
self._covariance_type,
self._params)
incr_step = state_ops.assign_add(variables.get_global_step(), 1)
loss = math_ops.reduce_sum(losses)
training_op = with_dependencies([training_op, incr_step], loss)
training_hooks = [_InitializeClustersHook(
init_op, is_initialized, config.is_chief)]
predictions = {
GMM.ALL_SCORES: all_scores[0],
GMM.ASSIGNMENTS: model_predictions[0][0],
}
eval_metric_ops = {
GMM.SCORES: _streaming_sum(loss),
}
return model_fn_lib.ModelFnOps(mode=mode, predictions=predictions,
eval_metric_ops=eval_metric_ops,
loss=loss, train_op=training_op,
training_hooks=training_hooks)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:28,代码来源:gmm.py
示例6: begin
def begin(self):
self._last_reported_time = None
self._last_reported_step = None
self._global_step_tensor = contrib_variables.get_global_step()
if self._global_step_tensor is None:
raise RuntimeError(
"Global step should be created to use StepCounterHook.")
开发者ID:MostafaGazar,项目名称:tensorflow,代码行数:7,代码来源:basic_session_run_hooks.py
示例7: test_train_summaries
def test_train_summaries(self):
with ops.Graph().as_default() as g, self.test_session(g):
with ops.control_dependencies(self._build_inference_graph()):
train_op = state_ops.assign_add(variables_lib.get_global_step(), 1)
loss_op = constant_op.constant(2.0)
summary.scalar('loss', loss_op)
writer = learn.graph_actions.get_summary_writer(self._output_dir)
self._assert_summaries(self._output_dir, writer)
self._assert_ckpt(self._output_dir, False)
loss = learn.graph_actions._monitored_train( # pylint: disable=protected-access
g,
output_dir=self._output_dir,
train_op=train_op,
loss_op=loss_op,
steps=1)
meta_graph_def = meta_graph.create_meta_graph_def(
graph_def=g.as_graph_def(add_shapes=True),
saver_def=monitored_session.Scaffold().finalize().saver.saver_def)
self.assertEqual(2.0, loss)
self._assert_summaries(
self._output_dir,
writer,
expected_graphs=[g],
expected_meta_graphs=[meta_graph_def],
expected_summaries={1: {
'loss': 2.0
}})
self._assert_ckpt(self._output_dir, True)
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:28,代码来源:graph_actions_test.py
示例8: _get_train_ops
def _get_train_ops(self, features, targets):
"""See base class."""
global_step = contrib_variables.get_global_step()
assert global_step
features = self._get_feature_dict(features)
logits = self._logits(features, is_training=True)
if self._enable_centered_bias:
centered_bias_step = [self._centered_bias_step(targets, features)]
else:
centered_bias_step = []
with ops.control_dependencies(centered_bias_step):
training_loss = self._target_column.training_loss(logits, targets,
features)
weighted_average_loss = self._target_column.loss(logits, targets,
features)
logging_ops.scalar_summary("loss", weighted_average_loss)
linear_train_step = self._linear_model.get_train_step(training_loss)
dnn_train_step = (self._dnn_model.get_train_step(training_loss) if
self._dnn_model else [])
with ops.control_dependencies(linear_train_step + dnn_train_step):
with ops.get_default_graph().colocate_with(global_step):
return state_ops.assign_add(global_step, 1).op, weighted_average_loss
开发者ID:MrRabbit0o0,项目名称:tensorflow,代码行数:26,代码来源:dnn_linear_combined.py
示例9: _invalid_model_fn
def _invalid_model_fn(features, labels):
# pylint: disable=unused-argument
w = variables_lib.Variable(42.0, 'weight')
update_global_step = variables.get_global_step().assign_add(1)
with control_flow_ops.control_dependencies([update_global_step]):
loss = 100.0 - w
return None, loss, None
开发者ID:vaccine,项目名称:tensorflow,代码行数:7,代码来源:estimator_test.py
示例10: _model_fn
def _model_fn(features, labels, mode):
"""Model function."""
assert labels is None, labels
(all_scores, model_predictions, losses,
training_op) = clustering_ops.KMeans(
self._parse_tensor_or_dict(features),
self._num_clusters,
self._training_initial_clusters,
self._distance_metric,
self._use_mini_batch,
random_seed=self._random_seed,
kmeans_plus_plus_num_retries=self.
_kmeans_plus_plus_num_retries).training_graph()
incr_step = state_ops.assign_add(variables.get_global_step(), 1)
loss = math_ops.reduce_sum(losses, name=KMeansClustering.LOSS_OP_NAME)
logging_ops.scalar_summary('loss/raw', loss)
training_op = with_dependencies([training_op, incr_step], loss)
predictions = {
KMeansClustering.ALL_SCORES: all_scores[0],
KMeansClustering.CLUSTER_IDX: model_predictions[0],
}
eval_metric_ops = {KMeansClustering.SCORES: loss,}
if self._relative_tolerance is not None:
training_hooks = [self.LossRelativeChangeHook(self._relative_tolerance)]
else:
training_hooks = None
return ModelFnOps(
mode=mode,
predictions=predictions,
eval_metric_ops=eval_metric_ops,
loss=loss,
train_op=training_op,
training_hooks=training_hooks)
开发者ID:cancan101,项目名称:tensorflow,代码行数:33,代码来源:kmeans.py
示例11: _get_train_ops
def _get_train_ops(self, features, targets):
"""See base class."""
global_step = contrib_variables.get_global_step()
assert global_step
logits = self._logits(features, is_training=True)
if self._enable_centered_bias:
centered_bias_step = [self._centered_bias_step(targets, features)]
else:
centered_bias_step = []
with ops.control_dependencies(centered_bias_step):
loss = self._loss(logits, targets, features)
logging_ops.scalar_summary("loss", loss)
linear_vars = self._get_linear_vars()
dnn_vars = self._get_dnn_vars()
grads = gradients.gradients(loss, dnn_vars + linear_vars)
if self._gradient_clip_norm:
grads, _ = clip_ops.clip_by_global_norm(grads, self._gradient_clip_norm)
dnn_grads = grads[0 : len(dnn_vars)]
linear_grads = grads[len(dnn_vars) :]
train_ops = self._get_linear_training_ops(linear_grads, linear_vars) + self._get_dnn_training_ops(
dnn_grads, dnn_vars
)
train_step = control_flow_ops.group(*train_ops, name="combined_training_op")
with ops.control_dependencies([train_step]):
with ops.get_default_graph().colocate_with(global_step):
return state_ops.assign_add(global_step, 1).op, loss
开发者ID:285219011,项目名称:liuwenfeng,代码行数:30,代码来源:dnn_linear_combined.py
示例12: _get_train_ops
def _get_train_ops(self, features, targets):
"""See base class."""
self._validate_linear_feature_columns(features)
if not isinstance(self._linear_optimizer, sdca_optimizer.SDCAOptimizer):
return super(LinearClassifier, self)._get_train_ops(features, targets)
# SDCA currently supports binary classification only.
if self._target_column.num_label_columns > 2:
raise ValueError(
"SDCA does not currently support multi-class classification.")
global_step = contrib_variables.get_global_step()
assert global_step
logits, columns_to_variables, _ = layers.weighted_sum_from_feature_columns(
columns_to_tensors=features,
feature_columns=self._linear_feature_columns,
num_outputs=self._target_column.num_label_columns,
weight_collections=[self._linear_weight_collection],
name="linear")
with ops.control_dependencies([self._centered_bias()]):
loss = self._loss(logits, targets, features)
logging_ops.scalar_summary("loss", loss)
train_ops = self._linear_optimizer.get_train_step(
self._linear_feature_columns, self._target_column.weight_column_name,
"logistic_loss", features, targets, columns_to_variables, global_step)
return train_ops, loss
开发者ID:363158858,项目名称:tensorflow,代码行数:28,代码来源:linear.py
示例13: _train_op_fn
def _train_op_fn(unused_loss):
global_step = contrib_variables.get_global_step()
sdca_model, train_op = optimizer.get_train_step(
columns_to_variables, weight_column_name, loss_type, features, labels,
global_step)
if update_weights_hook is not None:
update_weights_hook.set_parameters(sdca_model, train_op)
return train_op
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:8,代码来源:sdca_estimator.py
示例14: _argument_checker
def _argument_checker(features, labels, mode, params, config=None,
model_dir=None):
_, _, _ = features, labels, config
self.assertEqual(model_fn.ModeKeys.TRAIN, mode)
self.assertEqual(expected_param, params)
self.assertEqual(model_dir, expected_model_dir)
return (constant_op.constant(0.), constant_op.constant(0.),
variables.get_global_step().assign_add(1))
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:8,代码来源:estimator_test.py
示例15: _model_fn_scaffold
def _model_fn_scaffold(features, labels, mode):
_, _ = features, labels
return model_fn.ModelFnOps(
mode=mode,
predictions=constant_op.constant(0.),
loss=constant_op.constant(0.),
train_op=variables.get_global_step().assign_add(1),
scaffold=monitored_session.Scaffold(init_fn=_init_fn))
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:8,代码来源:estimator_test.py
示例16: _train_op_fn
def _train_op_fn(loss):
global_step = contrib_variables.get_global_step()
assert global_step
train_step = model.get_train_step(loss)
with ops.control_dependencies(train_step):
with ops.get_default_graph().colocate_with(global_step):
return state_ops.assign_add(global_step, 1).op
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:8,代码来源:composable_model_test.py
示例17: model_fn
def model_fn(features, labels):
# dummy variable:
_ = variables_lib.Variable([0.])
_ = labels
predictions = features["x"]
loss = constant_op.constant([2.])
update_global_step = variables.get_global_step().assign_add(1)
return predictions, loss, update_global_step
开发者ID:1000sprites,项目名称:tensorflow,代码行数:8,代码来源:estimators_test.py
示例18: _train_op_fn
def _train_op_fn(loss):
global_step = contrib_variables.get_global_step()
my_vars = ops.get_collection("linear")
grads = gradients.gradients(loss, my_vars)
if gradient_clip_norm:
grads, _ = clip_ops.clip_by_global_norm(grads, gradient_clip_norm)
return (_get_optimizer(optimizer).apply_gradients(
zip(grads, my_vars), global_step=global_step))
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:8,代码来源:linear.py
示例19: _get_train_ops
def _get_train_ops(self, features, _):
(_, _, losses, training_op) = gmm_ops.gmm(
self._parse_tensor_or_dict(features), self._training_initial_clusters,
self._num_clusters, self._random_seed, self._covariance_type,
self._params)
incr_step = state_ops.assign_add(variables.get_global_step(), 1)
loss = math_ops.reduce_sum(losses)
training_op = with_dependencies([training_op, incr_step], loss)
return training_op, loss
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:9,代码来源:gmm.py
示例20: linear_model_fn_with_model_fn_ops
def linear_model_fn_with_model_fn_ops(features, labels, mode):
"""Same as linear_model_fn, but returns `ModelFnOps`."""
assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL,
model_fn.ModeKeys.INFER)
prediction, loss = (models.linear_regression_zero_init(features, labels))
train_op = optimizers.optimize_loss(
loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1)
return model_fn.ModelFnOps(
mode=mode, predictions=prediction, loss=loss, train_op=train_op)
开发者ID:Immexxx,项目名称:tensorflow,代码行数:9,代码来源:estimator_test.py
注:本文中的tensorflow.contrib.framework.python.ops.variables.get_global_step函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论