本文整理汇总了Python中tensorflow.contrib.distributions.python.ops.distribution_util.assert_integer_form函数的典型用法代码示例。如果您正苦于以下问题:Python assert_integer_form函数的具体用法?Python assert_integer_form怎么用?Python assert_integer_form使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了assert_integer_form函数的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testAssertIntegerForm
def testAssertIntegerForm(self):
# This should only be detected as an integer.
x = [1., 5, 10, 15, 20]
y = [1.1, 5, 10, 15, 20]
# First component isn't less than float32.eps = 1e-7
z = [1.0001, 5, 10, 15, 20]
# This shouldn"t be detected as an integer.
w = [1e-8, 5, 10, 15, 20]
with self.test_session():
with tf.control_dependencies([distribution_util.assert_integer_form(x)]):
tf.identity(x).eval()
with self.assertRaisesOpError("x has non-integer components"):
with tf.control_dependencies([
distribution_util.assert_integer_form(y)]):
tf.identity(y).eval()
with self.assertRaisesOpError("x has non-integer components"):
with tf.control_dependencies([
distribution_util.assert_integer_form(z)]):
tf.identity(z).eval()
with self.assertRaisesOpError("x has non-integer components"):
with tf.control_dependencies([
distribution_util.assert_integer_form(w)]):
tf.identity(w).eval()
开发者ID:KalraA,项目名称:tensorflow,代码行数:26,代码来源:distribution_util_test.py
示例2: testAssertIntegerForm
def testAssertIntegerForm(self):
# This should only be detected as an integer.
x = array_ops.placeholder(dtypes.float32)
y = array_ops.placeholder(dtypes.float32)
# First component isn't less than float32.eps = 1e-7
z = array_ops.placeholder(dtypes.float32)
# This shouldn"t be detected as an integer.
w = array_ops.placeholder(dtypes.float32)
feed_dict = {x: [1., 5, 10, 15, 20], y: [1.1, 5, 10, 15, 20],
z: [1.0001, 5, 10, 15, 20], w: [1e-8, 5, 10, 15, 20]}
with self.test_session():
with ops.control_dependencies([distribution_util.assert_integer_form(x)]):
array_ops.identity(x).eval(feed_dict=feed_dict)
with self.assertRaisesOpError("x has non-integer components"):
with ops.control_dependencies(
[distribution_util.assert_integer_form(y)]):
array_ops.identity(y).eval(feed_dict=feed_dict)
with self.assertRaisesOpError("x has non-integer components"):
with ops.control_dependencies(
[distribution_util.assert_integer_form(z)]):
array_ops.identity(z).eval(feed_dict=feed_dict)
with self.assertRaisesOpError("x has non-integer components"):
with ops.control_dependencies(
[distribution_util.assert_integer_form(w)]):
array_ops.identity(w).eval(feed_dict=feed_dict)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:28,代码来源:distribution_util_test.py
示例3: _assert_valid_n
def _assert_valid_n(self, n, validate_args):
n = ops.convert_to_tensor(n, name="n")
if not validate_args:
return n
return control_flow_ops.with_dependencies(
[check_ops.assert_non_negative(n),
distribution_util.assert_integer_form(n)], n)
开发者ID:ivankreso,项目名称:tensorflow,代码行数:7,代码来源:dirichlet_multinomial.py
示例4: _check_integer
def _check_integer(self, value):
with ops.name_scope("check_integer", values=[value]):
value = ops.convert_to_tensor(value, name="value")
if not self.validate_args:
return value
dependencies = [distribution_util.assert_integer_form(value, message="value has non-integer components.")]
return control_flow_ops.with_dependencies(dependencies, value)
开发者ID:flyingbirdman,项目名称:tensorflow,代码行数:7,代码来源:quantized_distribution.py
示例5: __init__
def __init__(self,
n,
logits=None,
p=None,
validate_args=False,
allow_nan_stats=True,
name="Binomial"):
"""Initialize a batch of Binomial distributions.
Args:
n: Non-negative floating point tensor with shape broadcastable to
`[N1,..., Nm]` with `m >= 0` and the same dtype as `p` or `logits`.
Defines this as a batch of `N1 x ... x Nm` different Binomial
distributions. Its components should be equal to integer values.
logits: Floating point tensor representing the log-odds of a
positive event with shape broadcastable to `[N1,..., Nm]` `m >= 0`, and
the same dtype as `n`. Each entry represents logits for the probability
of success for independent Binomial distributions.
p: Positive floating point tensor with shape broadcastable to
`[N1,..., Nm]` `m >= 0`, `p in [0, 1]`. Each entry represents the
probability of success for independent Binomial distributions.
validate_args: `Boolean`, default `False`. Whether to assert valid values
for parameters `n`, `p`, and `x` in `prob` and `log_prob`.
If `False` and inputs are invalid, correct behavior is not guaranteed.
allow_nan_stats: `Boolean`, default `True`. If `False`, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If `True`, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.
name: The name to prefix Ops created by this distribution class.
Examples:
```python
# Define 1-batch of a binomial distribution.
dist = Binomial(n=2., p=.9)
# Define a 2-batch.
dist = Binomial(n=[4., 5], p=[.1, .3])
```
"""
self._logits, self._p = distribution_util.get_logits_and_prob(
name=name, logits=logits, p=p, validate_args=validate_args)
with ops.name_scope(name, values=[n]) as ns:
with ops.control_dependencies([
check_ops.assert_non_negative(
n, message="n has negative components."),
distribution_util.assert_integer_form(
n, message="n has non-integer components."),
] if validate_args else []):
self._n = array_ops.identity(n, name="n")
super(Binomial, self).__init__(
dtype=self._p.dtype,
parameters={"n": self._n, "p": self._p, "logits": self._logits},
is_continuous=False,
is_reparameterized=False,
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
name=ns)
开发者ID:KalraA,项目名称:tensorflow,代码行数:59,代码来源:binomial.py
示例6: _assert_valid_sample
def _assert_valid_sample(self, x, check_integer=True):
if not self.validate_args: return x
with ops.name_scope("check_x", values=[x]):
dependencies = [check_ops.assert_non_negative(x)]
if check_integer:
dependencies += [distribution_util.assert_integer_form(
x, message="x has non-integer components.")]
return control_flow_ops.with_dependencies(dependencies, x)
开发者ID:ivankreso,项目名称:tensorflow,代码行数:8,代码来源:poisson.py
示例7: _check_x
def _check_x(self, x, check_integer=True):
with ops.name_scope('check_x', values=[x]):
x = ops.convert_to_tensor(x, name="x")
if not self.validate_args:
return x
dependencies = [check_ops.assert_non_negative(x)]
if check_integer:
dependencies += [distribution_util.assert_integer_form(
x, message="x has non-integer components.")]
return control_flow_ops.with_dependencies(dependencies, x)
开发者ID:JamesFysh,项目名称:tensorflow,代码行数:10,代码来源:poisson.py
示例8: _check_counts
def _check_counts(self, counts):
counts = ops.convert_to_tensor(counts, name="counts_before_deps")
if not self.validate_args:
return counts
return control_flow_ops.with_dependencies([
check_ops.assert_non_negative(
counts, message="counts has negative components."),
check_ops.assert_less_equal(
counts, self._n, message="counts are not less than or equal to n."),
distribution_util.assert_integer_form(
counts, message="counts have non-integer components.")], counts)
开发者ID:ivankreso,项目名称:tensorflow,代码行数:11,代码来源:binomial.py
示例9: _maybe_assert_valid_total_count
def _maybe_assert_valid_total_count(self, total_count, validate_args):
if not validate_args:
return total_count
return control_flow_ops.with_dependencies([
check_ops.assert_non_negative(
total_count,
message="total_count must be non-negative."),
distribution_util.assert_integer_form(
total_count,
message="total_count cannot contain fractional values."),
], total_count)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:11,代码来源:dirichlet_multinomial.py
示例10: _assert_valid_sample
def _assert_valid_sample(self, counts):
"""Check counts for proper shape, values, then return tensor version."""
if not self.validate_args: return counts
return control_flow_ops.with_dependencies([
check_ops.assert_non_negative(
counts, message="counts has negative components."),
check_ops.assert_equal(
self.n, math_ops.reduce_sum(counts, reduction_indices=[-1]),
message="counts do not sum to n."),
distribution_util.assert_integer_form(
counts, message="counts have non-integer components.")
], counts)
开发者ID:apollos,项目名称:tensorflow,代码行数:12,代码来源:multinomial.py
示例11: _assert_valid_counts
def _assert_valid_counts(self, counts):
"""Check counts for proper shape, values, then return tensor version."""
counts = ops.convert_to_tensor(counts, name="counts")
if not self.validate_args:
return counts
candidate_n = math_ops.reduce_sum(counts, reduction_indices=[-1])
return control_flow_ops.with_dependencies([
check_ops.assert_non_negative(counts),
check_ops.assert_equal(
self._n, candidate_n,
message="counts do not sum to n"),
distribution_util.assert_integer_form(counts)], counts)
开发者ID:ivankreso,项目名称:tensorflow,代码行数:12,代码来源:dirichlet_multinomial.py
示例12: _maybe_assert_valid_sample
def _maybe_assert_valid_sample(self, counts):
"""Check counts for proper shape, values, then return tensor version."""
if not self.validate_args:
return counts
return control_flow_ops.with_dependencies([
check_ops.assert_non_negative(
counts,
message="counts must be non-negative."),
check_ops.assert_equal(
self.total_count, math_ops.reduce_sum(counts, -1),
message="counts last-dimension must sum to `self.total_count`"),
distribution_util.assert_integer_form(
counts,
message="counts cannot contain fractional components."),
], counts)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:15,代码来源:dirichlet_multinomial.py
示例13: __init__
def __init__(self,
n,
logits=None,
p=None,
validate_args=False,
allow_nan_stats=True,
name="Multinomial"):
"""Initialize a batch of Multinomial distributions.
Args:
n: Non-negative floating point tensor with shape broadcastable to
`[N1,..., Nm]` with `m >= 0`. Defines this as a batch of
`N1 x ... x Nm` different Multinomial distributions. Its components
should be equal to integer values.
logits: Floating point tensor representing the log-odds of a
positive event with shape broadcastable to `[N1,..., Nm, k], m >= 0`,
and the same dtype as `n`. Defines this as a batch of `N1 x ... x Nm`
different `k` class Multinomial distributions.
p: Positive floating point tensor with shape broadcastable to
`[N1,..., Nm, k]` `m >= 0` and same dtype as `n`. Defines this as
a batch of `N1 x ... x Nm` different `k` class Multinomial
distributions. `p`'s components in the last portion of its shape should
sum up to 1.
validate_args: `Boolean`, default `False`. Whether to assert valid
values for parameters `n` and `p`, and `x` in `prob` and `log_prob`.
If `False`, correct behavior is not guaranteed.
allow_nan_stats: `Boolean`, default `True`. If `False`, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If `True`, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.
name: The name to prefix Ops created by this distribution class.
Examples:
```python
# Define 1-batch of 2-class multinomial distribution,
# also known as a Binomial distribution.
dist = Multinomial(n=2., p=[.1, .9])
# Define a 2-batch of 3-class distributions.
dist = Multinomial(n=[4., 5], p=[[.1, .3, .6], [.4, .05, .55]])
```
"""
self._logits, self._p = distribution_util.get_logits_and_prob(
name=name, logits=logits, p=p, validate_args=validate_args,
multidimensional=True)
with ops.name_scope(name, values=[n, self._p]) as ns:
with ops.control_dependencies([
check_ops.assert_non_negative(
n, message="n has negative components."),
distribution_util.assert_integer_form(
n, message="n has non-integer components.")
] if validate_args else []):
self._n = array_ops.identity(n, name="convert_n")
self._mean_val = array_ops.expand_dims(n, -1) * self._p
self._broadcast_shape = math_ops.reduce_sum(
self._mean_val, reduction_indices=[-1], keep_dims=False)
super(Multinomial, self).__init__(
dtype=self._p.dtype,
parameters={"p": self._p,
"n": self._n,
"mean": self._mean,
"logits": self._logits,
"broadcast_shape": self._broadcast_shape},
is_continuous=False,
is_reparameterized=False,
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
name=ns)
开发者ID:apollos,项目名称:tensorflow,代码行数:71,代码来源:multinomial.py
注:本文中的tensorflow.contrib.distributions.python.ops.distribution_util.assert_integer_form函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论