本文整理汇总了Python中tensorflow.tables_initializer函数的典型用法代码示例。如果您正苦于以下问题:Python tables_initializer函数的具体用法?Python tables_initializer怎么用?Python tables_initializer使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了tables_initializer函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: train
def train(mnist):
x = tf.placeholder(tf.float32, [None, INPUT_NODE],name = 'x-input')
y_= tf.placeholder(tf.float32, [None, OUTPUT_NODE], name= 'y-input')
weights1 = tf.Variable(
tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1)
)
biases1 = tf.Variable(tf.constant(0,1, shape=[LAYER1_NODE]))
weights2 = tf.Variable(
tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1)
)
biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE]))
y = inference(x, None, weights1, biases1, weights2, biases2)
global_step = tf.Variable(0, trainable=False)
variable_averages = tf.train.ExponentialMovingAverage(
MOVING_AVERAGE_DECY, global_step
)
variable_averages_op = variable_averages.apply(
tf.trainable_variables()
)
average_y = inference(
x, variable_averages, weights1, biases1, weights2, biases2
)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits = y, labels = tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
# regularizere = tf.contrib.l
regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
regularization = regularizer(weights1) + regularizer(weights2)
loss = cross_entropy_mean + regularization
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY
)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
with tf.control_dependencies([train_step, variable_averages_op]):
train_op = tf.no_op(name='train')
correct_prection = tf.equal(tf.argmax(average_y, 1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prection, tf.float32))
with tf.Session() as sess:
tf.tables_initializer().run()
validate_feed = {x: mnist.validation.images, y_:mnist.validation.labels}
test_feed = {x:mnist.test.images, y_:mnist.test.labels}
for i in range(TRAINING_STEPS):
if i % 100 ==0:
validate_acc = sess.run(accuracy, feed_dict=validate_feed)
print("After %d training step(s), validation accuracy using avarage model is %g " %(i , validate_acc))
xs, ys = mnist.train.next_batch(BATCH_SIZE)
sess.run(train_op, feed_dict={x:xs, y_:ys})
test_acc =sess.run(accuracy, feed_dict=test_feed)
print('After %d training step(s), test accuracy usering average model is %g' %(TRAINING_STEPS, test_acc))
开发者ID:severalfly,项目名称:MyTest,代码行数:60,代码来源:mnistFull.py
示例2: test_text_corresponds_to_ids
def test_text_corresponds_to_ids(self):
charset = create_fake_charset(36)
ids = tf.constant(
[[17, 14, 21, 21, 24], [32, 24, 27, 21, 13]], dtype=tf.int64)
charset_mapper = model.CharsetMapper(charset)
with self.test_session() as sess:
tf.tables_initializer().run()
text = sess.run(charset_mapper.get_text(ids))
self.assertAllEqual(text, ['hello', 'world'])
开发者ID:banjocui,项目名称:models,代码行数:11,代码来源:model_test.py
示例3: test_predicted_text_has_correct_shape_w_charset
def test_predicted_text_has_correct_shape_w_charset(self):
charset = create_fake_charset(self.num_char_classes)
ocr_model = self.create_model(charset=charset)
with self.test_session() as sess:
endpoints_tf = ocr_model.create_base(
images=self.fake_images, labels_one_hot=None)
sess.run(tf.global_variables_initializer())
tf.tables_initializer().run()
endpoints = sess.run(endpoints_tf)
self.assertEqual(endpoints.predicted_text.shape, (self.batch_size,))
self.assertEqual(len(endpoints.predicted_text[0]), self.seq_length)
开发者ID:JiweiHe,项目名称:models,代码行数:14,代码来源:model_test.py
示例4: main
def main(_):
images_placeholder, endpoints, init_fn = load_model(FLAGS.checkpoint,
FLAGS.batch_size,
FLAGS.dataset_name)
images_data = load_images(FLAGS.image_path_pattern, FLAGS.batch_size,
FLAGS.dataset_name)
with tf.Session() as sess:
tf.tables_initializer().run() # required by the CharsetMapper
init_fn(sess)
predictions = sess.run(endpoints.predicted_text,
feed_dict={images_placeholder: images_data})
print("Predicted strings:")
for line in predictions:
print(line)
开发者ID:Hukongtao,项目名称:models,代码行数:14,代码来源:demo_inference.py
示例5: test_skipgram_randomize
def test_skipgram_randomize(self):
test_dataset = tf.contrib.data.Dataset.from_tensor_slices([
'passj',
'word',
'db'
])
config = pe.EmbeddingConfig(
alphabet='abcdefghijklmnopqrstuvwxyz',
password_batch=5,
batch_size=10,
embedding_window_size=3)
emb_trainer = pe.EmbeddingTrainer(config)
examples, labels = emb_trainer.skipgram(test_dataset, randomize=True)
with self.test_session() as session:
session.run([tf.tables_initializer()])
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
try:
session.run([examples, labels])
except tf.errors.OutOfRangeError:
pass
finally:
coord.request_stop()
coord.join(threads)
开发者ID:cupslab,项目名称:neural_network_cracking,代码行数:29,代码来源:test_pass_embedding.py
示例6: export
def export(self, last_checkpoint, output_dir):
"""Builds a prediction graph and xports the model.
Args:
last_checkpoint: Path to the latest checkpoint file from training.
output_dir: Path to the folder to be used to output the model.
"""
logging.info('Exporting prediction graph to %s', output_dir)
with tf.Session(graph=tf.Graph()) as sess:
# Build and save prediction meta graph and trained variable values.
inputs, outputs = self.build_prediction_graph()
signature_def_map = {
'serving_default': signature_def_utils.predict_signature_def(inputs, outputs)
}
init_op = tf.global_variables_initializer()
sess.run(init_op)
self.restore_from_checkpoint(sess, self.inception_checkpoint_file,
last_checkpoint)
init_op_serving = control_flow_ops.group(
variables.local_variables_initializer(),
tf.tables_initializer())
builder = saved_model_builder.SavedModelBuilder(output_dir)
builder.add_meta_graph_and_variables(
sess, [tag_constants.SERVING],
signature_def_map=signature_def_map,
legacy_init_op=init_op_serving)
builder.save(False)
开发者ID:googledatalab,项目名称:pydatalab,代码行数:28,代码来源:_model.py
示例7: testCharConvEmbedder
def testCharConvEmbedder(self):
with open(vocab_file, "w") as vocab:
vocab.write("h\n"
"e\n"
"l\n"
"w\n"
"o\n")
with open(data_file, "w") as data:
data.write("hello world !\n")
embedder = text_inputter.CharConvEmbedder("vocabulary_file", 10, 5)
data, transformed = _first_element(
embedder, data_file, {"vocabulary_file": vocab_file})
input_receiver = embedder.get_serving_input_receiver()
self.assertAllEqual(
[None, None, None],
input_receiver.features["char_ids"].get_shape().as_list())
self.assertAllEqual(
[None],
input_receiver.features["length"].get_shape().as_list())
with self.test_session() as sess:
sess.run(tf.tables_initializer())
sess.run(tf.global_variables_initializer())
data, transformed = sess.run([data, transformed])
self.assertNotIn("raw", data)
self.assertNotIn("tokens", data)
self.assertAllEqual([3], data["length"])
self.assertAllEqual(
[[[0, 1, 2, 2, 4], [3, 4, 5, 2, 5], [5, 5, 5, 5, 5]]],
data["char_ids"])
self.assertAllEqual([1, 3, 5], transformed.shape)
开发者ID:yhgon,项目名称:OpenNMT-tf,代码行数:33,代码来源:inputter_test.py
示例8: testWordEmbedder
def testWordEmbedder(self):
with open(vocab_file, "w") as vocab:
vocab.write("the\n"
"world\n"
"hello\n"
"toto\n")
with open(data_file, "w") as data:
data.write("hello world !\n")
embedder = text_inputter.WordEmbedder(
"vocabulary_file", embedding_size=10)
data, transformed = _first_element(
embedder, data_file, {"vocabulary_file": vocab_file})
input_receiver = embedder.get_serving_input_receiver()
self.assertAllEqual(
[None, None],
input_receiver.features["ids"].get_shape().as_list())
self.assertAllEqual(
[None],
input_receiver.features["length"].get_shape().as_list())
with self.test_session() as sess:
sess.run(tf.tables_initializer())
sess.run(tf.global_variables_initializer())
data, transformed = sess.run([data, transformed])
self.assertNotIn("raw", data)
self.assertNotIn("tokens", data)
self.assertAllEqual([3], data["length"])
self.assertAllEqual([[2, 1, 4]], data["ids"])
self.assertAllEqual([1, 3, 10], transformed.shape)
开发者ID:yhgon,项目名称:OpenNMT-tf,代码行数:31,代码来源:inputter_test.py
示例9: export_model
def export_model(model_info, class_count, saved_model_dir):
# The SavedModel should hold the eval graph.
sess, _, _, _, _ = build_eval_session(model_info, class_count)
graph = sess.graph
with graph.as_default():
input_tensor = model_info['resized_input_tensor_name']
in_image = sess.graph.get_tensor_by_name(input_tensor)
inputs = {'image': tf.saved_model.utils.build_tensor_info(in_image)}
out_classes = sess.graph.get_tensor_by_name('final_result:0')
outputs = {
'prediction': tf.saved_model.utils.build_tensor_info(out_classes)
}
signature = tf.saved_model.signature_def_utils.build_signature_def(
inputs=inputs,
outputs=outputs,
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)
legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
# Save out the SavedModel.
builder = tf.saved_model.builder.SavedModelBuilder(saved_model_dir)
print("signature=", signature)
print("key:", tf.saved_model.signature_constants.
DEFAULT_SERVING_SIGNATURE_DEF_KEY)
builder.add_meta_graph_and_variables(
sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={
tf.saved_model.signature_constants.
DEFAULT_SERVING_SIGNATURE_DEF_KEY:
signature
},
legacy_init_op=legacy_init_op)
builder.save()
开发者ID:google,项目名称:makerfaire-2016,代码行数:35,代码来源:retrain.py
示例10: _run_eval
def _run_eval(self):
"""Run model evaluation and generate summaries."""
coord = tf.train.Coordinator(clean_stop_exception_types=(
tf.errors.CancelledError, tf.errors.OutOfRangeError))
with tf.Session(graph=self._graph) as session:
# Restores previously saved variables from latest checkpoint
self._saver.restore(session, self._latest_checkpoint)
session.run([
tf.tables_initializer(),
tf.local_variables_initializer()])
tf.train.start_queue_runners(coord=coord, sess=session)
train_step = session.run(self._gs)
tf.logging.info('Starting Evaluation For Step: {}'.format(train_step))
with coord.stop_on_exception():
eval_step = 0
while not coord.should_stop() and (self._eval_steps is None or
eval_step < self._eval_steps):
summaries, final_values, _ = session.run(
[self._summary_op, self._final_ops_dict, self._eval_ops])
if eval_step % 100 == 0:
tf.logging.info('On Evaluation Step: {}'.format(eval_step))
eval_step += 1
# Write the summaries
self._file_writer.add_summary(summaries, global_step=train_step)
self._file_writer.flush()
tf.logging.info(final_values)
开发者ID:zhang01GA,项目名称:cloudml-samples,代码行数:30,代码来源:task.py
示例11: test_module_export_vocab_on_custom_fs
def test_module_export_vocab_on_custom_fs(self):
root_dir = "file://%s" % self.get_temp_dir()
export_dir = "%s_%s" % (root_dir, "export")
tf.gfile.MakeDirs(export_dir)
# Create a module with a vocab file located on a custom filesystem.
vocab_dir = os.path.join(root_dir, "vocab_location")
tf.gfile.MakeDirs(vocab_dir)
vocab_filename = os.path.join(vocab_dir, "tokens.txt")
tf_utils.atomic_write_string_to_file(vocab_filename, "one", False)
def create_assets_module_fn():
def assets_module_fn():
indices = tf.placeholder(dtype=tf.int64, name="indices")
table = tf.contrib.lookup.index_to_string_table_from_file(
vocabulary_file=vocab_filename, default_value="UNKNOWN")
outputs = table.lookup(indices)
hub.add_signature(inputs=indices, outputs=outputs)
return assets_module_fn
with tf.Graph().as_default():
assets_module_fn = create_assets_module_fn()
spec = hub.create_module_spec(assets_module_fn)
embedding_module = hub.Module(spec)
with tf.Session() as sess:
sess.run(tf.tables_initializer())
embedding_module.export(export_dir, sess)
module_files = tf.gfile.ListDirectory(export_dir)
self.assertListEqual(
["assets", "saved_model.pb", "tfhub_module.pb", "variables"],
sorted(module_files))
module_files = tf.gfile.ListDirectory(os.path.join(export_dir, "assets"))
self.assertListEqual(["tokens.txt"], module_files)
开发者ID:jankim,项目名称:hub,代码行数:35,代码来源:e2e_test.py
示例12: testDuplicateAssetCopy
def testDuplicateAssetCopy(self):
export_path = os.path.join(self.get_temp_dir(), "assets-module")
def module_with_duplicate_asset():
vocabulary_file = self.create_vocab_file("tokens2.txt", ["1", "2", "3"])
indices1 = tf.placeholder(dtype=tf.int64, name="indices1")
indices2 = tf.placeholder(dtype=tf.int64, name="indices2")
hub.add_signature(
inputs={
"indices_1": indices1,
"indices_2": indices2,
},
outputs={
"x": do_table_lookup(indices1, vocabulary_file),
"y": do_table_lookup(indices2, vocabulary_file),
})
with tf.Graph().as_default():
spec = hub.create_module_spec(module_with_duplicate_asset)
module_a = hub.Module(spec)
module_a({"indices_1": tf.constant([1, 2], dtype=tf.int64),
"indices_2": tf.constant([1, 2], dtype=tf.int64)}, as_dict=True)
with tf.Session() as sess:
sess.run(tf.tables_initializer())
module_a.export(export_path, sess)
开发者ID:jankim,项目名称:hub,代码行数:25,代码来源:native_module_test.py
示例13: execute_cpu
def execute_cpu(self, graph_fn, inputs):
"""Constructs the graph, executes it on CPU and returns the result.
Args:
graph_fn: a callable that constructs the tensorflow graph to test. The
arguments of this function should correspond to `inputs`.
inputs: a list of numpy arrays to feed input to the computation graph.
Returns:
A list of numpy arrays or a scalar returned from executing the tensorflow
graph.
"""
with self.test_session(graph=tf.Graph()) as sess:
placeholders = [tf.placeholder_with_default(v, v.shape) for v in inputs]
results = graph_fn(*placeholders)
sess.run([tf.global_variables_initializer(), tf.tables_initializer(),
tf.local_variables_initializer()])
materialized_results = sess.run(results, feed_dict=dict(zip(placeholders,
inputs)))
if (hasattr(materialized_results, '__len__') and
len(materialized_results) == 1 and
(isinstance(materialized_results, list) or
isinstance(materialized_results, tuple))):
materialized_results = materialized_results[0]
return materialized_results
开发者ID:pcm17,项目名称:models,代码行数:26,代码来源:test_case.py
示例14: test_with_counts
def test_with_counts(self):
vocab_list = ["Hello", ".", "笑"]
vocab_counts = [100, 200, 300]
vocab_file = test_utils.create_temporary_vocab_file(vocab_list,
vocab_counts)
vocab_to_id_table, id_to_vocab_table, word_to_count_table, vocab_size = \
vocab.create_vocabulary_lookup_table(vocab_file.name)
self.assertEqual(vocab_size, 6)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
sess.run(tf.tables_initializer())
ids = vocab_to_id_table.lookup(
tf.convert_to_tensor(["Hello", ".", "笑", "??", "xxx"]))
ids = sess.run(ids)
np.testing.assert_array_equal(ids, [0, 1, 2, 3, 3])
words = id_to_vocab_table.lookup(
tf.convert_to_tensor(
[0, 1, 2, 3], dtype=tf.int64))
words = sess.run(words)
np.testing.assert_array_equal(
np.char.decode(words.astype("S"), "utf-8"),
["Hello", ".", "笑", "UNK"])
counts = word_to_count_table.lookup(
tf.convert_to_tensor(["Hello", ".", "笑", "??", "xxx"]))
counts = sess.run(counts)
np.testing.assert_array_equal(counts, [100, 200, 300, -1, -1])
开发者ID:AbhinavJain13,项目名称:seq2seq,代码行数:33,代码来源:vocab_test.py
示例15: testLabels2
def testLabels2(self):
self._input_config["label_feature"] = "label_str"
self._input_config["label_map"] = {"PC": 1, "AFP": 0, "NTP": 0}
dataset = dataset_ops.build_dataset(
file_pattern=self._file_pattern,
input_config=self._input_config,
batch_size=4)
# We need an initializable iterator when using labels because of the
# stateful label id hash table.
iterator = dataset.make_initializable_iterator()
inputs = iterator.get_next()
init_op = tf.tables_initializer()
# Expect features and labels.
self.assertItemsEqual(["time_series_features", "aux_features", "labels"],
inputs.keys())
labels = inputs["labels"]
with self.test_session() as sess:
sess.run([init_op, iterator.initializer])
# Fetch 3 batches.
np.testing.assert_array_equal([1, 0, 0, 1], sess.run(labels))
np.testing.assert_array_equal([0, 0, 1, 0], sess.run(labels))
np.testing.assert_array_equal([0, 1], sess.run(labels))
# No more batches.
with self.assertRaises(tf.errors.OutOfRangeError):
sess.run(labels)
开发者ID:812864539,项目名称:models,代码行数:31,代码来源:dataset_ops_test.py
示例16: main
def main(args):
if not os.path.exists(FLAGS.checkpoint):
tf.logging.fatal(
'Checkpoint %s does not exist. Have you download it? See tools/download_data.sh',
FLAGS.checkpoint)
g = tf.Graph()
with g.as_default():
input_image = PreprocessImage(FLAGS.image_path[0])
with slim.arg_scope(inception.inception_v3_arg_scope()):
logits, end_points = inception.inception_v3(
input_image, num_classes=FLAGS.num_classes, is_training=False)
bottleneck = end_points['PreLogits']
init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer(),
tf.tables_initializer())
saver = tf_saver.Saver()
sess = tf.Session()
saver.restore(sess, FLAGS.checkpoint)
# Run the evaluation on the image
bottleneck_eval = np.squeeze(sess.run(bottleneck))
first = True
for val in bottleneck_eval:
if not first:
sys.stdout.write(",")
first = False
sys.stdout.write('{:.3f}'.format(val))
sys.stdout.write('\n')
开发者ID:hotak92,项目名称:elective-pirri,代码行数:31,代码来源:compute_bottleneck.py
示例17: testUnknownLabel
def testUnknownLabel(self):
self._input_config["label_feature"] = "label_str"
# label_map does not include "NTP".
self._input_config["label_map"] = {"PC": 1, "AFP": 0}
dataset = dataset_ops.build_dataset(
file_pattern=self._file_pattern,
input_config=self._input_config,
batch_size=4)
# We need an initializable iterator when using labels because of the
# stateful label id hash table.
iterator = dataset.make_initializable_iterator()
inputs = iterator.get_next()
init_op = tf.tables_initializer()
# Expect features and labels.
self.assertItemsEqual(["time_series_features", "aux_features", "labels"],
inputs.keys())
labels = inputs["labels"]
with self.test_session() as sess:
sess.run([init_op, iterator.initializer])
# Unknown label "NTP".
with self.assertRaises(tf.errors.InvalidArgumentError):
sess.run(labels)
开发者ID:812864539,项目名称:models,代码行数:28,代码来源:dataset_ops_test.py
示例18: load_model
def load_model(model, ckpt, session, name):
start_time = time.time()
model.saver.restore(session, ckpt)
session.run(tf.tables_initializer())
print " loaded %s model parameters from %s, time %.2fs" % \
(name, ckpt, time.time() - start_time)
return model
开发者ID:rpryzant,项目名称:code-doodles,代码行数:7,代码来源:model_base.py
示例19: testDeprecatedFunction
def testDeprecatedFunction(self, mock_warning):
self.assertEqual(0, mock_warning.call_count)
tf.compat.v1.initializers.tables_initializer()
self.assertEqual(0, mock_warning.call_count)
tf.tables_initializer()
self.assertEqual(1, mock_warning.call_count)
self.assertRegexpMatches(
mock_warning.call_args[0][1],
"deprecation_test.py:")
self.assertRegexpMatches(
mock_warning.call_args[0][2], r"tables_initializer")
self.assertRegexpMatches(
mock_warning.call_args[0][3],
r"compat.v1.tables_initializer")
tf.tables_initializer()
self.assertEqual(1, mock_warning.call_count)
开发者ID:aritratony,项目名称:tensorflow,代码行数:17,代码来源:deprecation_test.py
示例20: test_create_summaries_is_runnable
def test_create_summaries_is_runnable(self):
ocr_model = self.create_model()
data = data_provider.InputEndpoints(
images=self.fake_images,
images_orig=self.fake_images,
labels=self.fake_labels,
labels_one_hot=slim.one_hot_encoding(self.fake_labels,
self.num_char_classes))
endpoints = ocr_model.create_base(
images=self.fake_images, labels_one_hot=None)
charset = create_fake_charset(self.num_char_classes)
summaries = ocr_model.create_summaries(
data, endpoints, charset, is_training=False)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
tf.tables_initializer().run()
sess.run(summaries) # just check it is runnable
开发者ID:banjocui,项目名称:models,代码行数:18,代码来源:model_test.py
注:本文中的tensorflow.tables_initializer函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论