• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensorflow.strided_slice函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.strided_slice函数的典型用法代码示例。如果您正苦于以下问题:Python strided_slice函数的具体用法?Python strided_slice怎么用?Python strided_slice使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了strided_slice函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: read_cifar10

def read_cifar10(filename_queue):
    class CIFAR10Record(object):
        pass

    result = CIFAR10Record()

    label_bytes = 1
    result.height = 32
    result.width = 32
    result.depth = 3
    image_bytes = result.height * result.width * result.depth
    record_bytes = label_bytes + image_bytes

    # Read a record, getting filenames from the filename_queue.
    reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
    result.key, value = reader.read(filename_queue)

    # Convert from a string to a vector of uint8 that is record_bytes long.
    record_bytes = tf.decode_raw(value, tf.uint8)

    # The first bytes represent the label, which we convert from uint8->int32.
    result.label = tf.cast(tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

    # The remaining bytes after the label represent the image, which we reshape
    # from [depth * height * width] to [depth, height, width].
    depth_major = tf.reshape(
        tf.strided_slice(record_bytes, [label_bytes],
                         [label_bytes + image_bytes]),
        [result.depth, result.height, result.width])

    # Convert from [depth, height, width] to [height, width, depth].
    result.uint8image = tf.transpose(depth_major, [1, 2, 0])

    return result
开发者ID:muratcancicek,项目名称:Assignment-Projects,代码行数:34,代码来源:read_data.py


示例2: _read_input

def _read_input(filename_queue):
  """Reads a single record and converts it to a tensor.

  Each record consists the 3x32x32 image with one byte for the label.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
      image: a [32, 32, 3] float32 Tensor with the image data.
      label: an int32 Tensor with the label in the range 0..9.
  """
  label_bytes = 1
  height = 32
  depth = 3
  image_bytes = height * height * depth
  record_bytes = label_bytes + image_bytes

  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  _, byte_data = reader.read(filename_queue)
  uint_data = tf.decode_raw(byte_data, tf.uint8)

  label = tf.cast(tf.strided_slice(uint_data, [0], [label_bytes]), tf.int32)
  label.set_shape([1])

  depth_major = tf.reshape(
      tf.strided_slice(uint_data, [label_bytes], [record_bytes]),
      [depth, height, height])
  image = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32)

  return image, label
开发者ID:DuanHQO,项目名称:models,代码行数:31,代码来源:cifar10_input.py


示例3: ptb_producer

def ptb_producer(raw_data, batch_size, num_steps, name=None):
    
    with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
        raw_data = tf.convert_to_tensor(raw_data, 
                                        dtype=tf.int32, name="raw_data")
        data_len = tf.size(raw_data)
        batch_len = data_len // batch_size
        data = tf.reshape(raw_data[0: batch_len*batch_size],
                          [batch_size, batch_len])
        epoch_size = (batch_len-1) // num_steps
        assertion = tf.assert_positive(
                epoch_size,
                message="batch size too large")
        
        with tf.control_dependencies([assertion]):
            epoch_size = tf.identity(epoch_size, name="epoch_size")
        
        i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
        x = tf.strided_slice(data, [0, i*num_steps],
                             [batch_size, (i+1)*num_steps])
        
        x.set_shape([batch_size, num_steps])
        y = tf.strided_slice(data, [0, i*num_steps+1],
                             [batch_size, (i+1)*num_steps+1])
        y.set_shape([batch_size, num_steps])
        return x, y
开发者ID:lacozhang,项目名称:torchcode,代码行数:26,代码来源:embed.py


示例4: read_data

def read_data(file_q):
    # Code from https://github.com/tensorflow/models/blob/master/tutorials/image/cifar10/cifar10_input.py
    class CIFAR10Record(object):
        pass

    result = CIFAR10Record()

    # Dimensions of the images in the CIFAR-10 dataset.
    # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
    # input format.
    label_bytes = 1  # 2 for CIFAR-100
    result.height = 32
    result.width = 32
    result.depth = 3
    image_bytes = result.height * result.width * result.depth
    # Every record consists of a label followed by the image, with a
    # fixed number of bytes for each.
    record_bytes = label_bytes + image_bytes

    # Read a record, getting filenames from the filename_queue.  No
    # header or footer in the CIFAR-10 format, so we leave header_bytes
    # and footer_bytes at their default of 0.
    reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
    result.key, value = reader.read(file_q)

    # Convert from a string to a vector of uint8 that is record_bytes long.
    record_bytes = tf.decode_raw(value, tf.uint8)

    # The first bytes represent the label, which we convert from uint8->int32.
    result.label = tf.cast(
        tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

    # The remaining bytes after the label represent the image, which we reshape
    # from [depth * height * width] to [depth, height, width].
    depth_major = tf.reshape(
        tf.strided_slice(record_bytes, [label_bytes],
                         [label_bytes + image_bytes]),
        [result.depth, result.height, result.width])
    # Convert from [depth, height, width] to [height, width, depth].
    result.uint8image = tf.transpose(depth_major, [1, 2, 0])

    reshaped_image = tf.cast(result.uint8image, tf.float32)

    height = 24
    width = 24

    # Image processing for evaluation.
    # Crop the central [height, width] of the image.
    resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image,
                                                           height, width)

    # Subtract off the mean and divide by the variance of the pixels.
    float_image = tf.image.per_image_standardization(resized_image)

    # Set the shapes of tensors.
    float_image.set_shape([height, width, 3])
    result.label.set_shape([1])

    return float_image, result.label
开发者ID:huangpu1,项目名称:adventures-in-ml-code,代码行数:59,代码来源:tf_queuing.py


示例5: read_cifar10

def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.
  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.
  Args:
    filename_queue: A queue of strings with the filenames to read from.
  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
开发者ID:Daiver,项目名称:jff,代码行数:58,代码来源:cifar10_input.py


示例6: __init__

  def __init__(self, **kwargs):
    """
    """
    super(AlternatingRealToComplexLayer, self).__init__(**kwargs)

    input_placeholder = self.input_data.get_placeholder_as_batch_major()

    real_value = tf.strided_slice(input_placeholder, [0, 0, 0], tf.shape(input_placeholder), [1, 1, 2])
    imag_value = tf.strided_slice(input_placeholder, [0, 0, 1], tf.shape(input_placeholder), [1, 1, 2])
    self.output.placeholder = tf.complex(real_value, imag_value)
    self.output.size_placeholder = {0: self.input_data.size_placeholder[self.input_data.time_dim_axis_excluding_batch]}
开发者ID:rwth-i6,项目名称:returnn,代码行数:11,代码来源:TFNetworkSigProcLayer.py


示例7: _build_clp_multiplication

 def _build_clp_multiplication(self, clp_kernel):
   from TFUtil import safe_log
   input_placeholder = self.input_data.get_placeholder_as_batch_major()
   tf.assert_equal(tf.shape(clp_kernel)[1], tf.shape(input_placeholder)[2] // 2)
   tf.assert_equal(tf.shape(clp_kernel)[2], self._nr_of_filters)
   input_real = tf.strided_slice(input_placeholder, [0, 0, 0], tf.shape(input_placeholder), [1, 1, 2])
   input_imag = tf.strided_slice(input_placeholder, [0, 0, 1], tf.shape(input_placeholder), [1, 1, 2])
   kernel_real = self._clp_kernel[0, :, :]
   kernel_imag = self._clp_kernel[1, :, :]
   output_real = tf.einsum('btf,fp->btp', input_real, kernel_real) - tf.einsum('btf,fp->btp', input_imag, kernel_imag)
   output_imag = tf.einsum('btf,fp->btp', input_imag, kernel_real) + tf.einsum('btf,fp->btp', input_real, kernel_imag)
   output_uncompressed = tf.sqrt(tf.pow(output_real, 2) + tf.pow(output_imag, 2))
   output_compressed = safe_log(output_uncompressed)
   return output_compressed
开发者ID:rwth-i6,项目名称:returnn,代码行数:14,代码来源:TFNetworkSigProcLayer.py


示例8: _test_stridedslice

def _test_stridedslice(ip_shape, begin, end, stride, dtype,
                             begin_mask=0, end_mask=0, new_axis_mask=0,
                             shrink_axis_mask=0, ellipsis_mask=0):
    """ One iteration of a Stridedslice """

    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, ip_shape, name="in_data")
    tf.strided_slice(in_data, begin, end, stride, begin_mask=begin_mask,
                         end_mask=end_mask, new_axis_mask=new_axis_mask,
                         shrink_axis_mask=shrink_axis_mask,
                         ellipsis_mask=ellipsis_mask, name="strided_slice")
    np_data = np.random.uniform(size=ip_shape).astype(dtype)

    compare_tf_with_tvm(np_data, 'in_data:0', 'strided_slice:0')
开发者ID:LANHUIYING,项目名称:tvm,代码行数:14,代码来源:test_forward.py


示例9: read_cifar10

def read_cifar10(filename_queue):
    """Reads and parses examples from CIFAR10 data files.

    Recommendation: if you want N-way read parallelism, call this function
    N times.  This will give you N independent Readers reading different
    files & positions within those files, which will give better mixing of
    examples.

    Args:
    filename_queue: A queue of strings with the filenames to read from.

    Returns:
        An object representing a single example, with the following fields:
        height: number of rows in the result (32)
        width: number of columns in the result (32)
        depth: number of color channels in the result (3)
        key: a scalar string Tensor describing the filename & record number
            for this example.
        label: an int32 Tensor with the label in the range 0..9.
        uint8image: a [height, width, depth] uint8 Tensor with the image data
    """

    class CIFAR10Record(object):
        pass
    result = CIFAR10Record()

    label_bytes = 1
    result.height, result.width, result.depth = 32, 32, 3
    image_bytes = result.height * result.width * result.depth
    record_bytes = label_bytes + image_bytes

    reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
    result.key, value = reader.read(filename_queue)

    # Convert from a string to a vector of uint8 that is record_bytes long.
    record_bytes = tf.decode_raw(value, tf.uint8)

    # The first bytes represent the label, which we convert from uint8->int32.
    result.label = tf.cast(tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

    # The remaining bytes after the label represent the image, which we reshape
    # from [depth * height * width] to [depth, height, width].
    depth_major = tf.reshape(tf.strided_slice(record_bytes, [label_bytes],
                                              [label_bytes + image_bytes]),
                             [result.depth, result.height, result.width])
    # Convert from [depth, height, width] to [height, width, depth].
    result.uint8image = tf.transpose(depth_major, [1, 2, 0])

    return result
开发者ID:AlliedToasters,项目名称:elko_den,代码行数:49,代码来源:cifar10_input.py


示例10: process_encoding_input

def process_encoding_input(target_data, vocab_to_int, batch_size):
    '''Remove the last word id from each batch and concat the <GO> to the begining of each batch'''
    
    ending = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1])
    dec_input = tf.concat([tf.fill([batch_size, 1], vocab_to_int['<GO>']), ending], 1)

    return dec_input
开发者ID:aMarry,项目名称:seq2seq_for_char1,代码行数:7,代码来源:Chinese.py


示例11: AddCrossEntropy

def AddCrossEntropy(batch_size, n):
  """Adds a cross entropy cost function."""
  cross_entropies = []
  def _Pass():
    return tf.constant(0, dtype=tf.float32, shape=[1])

  for beam_id in range(batch_size):
    beam_gold_slot = tf.reshape(
        tf.strided_slice(n['gold_slot'], [beam_id], [beam_id + 1]), [1])
    def _ComputeCrossEntropy():
      """Adds ops to compute cross entropy of the gold path in a beam."""
      # Requires a cast so that UnsortedSegmentSum, in the gradient,
      # is happy with the type of its input 'segment_ids', which
      # must be int32.
      idx = tf.cast(
          tf.reshape(
              tf.where(tf.equal(n['beam_ids'], beam_id)), [-1]), tf.int32)
      beam_scores = tf.reshape(tf.gather(n['all_path_scores'], idx), [1, -1])
      num = tf.shape(idx)
      return tf.nn.softmax_cross_entropy_with_logits(
          labels=tf.expand_dims(
              tf.sparse_to_dense(beam_gold_slot, num, [1.], 0.), 0),
          logits=beam_scores)
    # The conditional here is needed to deal with the last few batches of the
    # corpus which can contain -1 in beam_gold_slot for empty batch slots.
    cross_entropies.append(cf.cond(
        beam_gold_slot[0] >= 0, _ComputeCrossEntropy, _Pass))
  return {'cross_entropy': tf.div(tf.add_n(cross_entropies), batch_size)}
开发者ID:ALISCIFP,项目名称:models,代码行数:28,代码来源:structured_graph_builder.py


示例12: objective

        def objective(x):
            """Rosenbrock function. (Carl Edward Rasmussen, 2001-07-21).

      f(x) = sum_{i=1:D-1} 100*(x(i+1) - x(i)^2)^2 + (1-x(i))^2

      Args:
        x: a Variable
      Returns:
        f: a tensor (objective value)
      """

            d = tf.size(x)
            s = tf.add(
                100 * tf.square(tf.sub(tf.strided_slice(x, [1], [d]), tf.square(tf.strided_slice(x, [0], [d - 1])))),
                tf.square(tf.sub(1.0, tf.strided_slice(x, [0], [d - 1]))),
            )
            return tf.reduce_sum(s)
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:17,代码来源:external_optimizer_test.py


示例13: _my_metric_op

 def _my_metric_op(predictions, labels):
   # For the case of binary classification, the 2nd column of "predictions"
   # denotes the model predictions.
   labels = tf.to_float(labels)
   predictions = tf.strided_slice(
       predictions, [0, 1], [-1, 2], end_mask=1)
   labels = math_ops.cast(labels, predictions.dtype)
   return tf.reduce_sum(tf.multiply(predictions, labels))
开发者ID:moolighty,项目名称:tensorflow,代码行数:8,代码来源:dnn_test.py


示例14: process_decoder_input

def process_decoder_input(data, vocab_to_int, batch_size):
    '''
    补充<GO>,并移除最后一个字符
    '''
    # cut掉最后一个字符
    ending = tf.strided_slice(data, [0, 0], [batch_size, -1], [1, 1])
    decoder_input = tf.concat([tf.fill([batch_size, 1], vocab_to_int['<GO>']), ending], 1)

    return decoder_input
开发者ID:et0803,项目名称:zhihu,代码行数:9,代码来源:Seq2seq_char.py


示例15: gather

    def gather(self, src, force_copy=False):
        """
        Fetches the data corresponding to ``src`` from the base array.

        Parameters
        ----------
        src : `.TensorSignal`
            Signal indicating the data to be read from base array
        force_copy : bool
            If True, always perform a gather, not a slice (this forces a
            copy). Note that setting ``force_copy=False`` does not guarantee
            that a copy won't be performed.

        Returns
        -------
        gathered : ``tf.Tensor``
            Tensor object corresponding to a dense subset of data from the
            base array
        """

        logger.debug("gather")
        logger.debug("src %s", src)
        logger.debug("indices %s", src.indices)
        logger.debug("src base %s", self.bases[src.key])

        var = self.bases[src.key]

        # we prefer to get the data via `strided_slice` or `identity` if
        # possible, as it is more efficient
        if force_copy or src.tf_slice is None:
            result = tf.gather(var, src.tf_indices)
            self.read_types["gather"] += 1
        elif (src.indices[0] == 0 and
              src.indices[-1] == var.get_shape()[0].value - 1 and
              len(src.indices) == var.get_shape()[0]):
            result = var
            self.read_types["identity"] += 1
        else:
            result = tf.strided_slice(var, *src.tf_slice)
            self.read_types["strided_slice"] += 1

        # reshape the data according to the shape set in `src`, if there is
        # one, otherwise keep the shape of the base array
        if result.get_shape() != src.full_shape:
            result = tf.reshape(result, src.tf_shape)

        # for some reason the shape inference doesn't work in some cases
        result.set_shape(src.full_shape)

        # whenever we read from an array we use this to mark it as "read"
        # (so that any future writes to the array will be scheduled after
        # the read)
        self.mark_gather(src)

        return result
开发者ID:nengo,项目名称:nengo_deeplearning,代码行数:55,代码来源:signals.py


示例16: ptb_producer

def ptb_producer(raw_data, batch_size, num_steps, name=None):
  """Iterate on the raw PTB data.

  This chunks up raw_data into batches of examples and returns Tensors that
  are drawn from these batches.

  Args:
    raw_data: one of the raw data outputs from ptb_raw_data.
    batch_size: int, the batch size.
    num_steps: int, the number of unrolls.
    name: the name of this operation (optional).

  Returns:
    A pair of Tensors, each shaped [batch_size, num_steps]. The second element
    of the tuple is the same data time-shifted to the right by one.

  Raises:
    tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
  """
  with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
    raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)

    data_len = tf.size(raw_data)
    batch_len = data_len // batch_size
    data = tf.reshape(raw_data[0 : batch_size * batch_len],
                      [batch_size, batch_len])

    epoch_size = (batch_len - 1) // num_steps
    assertion = tf.assert_positive(
        epoch_size,
        message="epoch_size == 0, decrease batch_size or num_steps")
    with tf.control_dependencies([assertion]):
      epoch_size = tf.identity(epoch_size, name="epoch_size")

    i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
    x = tf.strided_slice(data, [0, i * num_steps],
                         [batch_size, (i + 1) * num_steps])
    x.set_shape([batch_size, num_steps])
    y = tf.strided_slice(data, [0, i * num_steps + 1],
                         [batch_size, (i + 1) * num_steps + 1])
    y.set_shape([batch_size, num_steps])
    return x, y
开发者ID:ccchang0111,项目名称:sonnet,代码行数:42,代码来源:ptb_reader.py


示例17: get_out_data_from_opts

 def get_out_data_from_opts(cls, name, sources, pool_size, n_out=None, **kwargs):
   input_data = get_concat_sources_data_template(sources)
   assert not input_data.sparse
   return Data(
     name="%s_output" % name,
     shape=[input_data.get_placeholder_as_batch_major().shape[1].value, input_data.get_placeholder_as_batch_major().shape[2].value],
     dtype=input_data.dtype,
     size_placeholder={0: tf.strided_slice(input_data.size_placeholder[input_data.time_dim_axis_excluding_batch], [0], tf.shape(input_data.size_placeholder[input_data.time_dim_axis_excluding_batch]), [pool_size])},
     sparse=False,
     batch_dim_axis=0,
     time_dim_axis=1)
开发者ID:rwth-i6,项目名称:returnn,代码行数:11,代码来源:TFNetworkSigProcLayer.py


示例18: read_input

def read_input(file):
	# start
	class Record(object):
		pass
	result = Record()

	# Dimensions of the images in the CIFAR-10 dataset.
	# See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
	# input format.
	label_bytes = 1  # 2 for CIFAR-100
	result.height = 32
	result.width = 32
	result.depth = 3
	image_bytes = result.height * result.width * result.depth
	# Every record consists of a label followed by the image, with a
	# fixed number of bytes for each.
	record_bytes = label_bytes + image_bytes

	# Read a record, getting filenames from the filename_queue.  No
	# header or footer in the CIFAR-10 format, so we leave header_bytes
	# and footer_bytes at their default of 0.
	reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
	result.key, value = reader.read(filename_queue)

	# Convert from a string to a vector of uint8 that is record_bytes long.
	record_bytes = tf.decode_raw(value, tf.uint8)

	# The first bytes represent the label, which we convert from uint8->int32.
	result.label = tf.cast(
				tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

	# The remaining bytes after the label represent the image, which we reshape
	# from [depth * height * width] to [depth, height, width].
	depth_major = tf.reshape(
		tf.strided_slice(record_bytes, [label_bytes],
	               [label_bytes + image_bytes]),
		[result.depth, result.height, result.width])
	# Convert from [depth, height, width] to [height, width, depth].
	result.uint8image = tf.transpose(depth_major, [1, 2, 0])

	return result
开发者ID:Strongtheory,项目名称:Projects,代码行数:41,代码来源:cnn_input.py


示例19: token2ids

 def token2ids(token):
     with tf.name_scope("token2ids_preprocessor"):
         char_ids = tf.decode_raw(token, tf.uint8, name='decode_raw2get_char_ids')
         char_ids = tf.cast(char_ids, tf.int32, name='cast2int_token')
         char_ids = tf.strided_slice(char_ids, [0], [max_word_length - 2],
                                     [1], name='slice2resized_token')
         ids_num = tf.shape(char_ids)[0]
         fill_ids_num = (_max_word_length - 2) - ids_num
         pads = tf.fill([fill_ids_num], _pad_id)
         bow_token_eow_pads = tf.concat([[_bow_id], char_ids, [_eow_id], pads],
                                        0, name='concat2bow_token_eow_pads')
         return bow_token_eow_pads
开发者ID:RileyShe,项目名称:DeepPavlov,代码行数:12,代码来源:elmo2tfhub.py


示例20: read_data

def read_data(filename_queue):
    images_bytes = IMG_HEIGHT * IMG_WIDTH * IMG_CHANNELS
    # Compute how many bytes to read per image.
    record_bytes = images_bytes + LABEL_BYTES

    record = ImageRecord()
    record.height = IMG_HEIGHT
    record.width = IMG_WIDTH
    record.channels = IMG_CHANNELS

    # Read a record, getting filenames from filename_queue.
    reader = tf.FixedLengthRecordReader(
        record_bytes=record_bytes
    )
    record.key, value = reader.read(filename_queue)

    # Convert from a string to vector of uint8
    record_data = tf.decode_raw(value, tf.uint8)

    record.label = tf.cast(
        tf.strided_slice(record_data, [0], [LABEL_BYTES]),
        tf.int32
    )

    # The remaining bytes after the label
    # Reshape image from vector to 3D tensor
    depth_major = tf.reshape(
        tf.strided_slice(
            record_data,
            [LABEL_BYTES],
            [record_bytes]
        ),
        [record.channels, record.height, record.width]
    )
    # Convert from [channels, height, width] to [height, width, channels]
    record.uint8image = tf.transpose(
        depth_major,
        [1,2,0]
    )
    return record
开发者ID:kishore3491,项目名称:MachineLearning-projects,代码行数:40,代码来源:InputHandler.py



注:本文中的tensorflow.strided_slice函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensorflow.string_split函数代码示例发布时间:2022-05-27
下一篇:
Python tensorflow.stop_gradient函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap