本文整理汇总了Python中tensorflow.sigmoid函数的典型用法代码示例。如果您正苦于以下问题:Python sigmoid函数的具体用法?Python sigmoid怎么用?Python sigmoid使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了sigmoid函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: __call__
def __call__(self, inputs, state, scope=None):
num_proj = self._num_units if self._num_proj is None else self._num_proj
c_prev = tf.slice(state, [0, 0], [-1, self._num_units])
m_prev = tf.slice(state, [0, self._num_units], [-1, num_proj])
input_size = inputs.get_shape().with_rank(2)[1]
if input_size.value is None:
raise ValueError("Could not infer input size from inputs.get_shape()[-1]")
with tf.variable_scope(type(self).__name__,
initializer=self._initializer):
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
cell_inputs = tf.concat(1, [inputs, m_prev])
lstm_matrix = tf.nn.bias_add(tf.matmul(cell_inputs, self._concat_w),
self._b)
i, j, f, o = tf.split(1, 4, lstm_matrix)
c = tf.sigmoid(f + self._forget_bias) * c_prev + tf.sigmoid(i) * tf.sigmoid(j)
m = tf.sigmoid(o) * tf.tanh(c)
if self._num_proj is not None:
m = tf.matmul(m, self._concat_w_proj)
new_state = tf.concat(1, [c, m])
return m, new_state
开发者ID:IgorWang,项目名称:RNNLM,代码行数:27,代码来源:model_utils.py
示例2: loss_fn
def loss_fn(w_flat):
w = tf.reshape(w_flat, [visible_size, hidden_size])
x = tf.matmul(data, w)
x = tf.sigmoid(x)
x = tf.matmul(x, w, transpose_b=True)
x = tf.sigmoid(x)
return tf.reduce_mean(tf.square(x-data))
开发者ID:yaroslavvb,项目名称:stuff,代码行数:7,代码来源:eager_lbfgs.py
示例3: unit
def unit(x, hidden_memory_tm1):
previous_hidden_state, c_prev = tf.unpack(hidden_memory_tm1)
# Input Gate
i = tf.sigmoid(
tf.matmul(x, self.Wi) +
tf.matmul(previous_hidden_state, self.Ui) + self.bi
)
# Forget Gate
f = tf.sigmoid(
tf.matmul(x, self.Wf) +
tf.matmul(previous_hidden_state, self.Uf) + self.bf
)
# Output Gate
o = tf.sigmoid(
tf.matmul(x, self.Wog) +
tf.matmul(previous_hidden_state, self.Uog) + self.bog
)
# New Memory Cell
c_ = tf.nn.tanh(
tf.matmul(x, self.Wc) +
tf.matmul(previous_hidden_state, self.Uc) + self.bc
)
# Final Memory cell
c = f * c_prev + i * c_
# Current Hidden state
current_hidden_state = o * tf.nn.tanh(c)
return tf.pack([current_hidden_state, c])
开发者ID:Soledad89,项目名称:SeqGAN,代码行数:34,代码来源:model.py
示例4: __call__
def __call__(self, inputs, state, scope=None):
with tf.device("/gpu:"+str(self._gpu_for_layer)):
"""JZS3, mutant 2 with n units cells."""
with tf.variable_scope(scope or type(self).__name__): # "JZS1Cell"
with tf.variable_scope("Zinput"): # Reset gate and update gate.
# We start with bias of 1.0 to not reset and not update.
'''equation 1'''
z = tf.sigmoid(linear([inputs, tf.tanh(state)],
self._num_units, True, 1.0, weight_initializer = self._weight_initializer, orthogonal_scale_factor = self._orthogonal_scale_factor))
'''equation 2'''
with tf.variable_scope("Rinput"):
r = tf.sigmoid(linear([inputs, state],
self._num_units, True, 1.0, weight_initializer = self._weight_initializer, orthogonal_scale_factor = self._orthogonal_scale_factor))
'''equation 3'''
with tf.variable_scope("Candidate"):
component_0 = linear([state*r,inputs],
self._num_units, True)
component_2 = (tf.tanh(component_0))*z
component_3 = state*(1 - z)
h_t = component_2 + component_3
return h_t, h_t #there is only one hidden state output to keep track of.
开发者ID:tonydeep,项目名称:tensorflow_with_latest_papers,代码行数:26,代码来源:rnn_cell_modern.py
示例5: mkDiscriminator
def mkDiscriminator(input, weights):
l1 = tf.nn.tanh(tf.matmul(input, weights['w1']) + weights['b1'])
l2 = tf.nn.tanh(tf.matmul(l1,weights['w2']) + weights['b2'])
l3 = tf.sigmoid(tf.matmul(l2,weights['w3']) + weights['b3'])
return l3
l4 = tf.sigmoid(tf.matmul(l3,weights['w4']) + weights['b4'])
return l4
开发者ID:Daiver,项目名称:jff,代码行数:7,代码来源:main.py
示例6: __call__
def __call__(self, inputs, state, scope = None):
with tf.variable_scope(scope or type(self).__name__):
with tf.variable_scope("Gates"):
reset, update = tf.split(
1,
2,
linear(
[inputs, states],
2 * self._num_units,
bias = True,
bias_start = 1.0
)
)
reset, update = tf.sigmoid(reset), tf.sigmoid(update)
with tf.variable_scope("Candidate"):
candidate = linear(
[inputs, reset * state],
self._num_units,
bias = True
)
candidate = tf.tanh(candidate)
new_state = update * state + (1 - update) * candidate
return new_state, new_state
开发者ID:chetkhatri,项目名称:TensorFlow-Playground,代码行数:26,代码来源:rnn_units.py
示例7: forward_propogation
def forward_propogation(self):
x = tf.placeholder("float")
z2 = tf.add(tf.matmul(x,self.W1),self.b1)
a2 = tf.sigmoid(z2, name="Hidden Activation")
z3 = tf.add(tf.matmul(a2,self.W2),self.b2)
a3 = tf.sigmoid(z3, name="Output Activation")
return a3
开发者ID:sjcjohnston,项目名称:spectral_prediction,代码行数:7,代码来源:autoencoder.py
示例8: __call__
def __call__(self, inputs, state, scope=None):
"""Long short-term memory cell (LSTM)."""
with tf.variable_scope(self, scope or "basic_lstm_cell", reuse=self._reuse):
# Parameters of gates are concatenated into one multiply for
# efficiency.
if self._state_is_tuple:
c_prev, h_prev = state
else:
c_prev, h_prev = tf.split(
value=state, num_or_size_splits=2, axis=1)
concat = tf.contrib.rnn._linear(
[inputs, h_prev], 4 * self._num_units, True)
# i = input_gate, g = new_input, f = forget_gate, o = output_gate
i, g, f, o = tf.split(value=concat, num_or_size_splits=4, axis=1)
c = (c_prev * tf.sigmoid(f + self._forget_bias) +
tf.sigmoid(i) * tf.tanh(g))
h = tf.tanh(c) * tf.sigmoid(o)
if self._state_is_tuple:
new_state = LSTMStateTuple(c, h)
else:
new_state = tf.concat([c, h], 1)
return h, new_state
开发者ID:seasky100,项目名称:tensorflow_end2end_speech_recognition,代码行数:25,代码来源:basic_lstm.py
示例9: __call__
def __call__(self, inputs, state, scope=None):
"""Gated recurrent unit (GRU) with nunits cells."""
with vs.variable_scope(scope or type(self).__name__):
if self._dropMaskInput.get_shape()[1:] != inputs.get_shape()[1:]:
print("error: "+str(self._dropMaskInput.get_shape()[1:])+" != "+str(inputs.get_shape()[1:]))
assert(False)
if self._dropMaskState.get_shape()[1:] != state.get_shape()[1:]:
print("error: "+str(self._dropMaskState.get_shape()[1:])+" != "+str(state.get_shape()[1:]))
assert(False)
dropin = tf.mul(self._dropMaskInput, inputs)
dropst = tf.mul(self._dropMaskState, state)
with vs.variable_scope("Gates"): # Reset gate and update gate.
# We start with bias of 1.0 to not reset and not update.
concat = rnn_cell._linear([dropin, dropst], 2 * self._num_units, True, 1.0)
r, u = tf.split(1, 2, concat)
r, u = tf.sigmoid(r), tf.sigmoid(u)
with vs.variable_scope("Candidate"):
htilda = self._activation(rnn_cell._linear([dropin, r * dropst], self._num_units, True))
new_h = u * dropst + (1 - u) * htilda
return new_h, new_h
开发者ID:jasonbunk,项目名称:char-rnn-tensorflow,代码行数:25,代码来源:dropgru.py
示例10: build_losses
def build_losses(self, logits_real, logits_fake):
"""D and G play two-player minimax game with value function V(G,D)
min_G max _D V(D, G) = IE_{x ~ p_data} [log D(x)] + IE_{z ~ p_fake} [log (1 - D(G(z)))]
Args:
logits_real (tf.Tensor): discrim logits from real samples
logits_fake (tf.Tensor): discrim logits from fake samples produced by generator
"""
with tf.name_scope("GAN_loss"):
score_real = tf.sigmoid(logits_real)
score_fake = tf.sigmoid(logits_fake)
tf.summary.histogram('score-real', score_real)
tf.summary.histogram('score-fake', score_fake)
with tf.name_scope("discrim"):
d_loss_pos = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=logits_real, labels=tf.ones_like(logits_real)), name='loss_real')
d_loss_neg = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=logits_fake, labels=tf.zeros_like(logits_fake)), name='loss_fake')
d_pos_acc = tf.reduce_mean(tf.cast(score_real > 0.5, tf.float32), name='accuracy_real')
d_neg_acc = tf.reduce_mean(tf.cast(score_fake < 0.5, tf.float32), name='accuracy_fake')
d_accuracy = tf.add(.5 * d_pos_acc, .5 * d_neg_acc, name='accuracy')
self.d_loss = tf.add(.5 * d_loss_pos, .5 * d_loss_neg, name='loss')
with tf.name_scope("gen"):
self.g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=logits_fake, labels=tf.ones_like(logits_fake)), name='loss')
g_accuracy = tf.reduce_mean(tf.cast(score_fake > 0.5, tf.float32), name='accuracy')
add_moving_summary(self.g_loss, self.d_loss, d_accuracy, g_accuracy)
开发者ID:ahuirecome,项目名称:tensorpack,代码行数:33,代码来源:GAN.py
示例11: __call__
def __call__(self, inputs, state, scope=None):
with tf.device("/gpu:"+str(self._gpu_for_layer)):
"""JZS2, mutant 2 with n units cells."""
with tf.variable_scope(scope or type(self).__name__): # "JZS1Cell"
with tf.variable_scope("Zinput"): # Reset gate and update gate.
'''equation 1'''
z = tf.sigmoid(linear.linear([inputs, state],
self._num_units, True, 1.0))
'''equation 2 '''
with tf.variable_scope("Rinput"):
r = tf.sigmoid(inputs+(linear.linear([state],
self._num_units, True, 1.0)))
'''equation 3'''
with tf.variable_scope("Candidate"):
component_0 = linear.linear([state*r,inputs],
self._num_units, True)
component_2 = (tf.tanh(component_0))*z
component_3 = state*(1 - z)
h_t = component_2 + component_3
return h_t, h_t #there is only one hidden state output to keep track of.
开发者ID:ml-lab,项目名称:Seq2Seq_Upgrade_TensorFlow,代码行数:27,代码来源:rnn_cell_enhanced.py
示例12: __call__
def __call__(self, inputs, state, scope=None):
"""Long short-term memory cell (LSTM)."""
with tf.variable_scope(scope or type(self).__name__): # "BasicLSTMCell"
# Parameters of gates are concatenated into one multiply for efficiency.
c, h = tf.split(1, 2, state)
concat = linear.linear([inputs, h], 4 * self._num_units, True)
fs = []
# This can be made more efficient since we're doing more than needs to be
# done, but for now w/e
for child_state in child_states:
c_k, h_k = tf.split(1, 2, child_state)
concat = linear.linear([inputs, h_k], 4 * self._num_units, True)
i_k, j_k, f_k, o_k = tf.split(1, 4, concat)
fs.append(f_k)
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
# TODO: forget gate for each child, probably need to split by number
# of child states or something
i, j, f, o = tf.split(1, 4, concat)
# If no children just treat it like a regular lstm
if not fs:
fs.append(f)
new_c = sum(c * tf.sigmoid(fs + self._forget_bias)) + tf.sigmoid(i) * tf.tanh(j)
new_h = tf.tanh(new_c) * tf.sigmoid(o)
return new_h, tf.concat(1, [new_c, new_h])
开发者ID:StevenLOL,项目名称:LSTMRelatedness,代码行数:31,代码来源:treelstm.py
示例13: lstm_cell
def lstm_cell(i, o, state):
"""
Create a LSTM cell. See e.g.: http://arxiv.org/pdf/1402.1128v1.pdf
Note that in this formulation, we omit the various connections between the
previous state and the gates.
"""
i_list = tf.pack([i, i, i, i])
#print i_list.get_shape().as_list()
o_list = tf.pack([o, o, o, o])
ins = tf.batch_matmul(i_list, fico_x)
outs = tf.batch_matmul(o_list, fico_m)
h_x = ins + outs + fico_b
#print h_x.get_shape().as_list()
#forget_gate = tf.sigmoid(tf.matmul(i, fx) + tf.matmul(o, fm) + fb)
forget_gate = tf.sigmoid(h_x[0,:,:])
#input_gate = tf.sigmoid(tf.matmul(i, ix) + tf.matmul(o, im) + ib)
input_gate = tf.sigmoid(h_x[1,:,:])
#update = tf.tanh(tf.matmul(i, cx) + tf.matmul(o, cm) + cb)
update = tf.tanh(h_x[2,:,:])
state = forget_gate*state + input_gate*update
#output_gate = tf.sigmoid(tf.matmul(i, ox) + tf.matmul(o, om) + ob)
output_gate = tf.sigmoid(h_x[3,:,:])
h = output_gate * tf.tanh(state)
#print 'h', h.get_shape().as_list()
return h, state
开发者ID:kcbighuge,项目名称:tensorflow-deeplearning,代码行数:33,代码来源:6_lstm.py
示例14: _compute_loss
def _compute_loss(self, prediction_tensor, target_tensor, weights):
"""Compute loss function.
Args:
prediction_tensor: A float tensor of shape [batch_size, num_anchors,
num_classes] representing the predicted logits for each class
target_tensor: A float tensor of shape [batch_size, num_anchors,
num_classes] representing one-hot encoded classification targets
weights: a float tensor of shape, either [batch_size, num_anchors,
num_classes] or [batch_size, num_anchors, 1]. If the shape is
[batch_size, num_anchors, 1], all the classses are equally weighted.
Returns:
loss: a float tensor of shape [batch_size, num_anchors, num_classes]
representing the value of the loss function.
"""
if self._bootstrap_type == 'soft':
bootstrap_target_tensor = self._alpha * target_tensor + (
1.0 - self._alpha) * tf.sigmoid(prediction_tensor)
else:
bootstrap_target_tensor = self._alpha * target_tensor + (
1.0 - self._alpha) * tf.cast(
tf.sigmoid(prediction_tensor) > 0.5, tf.float32)
per_entry_cross_ent = (tf.nn.sigmoid_cross_entropy_with_logits(
labels=bootstrap_target_tensor, logits=prediction_tensor))
return per_entry_cross_ent * weights
开发者ID:Exscotticus,项目名称:models,代码行数:26,代码来源:losses.py
示例15: __call__
def __call__(self, inputs, state, timestep = 0, scope=None):
"""Most basic RNN: output = new_state = tanh(W * input + U * state + B)."""
current_state = state
for highway_layer in xrange(self.num_highway_layers):
with tf.variable_scope('highway_factor_'+str(highway_layer)):
if self.use_inputs_on_each_layer or highway_layer == 0:
highway_factor = tf.tanh(multiplicative_integration([inputs, current_state], self._num_units))
else:
highway_factor = tf.tanh(linear([current_state], self._num_units, True))
with tf.variable_scope('gate_for_highway_factor_'+str(highway_layer)):
if self.use_inputs_on_each_layer or highway_layer == 0:
gate_for_highway_factor = tf.sigmoid(multiplicative_integration([inputs, current_state], self._num_units, initial_bias_value = -3.0))
else:
gate_for_highway_factor = tf.sigmoid(linear([current_state], self._num_units, True, -3.0))
gate_for_hidden_factor = 1 - gate_for_highway_factor
if self.use_recurrent_dropout and self.is_training:
highway_factor = tf.nn.dropout(highway_factor, self.recurrent_dropout_factor)
current_state = highway_factor * gate_for_highway_factor + current_state * gate_for_hidden_factor
return current_state, current_state
开发者ID:Ahndaehwan,项目名称:tensorflow_with_latest_papers,代码行数:25,代码来源:rnn_cell_mulint_modern.py
示例16: build_node
def build_node(self, x_in, c_in, h_in, scope="lstm_cell"):
#print (x_in, c_in, h_in, scope)
#print [type(thing) for thing in (x_in, c_in, h_in, scope)]
# print [(item.name, item.dtype) for thing in (h_in, c_in) for item in thing]
# print (x_in.name, x_in.dtype)
with tf.variable_scope(scope):
# print x.shape
# print h_in.get_shape()
x_with_h = tf.concat(2, [x_in, h_in])
ones_for_bias = tf.constant(np.ones([batch_size,1,1]), name="b", dtype=tf.float32)
x_h_concat = tf.concat(2, [ones_for_bias, x_with_h])
# forget gate layer
# print "w_f: ", self.w_f.get_shape()
# print "x_h_concat: ", x_h_concat.get_shape()
f = tf.sigmoid(tf.batch_matmul(x_h_concat, self.w_f))
# candidate values
i = tf.sigmoid(tf.batch_matmul(x_h_concat, self.w_i))
candidate_c = tf.tanh(tf.batch_matmul(x_h_concat, self.w_c))
# new cell state (hidden)
# forget old values of c
old_c_to_keep = tf.mul(f, c_in)
# scaled candidate values of c
new_c_to_keep = tf.mul(i, candidate_c)
c = tf.add(old_c_to_keep, new_c_to_keep)
# new scaled output
o = tf.sigmoid(tf.batch_matmul(x_h_concat, self.w_o))
h = tf.mul(o, tf.tanh(c))
return (c, h)
开发者ID:liangkai,项目名称:char-rnn-tf,代码行数:34,代码来源:rnn.py
示例17: add_model
def add_model(self, inputs1, inputs2, seq_len1, seq_len2):
#self.initial_state = tf.constant(np.zeros(()), dtype=tf.float32)
print 'adsf add_model'
self.initial_state = tf.constant(np.zeros((self.config.batch_size,self.config.hidden_size)), dtype=tf.float32)
rnn_outputs = []
rnn_outputs1 = []
rnn_outputs2 = []
h_curr1 = self.initial_state
h_curr2 = self.initial_state
print 'nthgnghn'
with tf.variable_scope('rnn'):
Whh = tf.get_variable('Whh', shape=(self.config.hidden_size,self.config.hidden_size), dtype=tf.float32)
Wxh = tf.get_variable('Wxh', shape=(self.config.embed_size,self.config.hidden_size), dtype=tf.float32)
b1 = tf.get_variable('bhx', shape=(self.config.hidden_size,), dtype=tf.float32)
print Wxh.get_shape
print inputs1[0].get_shape
print inputs2[0].get_shape
for i in range(self.config.max_steps):
h_curr2 = tf.matmul(h_curr2,Whh)
h_curr2 += tf.matmul(inputs2[i],Wxh)
h_curr2 += b1
h_curr2 = tf.sigmoid(h_curr2)
h_curr1 = tf.sigmoid(tf.matmul(h_curr1,Whh) + tf.matmul(inputs1[i],Wxh) + b1)
rnn_outputs1.append(h_curr1)
rnn_outputs2.append(h_curr2)
rnn_states = [tf.concat(1, [rnn_outputs1[i], rnn_outputs2[i]]) for i in range(self.config.max_steps)]
return rnn_states
开发者ID:anushabala,项目名称:deep-playlist,代码行数:29,代码来源:model_rnn.py
示例18: call
def call(self, x, h):
channels = x.shape[self._feature_axis].value
with tf.variable_scope('gates'):
inputs = tf.concat([x, h], axis=self._feature_axis)
n = channels + self._filters
m = 2 * self._filters if self._filters > 1 else 2
W = tf.get_variable('kernel', self._kernel + [n, m])
y = tf.nn.convolution(inputs, W, 'SAME', data_format=self._data_format)
if self._normalize:
r, u = tf.split(y, 2, axis=self._feature_axis)
r = tf.contrib.layers.layer_norm(r)
u = tf.contrib.layers.layer_norm(u)
else:
y += tf.get_variable('bias', [m], initializer=tf.ones_initializer())
r, u = tf.split(y, 2, axis=self._feature_axis)
r, u = tf.sigmoid(r), tf.sigmoid(u)
# TODO
#tf.summary.histogram('reset_gate', r)
#tf.summary.histogram('update_gate', u)
with tf.variable_scope('candidate'):
inputs = tf.concat([x, r * h], axis=self._feature_axis)
n = channels + self._filters
m = self._filters
W = tf.get_variable('kernel', self._kernel + [n, m])
y = tf.nn.convolution(inputs, W, 'SAME', data_format=self._data_format)
if self._normalize:
y = tf.contrib.layers.layer_norm(y)
else:
y += tf.get_variable('bias', [m], initializer=tf.zeros_initializer())
h = u * h + (1 - u) * self._activation(y)
return h, h
开发者ID:ascenoputing,项目名称:SemanticSegmentation_DL,代码行数:35,代码来源:ConvLSTM_Cell.py
示例19: unroll
def unroll(inp, state):
g_i = tf.sigmoid(tf.matmul(inp, w_xi) + tf.matmul(state, w_hi) + b_i)
g_r = tf.sigmoid(tf.matmul(inp, w_xr) + tf.matmul(state, w_hr) + b_r)
u = tf.tanh(tf.matmul(inp, w_xu) + g_r * tf.matmul(state, w_hu) + b_u)
state = state * (1 - g_i) + u * g_i
return state
开发者ID:ziyu-zhang,项目名称:ins-seg-public,代码行数:7,代码来源:nnlib.py
示例20: __call__
def __call__(self, x_placeholder, h_prev, C_prev):
with tf.variable_scope(self.scope, reuse=True):
embedding = tf.get_variable('embedding')
W = tf.get_variable('weight')
x_embedding = tf.nn.embedding_lookup(embedding, x_placeholder)
if self.is_training:
x_embedding = tf.nn.dropout(x_embedding, self.keep_prob)
# forget gate
concat_input = tf.concat(1, [h_prev, x_embedding])
gates = tf.matmul(concat_input, W)
m_f, m_i, m_C_update, m_o = tf.split(1, 4, gates)
# forget gate
f = tf.sigmoid(m_f)
# input gate
i = tf.sigmoid(m_i)
# output gate
o = tf.sigmoid(m_o)
# Cell update
C_update = tf.tanh(m_C_update)
# cell after update
# Add a dropout layer.
C = tf.mul(f, C_prev) + tf.mul(i, C_update)
# output
h = tf.mul(o, tf.tanh(C))
return h, C
开发者ID:wenjiesha,项目名称:sentiment_lstm,代码行数:31,代码来源:model.py
注:本文中的tensorflow.sigmoid函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论