本文整理汇总了Python中tensorflow.reduce_sum函数的典型用法代码示例。如果您正苦于以下问题:Python reduce_sum函数的具体用法?Python reduce_sum怎么用?Python reduce_sum使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了reduce_sum函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: main
def main():
tf.set_random_seed(10)
with tf.Session() as sess:
rnn_cell = tf.nn.rnn_cell.LSTMCell(10)
# defining initial state
initial_state = rnn_cell.zero_state(4, dtype=tf.float32)
inputs = tf.Variable(tf.random_uniform(shape = (4, 30, 100)), name='input')
inputs = tf.identity(inputs, "input_node")
# 'state' is a tensor of shape [batch_size, cell_state_size]
outputs, state = tf.nn.dynamic_rnn(rnn_cell, inputs, initial_state=initial_state, dtype=tf.float32)
y1 = tf.identity(outputs, 'outputs')
y2 = tf.identity(state, 'state')
t1 = tf.ones([4, 30, 10])
t2 = tf.ones([4, 10])
loss = tf.reduce_sum((y1 - t1) * (y1 - t1)) + tf.reduce_sum((y2 - t2) * (y2 - t2))
tf.identity(loss, name = "lstm_loss")
# tf.summary.FileWriter('/tmp/log', tf.get_default_graph())
net_outputs = map(lambda x: tf.get_default_graph().get_tensor_by_name(x), argv[2].split(','))
run_model(net_outputs, argv[1], None, argv[3] == 'True')
开发者ID:ru003ar,项目名称:BigDL,代码行数:26,代码来源:dynamic_lstm.py
示例2: routing
def routing(input, b_IJ):
''' The routing algorithm.
Args:
input: A Tensor with [batch_size, num_caps_l=1152, 1, length(u_i)=8, 1]
shape, num_caps_l meaning the number of capsule in the layer l.
Returns:
A Tensor of shape [batch_size, num_caps_l_plus_1, length(v_j)=16, 1]
representing the vector output `v_j` in the layer l+1
Notes:
u_i represents the vector output of capsule i in the layer l, and
v_j the vector output of capsule j in the layer l+1.
'''
# W: [num_caps_j, num_caps_i, len_u_i, len_v_j]
W = tf.get_variable('Weight', shape=(1, 1152, 10, 8, 16), dtype=tf.float32,
initializer=tf.random_normal_initializer(stddev=cfg.stddev))
# Eq.2, calc u_hat
# do tiling for input and W before matmul
# input => [batch_size, 1152, 10, 8, 1]
# W => [batch_size, 1152, 10, 8, 16]
input = tf.tile(input, [1, 1, 10, 1, 1])
W = tf.tile(W, [cfg.batch_size, 1, 1, 1, 1])
assert input.get_shape() == [cfg.batch_size, 1152, 10, 8, 1]
# in last 2 dims:
# [8, 16].T x [8, 1] => [16, 1] => [batch_size, 1152, 10, 16, 1]
u_hat = tf.matmul(W, input, transpose_a=True)
assert u_hat.get_shape() == [cfg.batch_size, 1152, 10, 16, 1]
# line 3,for r iterations do
for r_iter in range(cfg.iter_routing):
with tf.variable_scope('iter_' + str(r_iter)):
# line 4:
# => [1, 1152, 10, 1, 1]
c_IJ = tf.nn.softmax(b_IJ, dim=2)
c_IJ = tf.tile(c_IJ, [cfg.batch_size, 1, 1, 1, 1])
assert c_IJ.get_shape() == [cfg.batch_size, 1152, 10, 1, 1]
# line 5:
# weighting u_hat with c_IJ, element-wise in the last two dims
# => [batch_size, 1152, 10, 16, 1]
s_J = tf.multiply(c_IJ, u_hat)
# then sum in the second dim, resulting in [batch_size, 1, 10, 16, 1]
s_J = tf.reduce_sum(s_J, axis=1, keep_dims=True)
assert s_J.get_shape() == [cfg.batch_size, 1, 10, 16, 1]
# line 6:
# squash using Eq.1,
v_J = squash(s_J)
assert v_J.get_shape() == [cfg.batch_size, 1, 10, 16, 1]
# line 7:
# reshape & tile v_j from [batch_size ,1, 10, 16, 1] to [batch_size, 10, 1152, 16, 1]
# then matmul in the last tow dim: [16, 1].T x [16, 1] => [1, 1], reduce mean in the
# batch_size dim, resulting in [1, 1152, 10, 1, 1]
v_J_tiled = tf.tile(v_J, [1, 1152, 1, 1, 1])
u_produce_v = tf.matmul(u_hat, v_J_tiled, transpose_a=True)
assert u_produce_v.get_shape() == [cfg.batch_size, 1152, 10, 1, 1]
b_IJ += tf.reduce_sum(u_produce_v, axis=0, keep_dims=True)
开发者ID:SrGrace,项目名称:Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials,代码行数:60,代码来源:capsLayer.py
示例3: _compute_precision_recall
def _compute_precision_recall(input_layer, labels, threshold,
per_example_weights):
"""Returns the numerator of both, the denominator of precision and recall."""
# To apply per_example_weights, we need to collapse each row to a scalar, but
# we really want the sum.
labels.get_shape().assert_is_compatible_with(input_layer.get_shape())
relevant = tf.to_float(tf.greater(labels, 0))
retrieved = tf.to_float(tf.greater(input_layer, threshold))
selected = relevant * retrieved
if per_example_weights:
per_example_weights = tf.convert_to_tensor(per_example_weights,
name='per_example_weights')
if selected.get_shape().dims:
per_example_weights.get_shape().assert_is_compatible_with(
[selected.get_shape().dims[0]])
else:
per_example_weights.get_shape().assert_is_compatible_with([None])
per_example_weights = tf.to_float(tf.greater(per_example_weights, 0))
selected = functions.reduce_batch_sum(selected) * per_example_weights
relevant = functions.reduce_batch_sum(relevant) * per_example_weights
retrieved = functions.reduce_batch_sum(retrieved) * per_example_weights
sum_relevant = tf.reduce_sum(relevant)
sum_retrieved = tf.reduce_sum(retrieved)
selected = tf.reduce_sum(selected)
return selected, sum_retrieved, sum_relevant
开发者ID:roger2000hk,项目名称:prettytensor,代码行数:27,代码来源:pretty_tensor_loss_methods.py
示例4: entropy
def entropy(self, n, p):
# Note that given n and p where p is a probability vector of
# length k, the entropy requires a sum over all
# possible configurations of a k-vector which sums to n. It's
# expensive.
# http://stackoverflow.com/questions/36435754/generating-a-numpy-array-with-all-combinations-of-numbers-that-sum-to-less-than
sess = tf.Session()
n = sess.run(tf.cast(tf.squeeze(n), dtype=tf.int32))
sess.close()
p = tf.cast(tf.squeeze(p), dtype=tf.float32)
if isinstance(n, np.int32):
k = get_dims(p)[0]
max_range = np.zeros(k, dtype=np.int32) + n
x = np.array([i for i in product(*(range(i+1) for i in max_range))
if sum(i)==n])
logpmf = self.logpmf(x, n, p)
return tf.reduce_sum(tf.mul(tf.exp(logpmf), logpmf))
else:
out = []
for j in range(n.shape[0]):
k = get_dims(p)[0]
max_range = np.zeros(k, dtype=np.int32) + n[j]
x = np.array([i for i in product(*(range(i+1) for i in max_range))
if sum(i)==n[j]])
logpmf = self.logpmf(x, n[j], p[j, :])
out += [tf.reduce_sum(tf.mul(tf.exp(logpmf), logpmf))]
return tf.pack(out)
开发者ID:crack521,项目名称:edward,代码行数:28,代码来源:distributions.py
示例5: _log_joint
def _log_joint(self, z_sample):
"""Utility function to calculate model's log joint density,
log p(x, z), for inputs z (and fixed data x).
Args:
z_sample: dict.
Latent variable keys to samples.
"""
self.scope_iter += 1
scope = 'inference_' + str(id(self)) + '/' + str(self.scope_iter)
# Form dictionary in order to replace conditioning on prior or
# observed variable with conditioning on a specific value.
dict_swap = z_sample.copy()
for x, qx in six.iteritems(self.data):
if isinstance(x, RandomVariable):
if isinstance(qx, RandomVariable):
qx_copy = copy(qx, scope=scope)
dict_swap[x] = qx_copy.value()
else:
dict_swap[x] = qx
log_joint = 0.0
for z in six.iterkeys(self.latent_vars):
z_copy = copy(z, dict_swap, scope=scope)
log_joint += tf.reduce_sum(z_copy.log_prob(dict_swap[z]))
for x in six.iterkeys(self.data):
if isinstance(x, RandomVariable):
x_copy = copy(x, dict_swap, scope=scope)
log_joint += tf.reduce_sum(x_copy.log_prob(dict_swap[x]))
return log_joint
开发者ID:ekostem,项目名称:edward,代码行数:32,代码来源:hmc.py
示例6: _compute_log_moment
def _compute_log_moment(self, sigma, q, moment_order):
"""Compute high moment of privacy loss.
Args:
sigma: the noise sigma, in the multiples of the sensitivity.
q: the sampling ratio.
moment_order: the order of moment.
Returns:
log E[exp(moment_order * X)]
"""
assert moment_order <= self._max_moment_order, ("The order of %d is out "
"of the upper bound %d."
% (moment_order,
self._max_moment_order))
binomial_table = tf.slice(self._binomial_table, [moment_order, 0],
[1, moment_order + 1])
# qs = [1 q q^2 ... q^L] = exp([0 1 2 ... L] * log(q))
qs = tf.exp(tf.constant([i * 1.0 for i in range(moment_order + 1)],
dtype=tf.float64) * tf.cast(
tf.log(q), dtype=tf.float64))
moments0 = self._differential_moments(sigma, 0.0, moment_order)
term0 = tf.reduce_sum(binomial_table * qs * moments0)
moments1 = self._differential_moments(sigma, 1.0, moment_order)
term1 = tf.reduce_sum(binomial_table * qs * moments1)
return tf.squeeze(tf.log(tf.cast(q * term0 + (1.0 - q) * term1,
tf.float64)))
开发者ID:ZhangShiyue,项目名称:models,代码行数:26,代码来源:accountant.py
示例7: __init__
def __init__(self, nA,
learning_rate,decay,grad_clip,entropy_beta,
state_shape=[84,84,4],
master=None, device_name='/gpu:0', scope_name='master'):
with tf.device(device_name) :
self.state = tf.placeholder(tf.float32,[None]+state_shape)
block, self.scope = ActorCritic._build_shared_block(self.state,scope_name)
self.policy, self.log_softmax_policy = ActorCritic._build_policy(block,nA,scope_name)
self.value = ActorCritic._build_value(block,scope_name)
self.train_vars = sorted(tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope.name), key=lambda v:v.name)
if( master is not None ) :
self.sync_op= self._sync_op(master)
self.action = tf.placeholder(tf.int32,[None,])
self.target_value = tf.placeholder(tf.float32,[None,])
advantage = self.target_value - self.value
entropy = tf.reduce_sum(-1. * self.policy * self.log_softmax_policy,axis=1)
log_p_s_a = tf.reduce_sum(self.log_softmax_policy * tf.one_hot(self.action,nA),axis=1)
self.policy_loss = tf.reduce_mean(tf.stop_gradient(advantage)*log_p_s_a)
self.entropy_loss = tf.reduce_mean(entropy)
self.value_loss = tf.reduce_mean(advantage**2)
loss = -self.policy_loss - entropy_beta* self.entropy_loss + self.value_loss
self.gradients = tf.gradients(loss,self.train_vars)
clipped_gs = [tf.clip_by_average_norm(g,grad_clip) for g in self.gradients]
self.train_op = master.optimizer.apply_gradients(zip(clipped_gs,master.train_vars))
else :
#self.optimizer = tf.train.AdamOptimizer(learning_rate,beta1=BETA)
self.optimizer = tf.train.RMSPropOptimizer(learning_rate,decay=decay,use_locking=True)
开发者ID:JoyDoSun,项目名称:tf-a3c-gpu,代码行数:31,代码来源:network.py
示例8: cord_cls_loss
def cord_cls_loss(
detectors_mask,
matching_true_boxes,
num_classes,
pred_class_prob,
pred_boxes,
loc_scale,
):
"""
:param detectors_mask: [batch, 13, 13, 3, 1]
:param matching_true_boxes: [batch, 13, 13, 3, 5] [σ(tx), σ(ty), tw, th, cls]
:param num_classes: 20
:param pred_class_prob: [batch, 13, 13, 3, 20]
:param pred_boxes: [batch, 13, 13, 3, 4]
:param loc_scale: [batch, 13, 13, 3, 1]
:return:
mean_loss: float
mean localization loss across minibatch
"""
# Classification loss for matching detections.
# NOTE: YOLO does not use categorical cross-entropy loss here.
matching_classes = tf.cast(matching_true_boxes[..., 4], tf.int32) # [batch, 13, 13, 3]
matching_classes = tf.one_hot(matching_classes, num_classes) # [batch, 13, 13, 3, 20]
classification_loss = (detectors_mask *
tf.square(matching_classes - pred_class_prob)) # [batch, 13, 13, 3, 20]
# Coordinate loss for matching detection boxes. [σ(tx), σ(ty), tw, th]
matching_boxes = matching_true_boxes[..., 0:4]
coordinates_loss = (detectors_mask * loc_scale * tf.square(matching_boxes - pred_boxes))
classification_loss_sum = tf.reduce_sum(classification_loss)
coordinates_loss_sum = tf.reduce_sum(coordinates_loss)
return classification_loss_sum + coordinates_loss_sum
开发者ID:anguoyang,项目名称:yolo-v3-tf,代码行数:35,代码来源:yolo_layer.py
示例9: prepare_loss
def prepare_loss(self, entropy_beta):
with tf.device(self._device):
# taken action (input for policy)
self.a = tf.placeholder("float", [None, self._action_size])
# temporary difference (R-V) (input for policy)
self.td = tf.placeholder("float", [None])
# avoid NaN with clipping when value in pi becomes zero
log_pi = tf.log(tf.clip_by_value(self.pi, 1e-20, 1.0))
# policy entropy
entropy = -tf.reduce_sum(self.pi * log_pi, reduction_indices=1)
# policy loss (output) (Adding minus, because the original paper's objective function is for gradient ascent, but we use gradient descent optimizer.)
policy_loss = - tf.reduce_sum( tf.reduce_sum( tf.multiply( log_pi, self.a ), reduction_indices=1 ) * self.td + entropy * entropy_beta )
# R (input for value)
self.r = tf.placeholder("float", [None])
# value loss (output)
# (Learning rate for Critic is half of Actor's, so multiply by 0.5)
value_loss = 0.5 * tf.nn.l2_loss(self.r - self.v)
# gradienet of policy and value are summed up
self.total_loss = policy_loss + value_loss
开发者ID:miyosuda,项目名称:async_deep_reinforce,代码行数:26,代码来源:game_ac_network.py
示例10: __init__
def __init__(self, is_training, config):
self.batch_size = batch_size = config.batch_size
size = config.hidden_size
self.max_len = max_len = config.max_len
vocab_size = config.vocab_size
self._input_data = tf.placeholder(tf.int32, [batch_size, config.max_len])
self._targets = tf.placeholder(tf.int32, [batch_size])
embedding = tf.get_variable("embedding", [vocab_size, size])
inputs = tf.nn.embedding_lookup(embedding, self._input_data)
output = tf.reduce_sum(inputs, 1)
softmax_w = tf.get_variable("softmax_w", [size, 2])
softmax_b = tf.get_variable("softmax_b", [2])
logits = tf.matmul(output, softmax_w) + softmax_b
prediction = tf.nn.softmax(logits)
self._prediction = prediction
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits, self._targets)
self._cost = cost = tf.reduce_sum(loss) / batch_size
if not is_training:
return
self._lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars),
config.max_grad_norm)
optimizer = tf.train.GradientDescentOptimizer(self.lr)
self._train_op = optimizer.apply_gradients(zip(grads, tvars))
开发者ID:cbienpourtoi,项目名称:test-tensorflow-sentiments,代码行数:33,代码来源:sentiment_model_3.py
示例11: char_accuracy
def char_accuracy(predictions, targets, rej_char, streaming=False):
"""Computes character level accuracy.
Both predictions and targets should have the same shape
[batch_size x seq_length].
Args:
predictions: predicted characters ids.
targets: ground truth character ids.
rej_char: the character id used to mark an empty element (end of sequence).
streaming: if True, uses the streaming mean from the slim.metric module.
Returns:
a update_ops for execution and value tensor whose value on evaluation
returns the total character accuracy.
"""
with tf.variable_scope('CharAccuracy'):
predictions.get_shape().assert_is_compatible_with(targets.get_shape())
targets = tf.to_int32(targets)
const_rej_char = tf.constant(rej_char, shape=targets.get_shape())
weights = tf.to_float(tf.not_equal(targets, const_rej_char))
correct_chars = tf.to_float(tf.equal(predictions, targets))
accuracy_per_example = tf.div(
tf.reduce_sum(tf.multiply(correct_chars, weights), 1),
tf.reduce_sum(weights, 1))
if streaming:
return tf.contrib.metrics.streaming_mean(accuracy_per_example)
else:
return tf.reduce_mean(accuracy_per_example)
开发者ID:812864539,项目名称:models,代码行数:30,代码来源:metrics.py
示例12: triplet_loss
def triplet_loss(y_true, y_pred, alpha = 0.2):
"""
Implementation of the triplet loss as defined by formula
Arguments:
y_true -- true labels, required when you define a loss in Keras, you don't need it in this function.
y_pred -- python list containing three objects:
anchor -- the encodings for the anchor images, of shape (None, 128)
positive -- the encodings for the positive images, of shape (None, 128)
negative -- the encodings for the negative images, of shape (None, 128)
Returns:
loss -- real number, value of the loss
"""
anchor, positive, negative = y_pred[0], y_pred[1], y_pred[2]
### START CODE HERE ### (≈ 4 lines)
# Step 1: Compute the (encoding) distance between the anchor and the positive, you will need to sum over axis=-1
pos_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, positive)))
# Step 2: Compute the (encoding) distance between the anchor and the negative, you will need to sum over axis=-1
neg_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, negative)))
# Step 3: subtract the two previous distances and add alpha.
basic_loss = tf.add(tf.subtract(pos_dist,neg_dist), alpha)
# Step 4: Take the maximum of basic_loss and 0.0. Sum over the training examples.
loss = tf.reduce_sum(tf.maximum(basic_loss, 0.))
### END CODE HERE ###
return loss
开发者ID:sunlinyu1993,项目名称:Machine-Learning-Toolbox,代码行数:29,代码来源:triplet_loss.py
示例13: build_loss
def build_loss(self, ohem=False):
# classification loss
rpn_cls_score = tf.reshape(self.get_output('rpn_cls_score_reshape'), [-1, 2]) # shape (HxWxA, 2)
rpn_label = tf.reshape(self.get_output('rpn-data')[0], [-1]) # shape (HxWxA)
# ignore_label(-1)
fg_keep = tf.equal(rpn_label, 1)
rpn_keep = tf.where(tf.not_equal(rpn_label, -1))
rpn_cls_score = tf.gather(rpn_cls_score, rpn_keep) # shape (N, 2)
rpn_label = tf.gather(rpn_label, rpn_keep)
rpn_cross_entropy_n = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=rpn_label,logits=rpn_cls_score)
# box loss
rpn_bbox_pred = self.get_output('rpn_bbox_pred') # shape (1, H, W, Ax4)
rpn_bbox_targets = self.get_output('rpn-data')[1]
rpn_bbox_inside_weights = self.get_output('rpn-data')[2]
rpn_bbox_outside_weights = self.get_output('rpn-data')[3]
rpn_bbox_pred = tf.gather(tf.reshape(rpn_bbox_pred, [-1, 4]), rpn_keep) # shape (N, 4)
rpn_bbox_targets = tf.gather(tf.reshape(rpn_bbox_targets, [-1, 4]), rpn_keep)
rpn_bbox_inside_weights = tf.gather(tf.reshape(rpn_bbox_inside_weights, [-1, 4]), rpn_keep)
rpn_bbox_outside_weights = tf.gather(tf.reshape(rpn_bbox_outside_weights, [-1, 4]), rpn_keep)
rpn_loss_box_n = tf.reduce_sum(rpn_bbox_outside_weights * self.smooth_l1_dist(
rpn_bbox_inside_weights * (rpn_bbox_pred - rpn_bbox_targets)), reduction_indices=[1])
rpn_loss_box = tf.reduce_sum(rpn_loss_box_n) / (tf.reduce_sum(tf.cast(fg_keep, tf.float32)) + 1)
rpn_cross_entropy = tf.reduce_mean(rpn_cross_entropy_n)
model_loss = rpn_cross_entropy + rpn_loss_box
regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
total_loss = tf.add_n(regularization_losses) + model_loss
return total_loss,model_loss, rpn_cross_entropy, rpn_loss_box
开发者ID:beneo,项目名称:faster-CTPN,代码行数:34,代码来源:network.py
示例14: loss
def loss(self, top_out, targets):
predictions = top_out
with tf.name_scope("log_possion"):
weights = self.targets_weights_fn(targets)
lp_loss = tf.nn.log_poisson_loss(targets, predictions)
return tf.reduce_sum(lp_loss * weights), tf.reduce_sum(weights)
开发者ID:AranKomat,项目名称:tensor2tensor,代码行数:7,代码来源:modalities.py
示例15: multilinear
def multilinear(emb, tuples, l2=0):
"""
Compute the dot product of real vectors at selected embeddings
Note that this model is called Cannonical Parafac (CP), and corresponds to the "distmult" model in some scientific
publications on relational database factorization.
:param emb: embedding matrix of size [n_emb, rank] containing float numbers
:param tuples: tuple matrix of size [n_t, arity] containing integers
:param l2: optional l2 regularization strength that is added to the score. If it is different from 0, the function
returns a pair (pred, l2norm) where pred is the sample prediction, but l2norm is the l2 norm of the selected
embeddings
:return: the multilinear dot product between selected embeddings S[i] = sum_j prod_k E[I[i,k],j]
>>> emb = [[1., 1, 0, 3], [0, 1, 0, 1], [-1, 1, 1, 5]]
>>> idx = tf.Variable([[0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1]])
>>> g = multilinear(emb, idx)
>>> print(tf_eval(g))
[ 4. 4. 15. 15. 6. 6.]
"""
emb_sel = tf.gather(emb, tuples)
pred = tf.reduce_sum(tf.reduce_prod(emb_sel, 1), 1)
if l2 == 0: # unregularized prediction ==> returns only the predictions
return pred
else: # l2 regularization of the selected embeddings
reg = l2 * tf.reduce_sum(tf.square(emb_sel))
return pred, reg
开发者ID:Peratham,项目名称:factorix,代码行数:26,代码来源:scoring.py
示例16: log_likelihood_sym
def log_likelihood_sym(self, x_var, dist_info_vars):
means = dist_info_vars["mean"]
log_stds = dist_info_vars["log_std"]
zs = (x_var - means) / tf.exp(log_stds)
return - tf.reduce_sum(log_stds, reduction_indices=-1) - \
0.5 * tf.reduce_sum(tf.square(zs), reduction_indices=-1) - \
0.5 * self.dim * np.log(2 * np.pi)
开发者ID:QuantCollective,项目名称:maml_rl,代码行数:7,代码来源:diagonal_gaussian.py
示例17: multilinear_square_product
def multilinear_square_product(emb, tuples, l2=0):
"""
Compute the square-product of real vectors at selected embeddings.
This is the sum over all dimensions of the square of summed embedding vectors.
:param emb: embedding matrix of size [n_emb, rank] containing float numbers
:param tuples: tuple matrix of size [n_t, arity] containing integers
:param l2: optional l2 regularization strength that is added to the score. If it is different from 0, the function
returns a pair (pred, l2norm) where pred is the sample prediction, but l2norm is the l2 norm of the selected
embeddings
:return: the multilinear square product between selected embeddings
S[i] = sum_k ( sum_j E[I[i,k],j] )^2
>>> emb = [[12., 0, 0], [0, 1, 0], [-1, 1, 1]]
>>> idx = tf.Variable([[1,0,0],[1,1,0]])
>>> g = multilinear_square_product(emb, idx)
>>> print(tf_eval(g))
[ 577. 148.]
"""
emb_sel = tf.gather(emb, tuples)
pred = tf.reduce_sum(tf.square(tf.reduce_sum(emb_sel, 1)), 1)
if l2 == 0: # unregularized prediction ==> returns only the predictions
return pred
else: # l2 regularization of the selected embeddings
reg = l2 * tf.reduce_sum(tf.square(emb_sel))
return pred, reg
开发者ID:Peratham,项目名称:factorix,代码行数:26,代码来源:scoring.py
示例18: get
def get(self, rewards, pads, values, final_values,
log_probs, prev_log_probs, target_log_probs,
entropies, logits):
seq_length = tf.shape(rewards)[0]
not_pad = tf.reshape(1 - pads, [seq_length, -1, self.num_samples])
rewards = not_pad * tf.reshape(rewards, [seq_length, -1, self.num_samples])
log_probs = not_pad * tf.reshape(sum(log_probs), [seq_length, -1, self.num_samples])
total_rewards = tf.reduce_sum(rewards, 0)
total_log_probs = tf.reduce_sum(log_probs, 0)
rewards_and_bonus = (total_rewards +
self.bonus_weight *
self.get_bonus(total_rewards, total_log_probs))
baseline = tf.reduce_mean(rewards_and_bonus, 1, keep_dims=True)
loss = -tf.stop_gradient(rewards_and_bonus - baseline) * total_log_probs
loss = tf.reduce_mean(loss)
raw_loss = loss # TODO
gradient_ops = self.training_ops(
loss, learning_rate=self.learning_rate)
tf.summary.histogram('log_probs', total_log_probs)
tf.summary.histogram('rewards', total_rewards)
tf.summary.scalar('avg_rewards',
tf.reduce_mean(total_rewards))
tf.summary.scalar('loss', loss)
return loss, raw_loss, baseline, gradient_ops, tf.summary.merge_all()
开发者ID:JiweiHe,项目名称:models,代码行数:32,代码来源:full_episode_objective.py
示例19: soft_triplet_loss
def soft_triplet_loss(anchor, positive, negative, extra=True, scope="soft_triplet_loss"):
r"""Loss for triplet networks as described in the paper:
`Deep Metric Learning using Triplet Network
<https://arxiv.org/abs/1412.6622>`_ by Hoffer et al.
It is a softmax loss using :math:`(anchor-positive)^2` and
:math:`(anchor-negative)^2` as logits.
Args:
anchor (tf.Tensor): anchor feature vectors of shape [Batch, N].
positive (tf.Tensor): features of positive match of the same shape.
negative (tf.Tensor): features of negative match of the same shape.
extra (bool): also return distances for pos and neg.
Returns:
tf.Tensor: triplet-loss as scalar (and optionally average_pos_dist, average_neg_dist)
"""
eps = 1e-10
with tf.name_scope(scope):
d_pos = tf.sqrt(tf.reduce_sum(tf.square(anchor - positive), 1) + eps)
d_neg = tf.sqrt(tf.reduce_sum(tf.square(anchor - negative), 1) + eps)
logits = tf.stack([d_pos, d_neg], axis=1)
ones = tf.ones_like(tf.squeeze(d_pos), dtype="int32")
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=ones))
if extra:
pos_dist = tf.reduce_mean(d_pos, name='pos-dist')
neg_dist = tf.reduce_mean(d_neg, name='neg-dist')
return loss, pos_dist, neg_dist
else:
return loss
开发者ID:tobyma,项目名称:tensorpack,代码行数:34,代码来源:mnist-embeddings.py
示例20: e_step
def e_step(o_mean, o_stdv, o_activations, votes):
"""The E-Step in EM Routing.
:param o_mean: (24, 6, 6, 1, 32, 16)
:param o_stdv: (24, 6, 6, 1, 32, 16)
:param o_activations: (24, 6, 6, 1, 32, 1)
:param votes: (24, 6, 6, 288, 32, 16)
:return: rr
"""
o_p_unit0 = - tf.reduce_sum(
tf.square(votes - o_mean) / (2 * tf.square(o_stdv)), axis=-1, keep_dims=True
)
o_p_unit2 = - tf.reduce_sum(
tf.log(o_stdv + epsilon), axis=-1, keep_dims=True
)
# o_p is the probability density of the h-th component of the vote from i to j
# (24, 6, 6, 1, 32, 16)
o_p = o_p_unit0 + o_p_unit2
# rr: (24, 6, 6, 288, 32, 1)
zz = tf.log(o_activations + epsilon) + o_p
rr = tf.nn.softmax(
zz, dim=len(zz.get_shape().as_list())-2
)
return rr
开发者ID:lzqkean,项目名称:deep_learning,代码行数:30,代码来源:core.py
注:本文中的tensorflow.reduce_sum函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论