本文整理汇总了Python中tensorflow.read_file函数的典型用法代码示例。如果您正苦于以下问题:Python read_file函数的具体用法?Python read_file怎么用?Python read_file使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了read_file函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: read_images_from_disk
def read_images_from_disk(input_queue):
"""Consumes a single filename and label as a ' '-delimited string.
Args:
filenames for data and tensor
Returns:
Two tensors: the decoded image, and the string label.
"""
img_filename = input_queue[0]
label_filename = input_queue[1]
img_data = tf.read_file(img_filename, name='read_image')
img_tensor = tf.image.decode_png(img_data, channels=1)
img_tensor = tf.reshape(img_tensor, [IMG_HEIGHT, IMG_WIDTH, 1])
# transform to a float image
img_tensor = tf.cast(img_tensor, tf.float32)
# img_tensor = tf.zeros([IMG_HEIGHT, IMG_WIDTH, 1], dtype=tf.float32, name=None)
label_data = tf.read_file(label_filename, name='read_label')
label_tensor = tf.image.decode_png(label_data, channels=1)
label_tensor = tf.reshape(label_tensor, [IMG_HEIGHT, IMG_WIDTH, 1])
label_tensor = tf.cast(label_tensor, tf.float32)
# label_tensor = tf.zeros([IMG_HEIGHT, IMG_WIDTH, 1], dtype=tf.float32, name=None)
return img_tensor, label_tensor
开发者ID:mtourne,项目名称:nerveseg,代码行数:25,代码来源:nerveseg_input.py
示例2: _produce_one_sample
def _produce_one_sample(self):
dirname = os.path.dirname(self.path)
if not check_dir(dirname):
raise ValueError("Invalid data path.")
with open(self.path, 'r') as fid:
flist = [l.strip() for l in fid.xreadlines()]
if self.shuffle:
random.shuffle(flist)
input_files = [os.path.join(dirname, 'input', f) for f in flist]
output_files = [os.path.join(dirname, 'output', f) for f in flist]
self.nsamples = len(input_files)
input_queue, output_queue = tf.train.slice_input_producer(
[input_files, output_files], shuffle=self.shuffle,
seed=0123, num_epochs=self.num_epochs)
if '16-bit' in magic.from_file(input_files[0]):
input_dtype = tf.uint16
input_wl = 65535.0
else:
input_wl = 255.0
input_dtype = tf.uint8
if '16-bit' in magic.from_file(output_files[0]):
output_dtype = tf.uint16
output_wl = 65535.0
else:
output_wl = 255.0
output_dtype = tf.uint8
input_file = tf.read_file(input_queue)
output_file = tf.read_file(output_queue)
if os.path.splitext(input_files[0])[-1] == '.jpg':
im_input = tf.image.decode_jpeg(input_file, channels=3)
else:
im_input = tf.image.decode_png(input_file, dtype=input_dtype, channels=3)
if os.path.splitext(output_files[0])[-1] == '.jpg':
im_output = tf.image.decode_jpeg(output_file, channels=3)
else:
im_output = tf.image.decode_png(output_file, dtype=output_dtype, channels=3)
# normalize input/output
sample = {}
with tf.name_scope('normalize_images'):
im_input = tf.to_float(im_input)/input_wl
im_output = tf.to_float(im_output)/output_wl
inout = tf.concat([im_input, im_output], 2)
fullres, inout = self._augment_data(inout, 6)
sample['lowres_input'] = inout[:, :, :3]
sample['lowres_output'] = inout[:, :, 3:]
sample['image_input'] = fullres[:, :, :3]
sample['image_output'] = fullres[:, :, 3:]
return sample
开发者ID:KeyKy,项目名称:hdrnet,代码行数:59,代码来源:data_pipeline.py
示例3: _read_images
def _read_images(paths):
with tf.name_scope("read_images"):
path1, path2 = tf.decode_csv(paths, [[""], [""]], field_delim=" ")
file_content1 = tf.read_file(path1)
file_content2 = tf.read_file(path2)
image1 = tf.cast(tf.image.decode_png(file_content1, channels=3, dtype=tf.uint8), tf.float32)
image2 = tf.cast(tf.image.decode_png(file_content2, channels=3, dtype=tf.uint8), tf.float32)
image1.set_shape(IMAGE_SHAPE)
image2.set_shape(IMAGE_SHAPE)
return image1, image2
开发者ID:vlpolyansky,项目名称:video-cnn,代码行数:10,代码来源:movie.py
示例4: read_and_decode
def read_and_decode(self):
image_name = tf.read_file(self.filename_queue[0])
image = tf.image.decode_jpeg(image_name, channels = 3)
image = tf.image.resize_images(image, 320, 480)
image /= 255.
label_name = tf.read_file(self.filename_queue[1])
label = tf.image.decode_png(label_name, channels = 1)
label = tf.image.resize_images(label, 320, 480)
label = tf.to_int64(label > 0)
return image, label
开发者ID:qingzew,项目名称:tensorflow-fcn,代码行数:12,代码来源:reader.py
示例5: CamVid_reader
def CamVid_reader(filename_queue):
image_filename = filename_queue[0]
label_filename = filename_queue[1]
imageValue = tf.read_file(image_filename)
labelValue = tf.read_file(label_filename)
image_bytes = tf.image.decode_png(imageValue)
label_bytes = tf.image.decode_png(labelValue)
image = tf.reshape(image_bytes, (IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_DEPTH))
label = tf.reshape(label_bytes, (IMAGE_HEIGHT, IMAGE_WIDTH, 1))
return image, label
开发者ID:mengli,项目名称:PcmAudioRecorder,代码行数:14,代码来源:kitti_segnet.py
示例6: main
def main(_):
path_to_image_file = FLAGS.image
path_to_restore_checkpoint_file = FLAGS.restore_checkpoint
image = tf.image.decode_jpeg(tf.read_file(path_to_image_file), channels=3)
image = tf.reshape(image, [64, 64, 3])
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
image = tf.multiply(tf.subtract(image, 0.5), 2)
image = tf.image.resize_images(image, [54, 54])
images = tf.reshape(image, [1, 54, 54, 3])
length_logits, digits_logits = Model.inference(images, drop_rate=0.0)
length_predictions = tf.argmax(length_logits, axis=1)
digits_predictions = tf.argmax(digits_logits, axis=2)
digits_predictions_string = tf.reduce_join(tf.as_string(digits_predictions), axis=1)
with tf.Session() as sess:
restorer = tf.train.Saver()
restorer.restore(sess, path_to_restore_checkpoint_file)
length_predictions_val, digits_predictions_string_val = sess.run([length_predictions, digits_predictions_string])
length_prediction_val = length_predictions_val[0]
digits_prediction_string_val = digits_predictions_string_val[0]
print 'length: %d' % length_prediction_val
print 'digits: %s' % digits_prediction_string_val
开发者ID:Ankita-Das,项目名称:SVHNClassifier,代码行数:25,代码来源:inference.py
示例7: get_batch
def get_batch(image,label,image_W,image_H,batch_size,capacity):
'''
Args:
image: list type
label: list type
image_W: image width
image_H: image height
batch_size: batch size
capacity: the maximum elements in queue
Returns:
image_batch: 4D tensor [batch_size, width, height, 3], dtype=tf.float32
label_batch: 1D tensor [batch_size], dtype=tf.int32
'''
image = tf.cast(image,tf.string)
label = tf.cast(label,tf.int32)
input_queue = tf.train.slice_input_producer([image,label])
label = input_queue[1]
image_contents = tf.read_file(input_queue[0])
image = tf.image.decode_jpeg(image_contents,channels=3)
image = tf.image.resize_image_with_crop_or_pad(image,image_W,image_H)
image = tf.image.per_image_standardization(image)
image_batch,label_batch = tf.train.batch([image,label],
batch_size = batch_size,
num_threads = 64,
capacity = capacity)
label_batch = tf.reshape(label_batch,[batch_size])
image_batch = tf.cast(image_batch,tf.float32)
return image_batch,label_batch
开发者ID:zhuzhuxia1994,项目名称:CK-TensorFlow,代码行数:35,代码来源:input_data.py
示例8: read_tensor_from_image_file
def read_tensor_from_image_file(self, file_name, input_height=299, input_width=299, input_mean=0, input_std=255):
input_name = "file_reader"
output_name = "normalized"
file_reader = tf.read_file(file_name, input_name)
if file_name.endswith(".png"):
image_reader = tf.image.decode_png(file_reader, channels=3, name='png_reader')
elif file_name.endswith(".gif"):
image_reader = tf.squeeze(tf.image.decode_gif(file_reader, name='gif_reader'))
elif file_name.endswith(".bmp"):
image_reader = tf.image.decode_bmp(file_reader, name='bmp_reader')
else:
image_reader = tf.image.decode_jpeg(file_reader, channels=3, name='jpeg_reader')
float_caster = tf.cast(image_reader, tf.float32)
dims_expander = tf.expand_dims(float_caster, 0);
resized = tf.image.resize_bilinear(dims_expander, [self.input_height, self.input_width])
normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
sess = tf.Session()
result = sess.run(normalized)
sess.close()
return result
开发者ID:CoderBotOrg,项目名称:coderbot,代码行数:25,代码来源:cnn_classifier.py
示例9: read_jpeg
def read_jpeg(filename):
value = tf.read_file(filename)
decoded_image = tf.image.decode_jpeg(value, channels=FLAGS.depth)
resized_image = tf.image.resize_images(decoded_image, FLAGS.raw_height, FLAGS.raw_width)
resized_image = tf.cast(resized_image, tf.uint8)
return resized_image
开发者ID:thomaspark-pkj,项目名称:tf-image-classification,代码行数:7,代码来源:convert.py
示例10: preprocess_image
def preprocess_image(file_name, output_height=224, output_width=224,
num_channels=3):
"""Run standard ImageNet preprocessing on the passed image file.
Args:
file_name: string, path to file containing a JPEG image
output_height: int, final height of image
output_width: int, final width of image
num_channels: int, depth of input image
Returns:
Float array representing processed image with shape
[output_height, output_width, num_channels]
Raises:
ValueError: if image is not a JPEG.
"""
if imghdr.what(file_name) != "jpeg":
raise ValueError("At this time, only JPEG images are supported. "
"Please try another image.")
image_buffer = tf.read_file(file_name)
normalized = imagenet_preprocessing.preprocess_image(
image_buffer=image_buffer,
bbox=None,
output_height=output_height,
output_width=output_width,
num_channels=num_channels,
is_training=False)
with tf.Session(config=get_gpu_config()) as sess:
result = sess.run([normalized])
return result[0]
开发者ID:snurkabill,项目名称:models,代码行数:34,代码来源:tensorrt.py
示例11: get_input
def get_input(input_file, batch_size, im_size=224):
input = DATA_DIR + 'SegNet/SiftFlow/' + input_file
filenames = []
with open(input, 'r') as f:
for line in f:
filenames.append('{}/{}'.format(
DATA_DIR, line.strip()))
# filenames.append('{}/{}.jpg {}'.format(
# DATA_DIR, line.strip(),
# line.strip()))
filename_queue = tf.train.string_input_producer(filenames)
filename, label_dir = tf.decode_csv(filename_queue.dequeue(), [[""], [""]], " ")
label = label_dir;
file_contents = tf.read_file(filename)
im = tf.image.decode_jpeg(file_contents)
im = tf.image.resize_images(im, im_size, im_size, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
im = tf.reshape(im, [im_size, im_size, 3])
im = tf.to_float(im)
im_mean = tf.constant([122.67892, 116.66877, 104.00699], dtype=tf.float32)
im = tf.sub(im, im_mean)
# im = tf.image.per_image_whitening(im)
# im = tf.image.per_image_whitening(im)
min_queue_examples = int(10000 * 0.4)
example_batch, lbl_batch = tf.train.batch([im, label],
num_threads=1,
batch_size=batch_size,
capacity=min_queue_examples + 3 * batch_size)
return example_batch, lbl_batch
开发者ID:hananico,项目名称:SemiSeg,代码行数:31,代码来源:read_data.py
示例12: _read_image_and_label
def _read_image_and_label(self, image_file, label):
image = tf.read_file(image_file)
image = tf.image.decode_jpeg(image)
image = tf.image.resize_images(image, [224, 224])
image = tf.reshape(image, (1, 224, 224, 3)) # for resnet50
return image, label
开发者ID:bcho,项目名称:homework,代码行数:7,代码来源:dataset.py
示例13: input_images
def input_images(self):
num_images = (self._sqlen + self._args.lookback_length) * self._bsize
images = tf.map_fn(lambda x: tf.image.decode_jpeg(tf.read_file(x)),
tf.reshape(self._imfiles, shape=[num_images]),
dtype=tf.uint8)
images.set_shape([None, ds.HEIGHT, ds.WIDTH, ds.CHANNELS])
return images
开发者ID:gokhanettin,项目名称:driverless-car,代码行数:7,代码来源:model.py
示例14: build_prepro_graph
def build_prepro_graph(inception_path):
global input_layer, output_layer
with open(inception_path, 'rb') as f:
fileContent = f.read()
graph_def = tf.GraphDef()
graph_def.ParseFromString(fileContent)
tf.import_graph_def(graph_def)
graph = tf.get_default_graph()
input_layer = graph.get_tensor_by_name("import/InputImage:0")
output_layer = graph.get_tensor_by_name(
"import/InceptionV4/Logits/AvgPool_1a/AvgPool:0")
input_file = tf.placeholder(dtype=tf.string, name="InputFile")
image_file = tf.read_file(input_file)
jpg = tf.image.decode_jpeg(image_file, channels=3)
png = tf.image.decode_png(image_file, channels=3)
output_jpg = tf.image.resize_images(jpg, [299, 299]) / 255.0
output_jpg = tf.reshape(
output_jpg, [
1, 299, 299, 3], name="Preprocessed_JPG")
output_png = tf.image.resize_images(png, [299, 299]) / 255.0
output_png = tf.reshape(
output_png, [
1, 299, 299, 3], name="Preprocessed_PNG")
return input_file, output_jpg, output_png
开发者ID:suryawanshishantanu6,项目名称:image-caption-generator,代码行数:27,代码来源:convfeatures.py
示例15: convertDataset
def convertDataset(image_dir):
num_labels = len(LABELS_DICT)
label = np.eye(num_labels) # Convert labels to one-hot-vector
i = 0
session = tf.Session()
init = tf.initialize_all_variables()
session.run(init)
log.info("Start processing images (Dataset.py) ")
start = timer()
for dirName in os.listdir(image_dir):
label_i = label[i]
print("ONE_HOT_ROW = ", label_i)
i += 1
# log.info("Execution time of convLabels function = %.4f sec" % (end1-start1))
path = os.path.join(image_dir, dirName)
for img in os.listdir(path):
img_path = os.path.join(path, img)
if os.path.isfile(img_path) and (img.endswith('jpeg') or
(img.endswith('jpg'))):
img_bytes = tf.read_file(img_path)
img_u8 = tf.image.decode_jpeg(img_bytes, channels=3)
img_u8_eval = session.run(img_u8)
image = tf.image.convert_image_dtype(img_u8_eval, tf.float32)
img_padded_or_cropped = tf.image.resize_image_with_crop_or_pad(image, IMG_SIZE, IMG_SIZE)
img_padded_or_cropped = tf.reshape(img_padded_or_cropped, shape=[IMG_SIZE * IMG_SIZE, 3])
yield img_padded_or_cropped.eval(session=session), label_i
end = timer()
log.info("End processing images (Dataset.py) - Time = %.2f sec" % (end-start))
开发者ID:daniele-sartiano,项目名称:ConvNet,代码行数:31,代码来源:Dataset.py
示例16: read_one_image
def read_one_image(fname, **kwargs):
"""Reads one image given a filepath
Parameters
-----------
fname : str
path to a JPEG file
img_shape : tuple
(kwarg) shape of the eventual image. Default is (224, 224, 3)
is_training : bool
(kwarg) boolean to tell the loader function if the graph is in training
mode or testing. Default is True
Returns
-------
preprocessed image
"""
img_shape = kwargs.pop("image_shape", (224, 224, 3))
is_training = kwargs.pop("is_training", False)
# read the image file
content = tf.read_file(fname)
# decode buffer as jpeg
img_raw = tf.image.decode_jpeg(content, channels=img_shape[-1])
return preprocess_image(img_raw, img_shape[0], img_shape[1], is_training=is_training)
开发者ID:Andrew62,项目名称:dogcatcher,代码行数:26,代码来源:datatf.py
示例17: read_image
def read_image(filename, label):
image_string = tf.read_file(filename)
image_decoded = tf.image.decode_png(image_string, channels=3)
image_resized = tf.image.resize_images(image_decoded, [28, 28])
image_resized = tf.cast(image_resized, tf.float32)
image_resized = image_resized / 255.0
return image_resized, label
开发者ID:JieZou1,项目名称:PanelSeg,代码行数:7,代码来源:label_classification_2.py
示例18: read_tensor_from_image_file
def read_tensor_from_image_file(file_name):
input_name = "file_reader"
output_name = "normalized"
width = input_size
height = input_size
num_channels = 3
file_reader = tf.read_file(file_name, input_name)
if file_name.endswith(".png"):
image_reader = tf.image.decode_png(file_reader, channels = 3,
name='png_reader')
elif file_name.endswith(".gif"):
image_reader = tf.squeeze(tf.image.decode_gif(file_reader,
name='gif_reader'))
elif file_name.endswith(".bmp"):
image_reader = tf.image.decode_bmp(file_reader, name='bmp_reader')
else:
image_reader = tf.image.decode_jpeg(file_reader, channels = 3,
name='jpeg_reader')
float_caster = tf.cast(image_reader, tf.float32)
dims_expander = tf.expand_dims(float_caster, 0);
# resized = tf.image.resize_bilinear(dims_expander, [input_size, input_size])
normalized = tf.divide(tf.subtract(dims_expander, [input_mean]), [input_std])
patches = tf.extract_image_patches(normalized,
ksizes=[1, patch_height, patch_width, 1],
strides=[1, patch_height/4, patch_width/4, 1],
rates=[1,1,1,1],
padding="VALID")
patches_shape = tf.shape(patches)
patches = tf.reshape(patches, [-1, patch_height, patch_width, num_channels])
patches = tf.image.resize_images(patches, [height, width])
patches = tf.reshape(patches, [-1, height, width, num_channels])
sess = tf.Session()
return sess.run([patches, patches_shape])
开发者ID:jembezmamy,项目名称:away-pigeons,代码行数:33,代码来源:classifier.py
示例19: read
def read(filename_queue):
value = filename_queue.dequeue()
fpath, label = tf.decode_csv(
value, record_defaults=[[''], ['']],
field_delim=' ')
image_buffer = tf.read_file(fpath)
return [image_buffer, label]
开发者ID:wanjinchang,项目名称:ActionVLAD,代码行数:7,代码来源:places365.py
示例20: image_processing
def image_processing(self, filename):
x = tf.read_file(filename)
x_decode = tf.image.decode_jpeg(x, channels=self.channels)
img = tf.image.resize_images(x_decode, [self.load_size, self.load_size])
img = tf.cast(img, tf.float32) / 127.5 - 1
return img
开发者ID:zlpsls,项目名称:Self-Attention-GAN-Tensorflow,代码行数:7,代码来源:utils.py
注:本文中的tensorflow.read_file函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论