• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensorflow.random_normal_initializer函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.random_normal_initializer函数的典型用法代码示例。如果您正苦于以下问题:Python random_normal_initializer函数的具体用法?Python random_normal_initializer怎么用?Python random_normal_initializer使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了random_normal_initializer函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: bpr_mf

def bpr_mf(user_count,item_count,hidden_dim):
    u = tf.placeholder(tf.int32,[None])
    i = tf.placeholder(tf.int32,[None])
    j = tf.placeholder(tf.int32,[None])

    user_emb_w = tf.get_variable("user_emb_w", [user_count + 1, hidden_dim],
                                 initializer=tf.random_normal_initializer(0, 0.1))
    item_emb_w = tf.get_variable("item_emb_w", [item_count + 1, hidden_dim],
                                 initializer=tf.random_normal_initializer(0, 0.1))

    u_emb = tf.nn.embedding_lookup(user_emb_w, u)
    i_emb = tf.nn.embedding_lookup(item_emb_w, i)
    j_emb = tf.nn.embedding_lookup(item_emb_w, j)


    x = tf.reduce_sum(tf.multiply(u_emb,(i_emb-j_emb)),1,keep_dims=True)

    mf_auc = tf.reduce_mean(tf.to_float(x>0))

    l2_norm = tf.add_n([
        tf.reduce_sum(tf.multiply(u_emb, u_emb)),
        tf.reduce_sum(tf.multiply(i_emb, i_emb)),
        tf.reduce_sum(tf.multiply(j_emb, j_emb))
    ])

    regulation_rate = 0.0001
    bprloss = regulation_rate * l2_norm - tf.reduce_mean(tf.log(tf.sigmoid(x)))

    train_op = tf.train.GradientDescentOptimizer(0.01).minimize(bprloss)
    return u, i, j, mf_auc, bprloss, train_op
开发者ID:huyuxiang,项目名称:tensorflow_practice,代码行数:30,代码来源:BPR.py


示例2: __init__

    def __init__(self, encoder_rnn_output, label_onehot, is_training=True):
        self.encoder_rnn_output = encoder_rnn_output
        self.label_onehot = label_onehot

        self.is_training = is_training


        with tf.variable_scope("encoder_linear1"):
            context_to_hidden_W = tf.get_variable(name="context_to_hidden_W",
                                                  shape=[FLAGS.RNN_SIZE + FLAGS.LABEL_CLASS,
                                                         100],
                                                  dtype=tf.float32,
                                                  initializer=tf.random_normal_initializer(stddev=0.1))

            context_to_hidden_b = tf.get_variable(name="context_to_hidden_b",
                                                  shape=[100],
                                                  dtype=tf.float32)


        with tf.variable_scope("encoder_linear2"):
            context_to_mu_W = tf.get_variable(name="context_to_mu_W",
                                              shape=[100,
                                                     FLAGS.LATENT_VARIABLE_SIZE],
                                              dtype=tf.float32,
                                              initializer=tf.random_normal_initializer(stddev=0.1))

            context_to_mu_b = tf.get_variable(name="context_to_mu_b",
                                              shape=[FLAGS.LATENT_VARIABLE_SIZE],
                                              dtype=tf.float32)

            context_to_logvar_W = tf.get_variable(
                                              name="context_to_logvar_W",
                                              shape=[100,
                                                    FLAGS.LATENT_VARIABLE_SIZE],
                                              dtype=tf.float32,
                                              initializer=tf.random_normal_initializer(stddev=0.1))

            context_to_logvar_b = tf.get_variable(
                                              name="context_to_logvar_b",
                                              shape=[FLAGS.LATENT_VARIABLE_SIZE],
                                              dtype=tf.float32)

        with tf.name_scope("rnn_output_and_label"):
            rnn_output_and_label = tf.concat((encoder_rnn_output, self.label_onehot),
                                             axis=1,
                                             name="concat_encoder_rnn_output_and_label")

        with tf.name_scope("sampler_hiddenstate"):
            h = tf.nn.relu(tf.matmul(rnn_output_and_label, context_to_hidden_W) + context_to_hidden_b)

        with tf.name_scope("mu"):
            self.mu = tf.matmul(h, context_to_mu_W) + context_to_mu_b
        with tf.name_scope("log_var"):
            self.logvar = tf.matmul(h, context_to_logvar_W) + context_to_logvar_b

        with tf.name_scope("z"):
            z = tf.truncated_normal((FLAGS.BATCH_SIZE, FLAGS.LATENT_VARIABLE_SIZE), stddev=1.0)

        with tf.name_scope("latent_variables"):
            self.latent_variables = self.mu + tf.exp(0.5 * self.logvar) * z
开发者ID:leezqcst,项目名称:dcnn_textvae,代码行数:60,代码来源:encoder.py


示例3: model

def model(hparams, X, past=None, scope='model', reuse=False):
    with tf.variable_scope(scope, reuse=reuse):
        results = {}
        batch, sequence = shape_list(X)

        wpe = tf.get_variable('wpe', [hparams.n_ctx, hparams.n_embd],
                             initializer=tf.random_normal_initializer(stddev=0.01))
        wte = tf.get_variable('wte', [hparams.n_vocab, hparams.n_embd],
                             initializer=tf.random_normal_initializer(stddev=0.02))
        past_length = 0 if past is None else tf.shape(past)[-2]
        h = tf.gather(wte, X) + tf.gather(wpe, positions_for(X, past_length))

        # Transformer
        presents = []
        pasts = tf.unstack(past, axis=1) if past is not None else [None] * hparams.n_layer
        assert len(pasts) == hparams.n_layer
        for layer, past in enumerate(pasts):
            h, present = block(h, 'h%d' % layer, past=past, hparams=hparams)
            presents.append(present)
        results['present'] = tf.stack(presents, axis=1)
        h = norm(h, 'ln_f')

        # Language model loss.  Do tokens <n predict token n?
        h_flat = tf.reshape(h, [batch*sequence, hparams.n_embd])
        logits = tf.matmul(h_flat, wte, transpose_b=True)
        logits = tf.reshape(logits, [batch, sequence, hparams.n_vocab])
        results['logits'] = logits
        return results
开发者ID:neuroradiology,项目名称:gpt-2,代码行数:28,代码来源:model.py


示例4: _build_net

    def _build_net(self):
        with tf.name_scope('inputs'):
            self.tf_obs = tf.placeholder(tf.float32, [None, self.n_features], name="observations")
            self.tf_acts = tf.placeholder(tf.int32, [None, ], name="actions_num")
            self.tf_vt = tf.placeholder(tf.float32, [None, ], name="actions_value")
        # fc1
        layer = tf.layers.dense(
            inputs=self.tf_obs,
            units=10,
            activation=tf.nn.tanh,  # tanh activation
            kernel_initializer=tf.random_normal_initializer(mean=0, stddev=0.3),
            bias_initializer=tf.constant_initializer(0.1),
            name='fc1'
        )
        # fc2
        all_act = tf.layers.dense(
            inputs=layer,
            units=self.n_actions,
            activation=None,
            kernel_initializer=tf.random_normal_initializer(mean=0, stddev=0.3),
            bias_initializer=tf.constant_initializer(0.1),
            name='fc2'
        )

        self.all_act_prob = tf.nn.softmax(all_act, name='act_prob')  # use softmax to convert to probability

        with tf.name_scope('loss'):
            # to maximize total reward (log_p * R) is to minimize -(log_p * R), and the tf only have minimize(loss)
            neg_log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=all_act, labels=self.tf_acts)   # this is negative log of chosen action
            # or in this way:
            # neg_log_prob = tf.reduce_sum(-tf.log(self.all_act_prob)*tf.one_hot(self.tf_acts, self.n_actions), axis=1)
            loss = tf.reduce_mean(neg_log_prob * self.tf_vt)  # reward guided loss

        with tf.name_scope('train'):
            self.train_op = tf.train.AdamOptimizer(self.lr).minimize(loss)
开发者ID:Emrys-Hong,项目名称:Reinforcement-learning-with-tensorflow,代码行数:35,代码来源:RL_brain.py


示例5: __init__

    def __init__(self,sess,n_features,n_actions,lr=0.001):
        self.sess = sess

        self.s = tf.placeholder(tf.float32,[1,n_features],name='state')
        self.a = tf.placeholder(tf.int32,None,name='act')
        self.td_error = tf.placeholder(tf.float32,None,"td_error")

        with tf.variable_scope('Actor'):
            l1 = tf.layers.dense(
                inputs = self.s,
                units = 20,
                activation = tf.nn.relu,
                kernel_initializer = tf.random_normal_initializer(mean=0,stddev=0.1),
                bias_initializer = tf.constant_initializer(0.1),
                name = 'l1'
            )

            self.acts_prob = tf.layers.dense(
                inputs = l1,
                units = n_actions,
                activation = tf.nn.softmax,
                kernel_initializer = tf.random_normal_initializer(mean=0,stddev=0.1),
                bias_initializer = tf.constant_initializer(0.1),
                name = 'acts_prob'
            )


            with tf.variable_scope('exp_v'):
                log_prob = tf.log(self.acts_prob[0,self.a])
                self.exp_v = tf.reduce_mean(log_prob * self.td_error)


            with tf.variable_scope('train'):
                self.train_op =  tf.train.AdamOptimizer(lr).minimize(-self.exp_v)
开发者ID:huyuxiang,项目名称:tensorflow_practice,代码行数:34,代码来源:Actor.py


示例6: SRGAN_g

def SRGAN_g(t_image, is_train=False, reuse=False):
    """ Generator in Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
    feature maps (n) and stride (s) feature maps (n) and stride (s)
    """
    w_init = tf.random_normal_initializer(stddev=0.02)
    b_init = None  # tf.constant_initializer(value=0.0)
    g_init = tf.random_normal_initializer(1., 0.02)
    with tf.variable_scope("SRGAN_g", reuse=reuse) as vs:
        # tl.layers.set_name_reuse(reuse) # remove for TL 1.8.0+
        n = InputLayer(t_image, name='in')
        n = Conv2d(n, 64, (3, 3), (1, 1), act=tf.nn.relu, padding='SAME', W_init=w_init, name='n64s1/c')
        temp = n

        # B residual blocks
        for i in range(16):
            nn = Conv2d(n, 64, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='n64s1/c1/%s' % i)
            nn = BatchNormLayer(nn, act=tf.nn.relu, is_train=is_train, gamma_init=g_init, name='n64s1/b1/%s' % i)
            nn = Conv2d(nn, 64, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='n64s1/c2/%s' % i)
            nn = BatchNormLayer(nn, is_train=is_train, gamma_init=g_init, name='n64s1/b2/%s' % i)
            nn = ElementwiseLayer([n, nn], tf.add, name='b_residual_add/%s' % i)
            n = nn

        n = Conv2d(n, 64, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='n64s1/c/m')
        n = BatchNormLayer(n, is_train=is_train, gamma_init=g_init, name='n64s1/b/m')
        n = ElementwiseLayer([n, temp], tf.add, name='add3')
        # B residual blacks end

        n = Conv2d(n, 256, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, name='n256s1/1')
        n = SubpixelConv2d(n, scale=2, n_out_channel=None, act=tf.nn.relu, name='pixelshufflerx2/1')

        n = Conv2d(n, 256, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, name='n256s1/2')
        n = SubpixelConv2d(n, scale=2, n_out_channel=None, act=tf.nn.relu, name='pixelshufflerx2/2')

        n = Conv2d(n, 3, (1, 1), (1, 1), act=tf.nn.tanh, padding='SAME', W_init=w_init, name='out')
        return n
开发者ID:TowardSun,项目名称:srgan,代码行数:35,代码来源:model.py


示例7: decoder

def decoder(input, output_dim, training, stddev=0.02, bias_value=0, reuse=False):
        
    w1 = tf.get_variable("w1", [input.get_shape()[1],1000], initializer=tf.random_normal_initializer(stddev=stddev))
    b1 = tf.get_variable("b1", [1000], initializer=tf.constant_initializer(bias_value))

    w2 = tf.get_variable("w2", [1000,1000], initializer=tf.random_normal_initializer(stddev=stddev))
    b2 = tf.get_variable("b2", [1000], initializer=tf.constant_initializer(bias_value))

    w3 = tf.get_variable("w3", [1000,output_dim], initializer=tf.random_normal_initializer(stddev=stddev))
    b3 = tf.get_variable("b3", [output_dim], initializer=tf.constant_initializer(bias_value))

    fc1 = tf.nn.relu(tf.matmul( input, w1 ) + b1, name='relu1')
    fc2 = tf.nn.relu(tf.matmul( fc1  , w2 ) + b2, name='relu2')
    fc3 = tf.nn.sigmoid(tf.matmul( fc2  , w3 ) + b3 )

    if not reuse:
        tf.histogram_summary('DE/L1/activation', fc1)
        tf.histogram_summary('DE/L1/weight'    , w1)
        tf.histogram_summary('DE/L1/bias'      , b1)
        tf.scalar_summary(   'DE/L1/sparsity'  , tf.nn.zero_fraction(fc1))
        
        tf.histogram_summary('DE/L2/activation', fc2)
        tf.histogram_summary('DE/L2/weight'    , w2)
        tf.histogram_summary('DE/L2/bias'      , b2)
        tf.scalar_summary(   'DE/L2/sparsity'  , tf.nn.zero_fraction(fc2))

        tf.histogram_summary('DE/L3/activation', fc3)
        tf.histogram_summary('DE/L3/weight'    , w3)
        tf.histogram_summary('DE/L3/bias'      , b3)
        tf.scalar_summary(   'DE/L3/sparsity'  , tf.nn.zero_fraction(fc3))
        
    return fc3, [w1, b1, w2, b2, w3, b3]
开发者ID:supersaiakujin,项目名称:adversarial_autoencoders,代码行数:32,代码来源:adversarial_autoencoders.py


示例8: discriminator

def discriminator(X, reuse=False):
    with tf.variable_scope('discriminator'):
        if reuse:
            tf.get_variable_scope().reuse_variables()

        J = 784
        K = 128
        L = 1

        W1 = tf.get_variable('D_W1', [J, K],
                             initializer=tf.random_normal_initializer(stddev=xavier_init([J, K])))
        B1 = tf.get_variable('D_B1', [K], initializer=tf.constant_initializer())
        W2 = tf.get_variable('D_W2', [K, L],
                             initializer=tf.random_normal_initializer(stddev=xavier_init([K, L])))
        B2 = tf.get_variable('D_B2', [L], initializer=tf.constant_initializer())

        # summary
        tf.summary.histogram('weight1', W1)
        tf.summary.histogram('weight2', W2)
        tf.summary.histogram('biases1', B1)
        tf.summary.histogram('biases2', B2)

        fc1 = tf.nn.relu((tf.matmul(X, W1) + B1))
        logits = tf.matmul(fc1, W2) + B2
        prob = tf.nn.sigmoid(logits)
        return prob, logits
开发者ID:hephaex,项目名称:tensorflow_note,代码行数:26,代码来源:model_fc.py


示例9: __init__

    def __init__(self, sess, n_features, lr=0.01):
        self.sess = sess
        with tf.name_scope('inputs'):
            self.s = tf.placeholder(tf.float32, [1, n_features], "state")
            self.v_ = tf.placeholder(tf.float32, [1, 1], name="v_next")
            self.r = tf.placeholder(tf.float32, name='r')

        with tf.variable_scope('Critic'):
            l1 = tf.layers.dense(
                inputs=self.s,
                units=30,  # number of hidden units
                activation=tf.nn.relu,
                kernel_initializer=tf.random_normal_initializer(0., .1),  # weights
                bias_initializer=tf.constant_initializer(0.1),  # biases
                name='l1'
            )

            self.v = tf.layers.dense(
                inputs=l1,
                units=1,  # output units
                activation=None,
                kernel_initializer=tf.random_normal_initializer(0., .1),  # weights
                bias_initializer=tf.constant_initializer(0.1),  # biases
                name='V'
            )

        with tf.variable_scope('squared_TD_error'):
            self.td_error = tf.reduce_mean(self.r + GAMMA * self.v_ - self.v)
            self.loss = tf.square(self.td_error)    # TD_error = (r+gamma*V_next) - V_eval
        with tf.variable_scope('train'):
            self.train_op = tf.train.AdamOptimizer(lr).minimize(self.loss)
开发者ID:Emrys-Hong,项目名称:Reinforcement-learning-with-tensorflow,代码行数:31,代码来源:AC_continue_Pendulum.py


示例10: initializeParameters

    def initializeParameters(self, m, n):
        """
        Arguments:
            m -- number of users
            n -- number of items

        Returns:
            parameters -- parameters['b'], global bias, scalar
                          parameters['u'], users bias, shape (m, 1)
                          parameters['d'], item bias, shape (1, n)
                          parameters['P'], users feature matrix, shape (m, K)
                          parameters['Q'], items feature matrix, shape (n, K)        
        """
        k = self.K
        
        parameters = {}
        parameters['b'] = tf.get_variable(name='b', dtype=tf.float64, shape=[],
                                          initializer=tf.zeros_initializer())

        parameters['u'] = tf.get_variable(name='u', dtype=tf.float64, shape=[m, 1],
                                          initializer=tf.zeros_initializer())

        parameters['d'] = tf.get_variable(name='d', dtype=tf.float64, shape=[1, n],
                                          initializer=tf.zeros_initializer())

        parameters['P'] = tf.get_variable(name='P', dtype=tf.float64, shape=[m, k],
                                          initializer=tf.random_normal_initializer())

        parameters['Q'] = tf.get_variable(name='Q', dtype=tf.float64, shape=[n, k],
                                          initializer=tf.random_normal_initializer())

        return parameters
开发者ID:cheng-w-liu,项目名称:ML_algos,代码行数:32,代码来源:matrix_factorization_in_TensorFlow.py


示例11: __init__

    def __init__(self, n_inputs, n_rules, learning_rate=1e-2):
        self.n = n_inputs
        self.m = n_rules
        self.inputs = tf.placeholder(tf.float32, shape=(None, n_inputs))  # Input
        self.targets = tf.placeholder(tf.float32, shape=None)  # Desired output
        mu = tf.get_variable("mu", [n_rules * n_inputs],
                             initializer=tf.random_normal_initializer(0, 1))  # Means of Gaussian MFS
        sigma = tf.get_variable("sigma", [n_rules * n_inputs],
                                initializer=tf.random_normal_initializer(0, 1))  # Standard deviations of Gaussian MFS
        y = tf.get_variable("y", [1, n_rules], initializer=tf.random_normal_initializer(0, 1))  # Sequent centers

        self.params = tf.trainable_variables()

        self.rul = tf.reduce_prod(
            tf.reshape(tf.exp(-0.5 * tf.square(tf.subtract(tf.tile(self.inputs, (1, n_rules)), mu)) / tf.square(sigma)),
                       (-1, n_rules, n_inputs)), axis=2)  # Rule activations
        # Fuzzy base expansion function:
        num = tf.reduce_sum(tf.multiply(self.rul, y), axis=1)
        den = tf.clip_by_value(tf.reduce_sum(self.rul, axis=1), 1e-12, 1e12)
        self.out = tf.divide(num, den)

        self.loss = tf.losses.huber_loss(self.targets, self.out)  # Loss function computation
        # Other loss functions for regression, uncomment to try them:
        # loss = tf.sqrt(tf.losses.mean_squared_error(target, out))
        # loss = tf.losses.absolute_difference(target, out)
        self.optimize = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(self.loss)  # Optimization step
        # Other optimizers, uncomment to try them:
        # self.optimize = tf.train.RMSPropOptimizer(learning_rate=learning_rate).minimize(self.loss)
        # self.optimize = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(self.loss)
        self.init_variables = tf.global_variables_initializer()  # Variable initializer
开发者ID:tiagoCuervo,项目名称:TensorANFIS,代码行数:30,代码来源:anfis.py


示例12: create_positional_emb_2d

  def create_positional_emb_2d(self, targets):
    """Learned 2d positional embedding for images."""
    mesh = targets.mesh

    positional_emb_rows_var = mtf.get_variable(
        mesh, "positional_emb_rows",
        mtf.Shape([self.pos_dim, self.model_dim]),
        initializer=tf.random_normal_initializer(),
        activation_dtype=self.activation_type)
    positional_emb_cols_var = mtf.get_variable(
        mesh, "positional_emb_cols",
        mtf.Shape([self.pos_dim, self.model_dim]),
        initializer=tf.random_normal_initializer(),
        activation_dtype=self.activation_type)

    targets_position_x = mtf.range(mesh, self.rows_dim, dtype=tf.int32)
    targets_position_y = mtf.range(mesh, self.cols_dim, dtype=tf.int32)
    position_x = mtf.broadcast(
        mtf.gather(positional_emb_rows_var, targets_position_x,
                   self.pos_dim),
        mtf.Shape([self.rows_dim, self.cols_dim, self.model_dim]))

    position_y = mtf.broadcast(
        mtf.gather(positional_emb_cols_var, targets_position_y,
                   self.pos_dim),
        mtf.Shape([self.rows_dim, self.cols_dim, self.model_dim]))
    return position_x + position_y
开发者ID:qixiuai,项目名称:tensor2tensor,代码行数:27,代码来源:mtf_image_transformer.py


示例13: discriminator

def discriminator(X, reuse=False):
    with tf.variable_scope('discriminator'):
        if reuse:
            tf.get_variable_scope().reuse_variables()

        K = 64
        M = 128
        N = 256

        W1 = tf.get_variable('D_W1', [4, 4, 1, K], initializer=tf.random_normal_initializer(stddev=0.1))
        B1 = tf.get_variable('D_B1', [K], initializer=tf.constant_initializer())
        W2 = tf.get_variable('D_W2', [4, 4, K, M], initializer=tf.random_normal_initializer(stddev=0.1))
        B2 = tf.get_variable('D_B2', [M], initializer=tf.constant_initializer())
        W3 = tf.get_variable('D_W3', [7*7*M, N], initializer=tf.random_normal_initializer(stddev=0.1))
        B3 = tf.get_variable('D_B3', [N], initializer=tf.constant_initializer())
        W4 = tf.get_variable('D_W4', [N, 1], initializer=tf.random_normal_initializer(stddev=0.1))
        B4 = tf.get_variable('D_B4', [1], initializer=tf.constant_initializer())

        X = tf.reshape(X, [-1, 28, 28, 1], 'reshape')

        conv1 = conv(X, W1, B1, stride=2, name='conv1')
        bn1 = tf.contrib.layers.batch_norm(conv1)
        conv2 = conv(tf.nn.dropout(lrelu(bn1), 0.4), W2, B2, stride=2, name='conv2')
        # conv2 = conv(lrelu(conv1), W2, B2, stride=2, name='conv2')

        bn2 = tf.contrib.layers.batch_norm(conv2)
        flat = tf.reshape(tf.nn.dropout(lrelu(bn2), 0.4), [-1, 7*7*M], name='flat')
        # flat = tf.reshape(lrelu(conv2), [-1, 7*7*M], name='flat')

        dense = lrelu(tf.matmul(flat, W3) + B3)
        logits = tf.matmul(dense, W4) + B4
        prob = tf.nn.sigmoid(logits)
        return prob, logits
开发者ID:hephaex,项目名称:tensorflow_note,代码行数:33,代码来源:model_conv.py


示例14: _build_cnn

    def _build_cnn(self, feat_x):

        with tf.variable_scope("cnn_global", reuse=True):
            W1 = tf.get_variable(dtype=tf.float32,
                                shape=[self.filter_stride, self.dim_feat_x, 1, self.num_feat_map],
                                name="weight_w1",
                                initializer=tf.random_normal_initializer(mean=0.0, stddev=0.1))
            b1 = tf.get_variable(dtype=tf.float32,
                                 shape=[self.num_feat_map], name="bias_b1", initializer=tf.constant_initializer(1.0))

        x_inputs = tf.reshape(feat_x, [-1, self.window_size, self.dim_feat_x, 1])
        # print x_inputs.get_shape()

        # h_conv_1 size: [-1, dwf, ws, nfm]
        h_conv_1 = tf.nn.relu(self._conv_2d(x_inputs, W1) + b1)
        # print h_conv_1.get_shape()

        # h_max_pool size: [-1, 1,1, nfm]
        h_max_pool = self._max_pool(h_conv_1)
        # print h_max_pool.get_shape()

        # concentrate in one vector
        # sent_vec size: [-1, nfm]
        sent_vec = tf.reshape(h_max_pool, [-1, self.num_feat_map])
        # print sent_vec.get_shape()
        with tf.variable_scope("cnn_global", reuse=True):
            W2 = tf.get_variable(dtype=tf.float32,
                                 shape=[self.num_feat_map, self.output_size], name="weight_w2",
                                 initializer=tf.random_normal_initializer(mean=0.0, stddev=0.1))
            b2 = tf.get_variable(dtype=tf.float32,
                                 shape=[self.output_size], name="bias_b2", initializer=tf.constant_initializer(1.0))

        logits = tf.matmul(sent_vec, W2) + b2

        return logits
开发者ID:staylonging,项目名称:tf,代码行数:35,代码来源:cnnglobal_back.py


示例15: weight

def weight(name, shape, init='he', range=None):
    """ Initializes weight.
    :param name: Variable name
    :param shape: Tensor shape
    :param init: Init mode. xavier / normal / uniform / he (default is 'he')
    :param range:
    :return: Variable
    """
    initializer = tf.constant_initializer()
    if init == 'xavier':
        fan_in, fan_out = _get_dims(shape)
        range = math.sqrt(6.0 / (fan_in + fan_out))
        initializer = tf.random_uniform_initializer(-range, range)

    elif init == 'he':
        fan_in, _ = _get_dims(shape)
        std = math.sqrt(2.0 / fan_in)
        initializer = tf.random_normal_initializer(stddev=std)

    elif init == 'normal':
        initializer = tf.random_normal_initializer(stddev=0.1)

    elif init == 'uniform':
        if range is None:
            raise ValueError("range must not be None if uniform init is used.")
        initializer = tf.random_uniform_initializer(-range, range)

    var = tf.get_variable(name, shape, initializer=initializer)
    tf.add_to_collection('l2', tf.nn.l2_loss(var))  # Add L2 Loss
    return var
开发者ID:BabelTower,项目名称:dmn-tensorflow,代码行数:30,代码来源:nn.py


示例16: cnn_inference

def cnn_inference(inputs, input_units, output_units, is_train=True,
                  FLAGS=None):
  """
    Define the CNN model.
    """

  # [BATCH_SIZE, 9] -> [BATCH_SIZE, 3, 3, 1]
  inputs = tf.reshape(inputs, [-1, 3, 3, 1])

  # [BATCH_SIZE, 3, 3, 1] -> [BATCH_SIZE, 3, 3, 8]
  with tf.variable_scope("conv_0"):
    weights = tf.get_variable(
        "weights", [3, 3, 1, 8], initializer=tf.random_normal_initializer())
    bias = tf.get_variable(
        "bias", [8], initializer=tf.random_normal_initializer())

    layer = tf.nn.conv2d(inputs, weights, strides=[1, 1, 1, 1], padding="SAME")
    layer = tf.nn.bias_add(layer, bias)
    layer = tf.nn.relu(layer)

  # [BATCH_SIZE, 3, 3, 8] -> [BATCH_SIZE, 3 * 3 * 8]
  layer = tf.reshape(layer, [-1, 3 * 3 * 8])

  # [BATCH_SIZE, 3 * 3 * 8] -> [BATCH_SIZE, LABEL_SIZE]
  with tf.variable_scope("output_layer"):
    weights = tf.get_variable(
        "weights", [3 * 3 * 8, FLAGS.label_size],
        initializer=tf.random_normal_initializer())
    bias = tf.get_variable(
        "bias", [FLAGS.label_size], initializer=tf.random_normal_initializer())
    layer = tf.add(tf.matmul(layer, weights), bias)

  return layer
开发者ID:tobegit3hub,项目名称:deep_recommend_system,代码行数:33,代码来源:model.py


示例17: _build_net

    def _build_net(self):
        with tf.name_scope('inputs'):
            self.tf_obs=tf.placeholder(tf.float32,[None,self.n_features],name="observations")
            self.tf_acts=tf.placeholder(tf.int32,[None,],name="actions_num")
            self.tf_vt=tf.placeholder(tf.float32,[None,],name="actions_value")

        layer=tf.layers.dense(
            inputs=self.tf_obs,
            units=10,
            activation=tf.nn.tanh
            kernel_initializer=tf.random_normal_initializer(mean=0,stddev=0.3),
            bias_initializer=tf.constant_initializer(0.1),
            name='fc1'

        )

        all_act=tf.layers.dense(
            inputs=layer,
            units=self.n_actions,
            activation=None,
            kernel_initializer=tf.random_normal_initializer(mean=0,stddev=0.3)
            bias_initializer=tf.constant_initializer(0.1)
            name='fc2'


        )

        self.all_act_prob=tf.nn.softmax(all_act,name='act_prob')

        with tf.name_scope('loss'):
            neg_log_prob=tf.nn.sparse_softmax_cross_enrtropy_with_logits(logits=all_act,labels=self.tf_acts)
            loss=tf.reduce_mean(neg_log_prob*self.tf_vt)#用log_p*R的最大化来表示目标

        with tf.name_scope('train'):
            self.train_op=tf.train.AdamOptimizer(self.lr).minimize(loss)
开发者ID:niceIrene,项目名称:MetisRL,代码行数:35,代码来源:rl_brain.py


示例18: __init__

    def __init__(self, sess, n_features, n_actions, lr=0.001):
        self.sess = sess

        self.s = tf.placeholder(tf.float32, [1, n_features], "state")
        self.a = tf.placeholder(tf.int32, None, "act")
        self.td_error = tf.placeholder(tf.float32, None, "td_error")  # TD_error

        with tf.variable_scope('Actor'):
            l1 = tf.layers.dense(
                inputs=self.s,
                units=20,    # number of hidden units
                activation=tf.nn.relu,
                kernel_initializer=tf.random_normal_initializer(0., .1),    # weights
                bias_initializer=tf.constant_initializer(0.1),  # biases
                name='l1'
            )

            self.acts_prob = tf.layers.dense(
                inputs=l1,
                units=n_actions,    # output units
                activation=tf.nn.softmax,   # get action probabilities
                kernel_initializer=tf.random_normal_initializer(0., .1),  # weights
                bias_initializer=tf.constant_initializer(0.1),  # biases
                name='acts_prob'
            )

        with tf.variable_scope('exp_v'):
            log_prob = tf.log(self.acts_prob[0, self.a])
            self.exp_v = tf.reduce_mean(log_prob * self.td_error)  # advantage (TD_error) guided loss

        with tf.variable_scope('train'):
            self.train_op = tf.train.AdamOptimizer(lr).minimize(-self.exp_v)  # minimize(-exp_v) = maximize(exp_v)
开发者ID:Emrys-Hong,项目名称:Reinforcement-learning-with-tensorflow,代码行数:32,代码来源:AC_CartPole.py


示例19: model

    def model(self, images, input_size, output_size, isEval=None):

        with tf.variable_scope('nn_hidden1', reuse=isEval):
            #Declaring variables
            weights_h1 = tf.get_variable("weights_h1", [input_size, self.num_hidden1],
                initializer=tf.random_normal_initializer(0.0, 1.0 / math.sqrt(float(input_size)),
                          seed=self.SEED))
            weights_out = tf.get_variable("weights_out", [self.num_hidden1, output_size],
                initializer=tf.random_normal_initializer(0.0, 1.0 / math.sqrt(float(self.num_hidden1)),
                          seed=self.SEED))

            biases_b1 = tf.get_variable("biases_b1", [self.num_hidden1],
                initializer=tf.constant_initializer(0.0))
            biases_out = tf.get_variable("biases_out", [output_size],
                initializer=tf.constant_initializer(0.0))
            
            #Constructing variables, with DropOut
            layer_1 = tf.nn.relu(tf.add(tf.matmul(images, weights_h1), biases_b1))
            layer_1drop = tf.nn.dropout(layer_1, self.keep_prob)
            
            #Evaluating logits
            logits_drop = tf.matmul(layer_1drop, weights_out) + biases_out
            logits=tf.matmul(layer_1, weights_out) + biases_out
            
            reg_linear = tf.nn.l2_loss(weights_out)+tf.nn.l2_loss(weights_h1)

            if isEval:
                return logits
            else:
                regularizers = reg_linear
                return (logits_drop, regularizers)
开发者ID:andreslechuga,项目名称:DeepLearning,代码行数:31,代码来源:Assignment3.py


示例20: build_graph

    def build_graph(self,test_decoder_logits):
        print('starting building graph [sentiment-discriminator]')
        with tf.variable_scope("sentiment") as scope:
            self.inputs = tf.slice(test_decoder_logits,[0,0,0],[self.batch_size,self.max_length,self.vocab_size])
            # variable
            weights = {
                'w2v' : tf.get_variable(initializer = tf.random_uniform_initializer(-0.1, 0.1, dtype=tf.float32),shape = [self.vocab_size, self.embedding_dim], name='w2v'),
                'out_1' : tf.get_variable(initializer = tf.random_normal_initializer(), shape = [self.unit_size*2, 1], name='w_out_1'),
            }
            biases = {
            'out_1' : tf.get_variable(initializer = tf.random_normal_initializer(), shape=[1], name='b_out_1'),
            }
            # structure
            def BiRNN(x):
                x = tf.unstack(x, self.max_length, 1)
                lstm_fw_cell = tf.contrib.rnn.BasicLSTMCell(self.unit_size, forget_bias=1.0)
                lstm_bw_cell = tf.contrib.rnn.BasicLSTMCell(self.unit_size,forget_bias=1.0)
                outputs, _, _ = tf.contrib.rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x, dtype = tf.float32 )
                return outputs[-1]

            self.inputs_softmax = tf.nn.softmax(tf.scalar_mul(tf.constant(5.0, shape=[]),self.inputs))
            y_list=[]
            for i in range(self.inputs.get_shape().as_list()[0]):
                y = tf.matmul(self.inputs_softmax[i], weights['w2v'])
                y = tf.reshape(y, [1, self.max_length, self.embedding_dim])
                y_list.append(y)
            embbed_layer = tf.concat(y_list,0)
            layer_1 = BiRNN(embbed_layer)
            pred = tf.matmul(layer_1, weights['out_1']) + biases['out_1'] 
            # get score
            self.score = tf.sigmoid(pred)
开发者ID:HTY886,项目名称:PPGN,代码行数:31,代码来源:discrim.py



注:本文中的tensorflow.random_normal_initializer函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensorflow.random_shuffle函数代码示例发布时间:2022-05-27
下一篇:
Python tensorflow.random_normal函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap