• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensorflow.random_crop函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.random_crop函数的典型用法代码示例。如果您正苦于以下问题:Python random_crop函数的具体用法?Python random_crop怎么用?Python random_crop使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了random_crop函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: image_augmentation

    def image_augmentation(self, train_data, test_data):
        train_data = tf.map_fn(lambda img: tf.image.flip_left_right(img), train_data)
        train_data = tf.map_fn(lambda img: tf.image.random_brightness(img,max_delta=63), train_data)
        train_data = tf.map_fn(lambda img: tf.image.random_contrast(img, lower=0.2, upper=1.8),train_data)

        if self.params['use_grayscale']:
            train_data = tf.map_fn(lambda img: tf.image.rgb_to_grayscale(img), train_data)
        if self.params['use_gradient_images']:
            train_data = self.apply_sobel(train_data)
        # self.input_real = tf.map_fn(lambda img: tf.image.per_image_standardization(img), self.input_real)

        train_data = tf.map_fn(lambda img: tf.image.per_image_standardization(img),train_data)
        test_data = tf.map_fn(lambda img: tf.image.per_image_standardization(img),test_data)

        test_data = test_data
        if self.params['use_grayscale']:
            test_data = tf.map_fn(lambda img: tf.image.rgb_to_grayscale(img), test_data)
        if self.params['use_gradient_images']:
            test_data = self.apply_sobel(test_data)
        # self.input_test = tf.map_fn(lambda img: tf.image.per_image_standardization(img), self.input_test)

        train_data = tf.map_fn(lambda img: tf.image.resize_image_with_crop_or_pad(img,30,30),train_data)
        train_data = tf.map_fn(lambda img: tf.image.resize_image_with_crop_or_pad(img,42,42),train_data)
        if self.params['use_grayscale']:
            train_data = tf.map_fn(lambda img: tf.random_crop(img,[32,32,1]),train_data)
        else:
            train_data = tf.map_fn(lambda img: tf.random_crop(img,[32,32,3]),train_data)

        return train_data, test_data
开发者ID:alenaliu,项目名称:noise-as-targets-tensorflow,代码行数:29,代码来源:model.py


示例2: inputs

def inputs(tf_dir, is_train, batch_size, num_epochs=None):
  image, caption_tids, cocoid = records(tf_dir, num_epochs)

  reshaped_image = tf.image.resize_images(image, IM_S, IM_S)

  if is_train:
    distorted_image = tf.random_crop(reshaped_image, [CNN_S, CNN_S, 3])
    distorted_image = tf.image.random_brightness(distorted_image, max_delta=32./255.)
    distorted_image = tf.image.random_contrast(distorted_image, lower=0.2, upper=1.8)
    distorted_image = tf.clip_by_value(distorted_image, 0.0, 1.0)
  else:
    distorted_image = tf.image.resize_image_with_crop_or_pad(reshaped_image, CNN_S, CNN_S)

  image = distorted_image

  # [0,1) --> [-1,1)
  image = tf.sub(image, 0.5)
  image = tf.mul(image, 2.0)

  num_preprocess_threads = 4
  min_queue_examples = 20

  outputs = [image, caption_tids, cocoid]

  return tf.train.shuffle_batch(
      outputs,
      batch_size=batch_size,
      num_threads=num_preprocess_threads,
      capacity=min_queue_examples + 3 * batch_size,
      min_after_dequeue=min_queue_examples)
开发者ID:lulupango,项目名称:image-caption-baseline,代码行数:30,代码来源:coco_inputs.py


示例3: read_and_preprocess

def read_and_preprocess(example_data):
    parsed = tf.parse_single_example(example_data, {
      'image/encoded': tf.FixedLenFeature((), tf.string, ''),
      'image/class/label': tf.FixedLenFeature([], tf.int64, 1),
    })
    image_bytes = tf.reshape(parsed['image/encoded'], shape=[])
    label = tf.cast(
      tf.reshape(parsed['image/class/label'], shape=[]), dtype=tf.int32) - 1

    # end up with pixel values that are in the -1, 1 range
    image = tf.image.decode_jpeg(image_bytes, channels=NUM_CHANNELS)
    image = tf.image.convert_image_dtype(image, dtype=tf.float32) # 0-1
    image = tf.expand_dims(image, 0) # resize_bilinear needs batches

    image = tf.image.resize_bilinear(
      image, [HEIGHT + 10, WIDTH + 10], align_corners=False)
    image = tf.squeeze(image)  # remove batch dimension
    image = tf.random_crop(image, [HEIGHT, WIDTH, NUM_CHANNELS])
    image = tf.image.random_flip_left_right(image)
    image = tf.image.random_brightness(image, max_delta=63.0 / 255.0)
    image = tf.image.random_contrast(image, lower=0.2, upper=1.8)

        
    #pixel values are in range [0,1], convert to [-1,1]
    image = tf.subtract(image, 0.5)
    image = tf.multiply(image, 2.0)
    #return {'image':image}, label
    return image, label
开发者ID:GoogleCloudPlatform,项目名称:training-data-analyst,代码行数:28,代码来源:model.py


示例4: read_input

def read_input(image_queue):
    # Read the images and generate the decode from PNG image
    imageReader = tf.WholeFileReader()
    image_key, image_value = imageReader.read(image_queue)
    image_decode = tf.image.decode_png(image_value, channels=1)
    image_decode = tf.cast(image_decode, tf.float32)
    # Preprocess data
    image_key = rename_image_filename(image_key)    # rename image filename 
    label = search_label(image_key)
    # CREATE OBJECT
    class Record(object):
        pass
    record = Record()
    # Instantiate object
    record.key = image_key
    record.label = tf.cast(label, tf.int32)
    record.image = image_decode
    # PROCESSING IMAGES
    # reshaped_image = tf.cast(record.image, tf.float32)
    # height = 245
    # width = 320
    height = 96
    width = 96
    # Image processing for training the network. Note the many random distortions applied to the image.
    # Randomly crop a [height, width] section of the image.
    distorted_image = tf.random_crop(record.image, [height, width, 1])
    # Randomly flip the image horizontally.
    distorted_image = tf.image.random_flip_left_right(distorted_image)
    # Because these operations are not commutative, consider randomizing randomize the order their operation.
    distorted_image = tf.image.random_brightness(distorted_image, max_delta=63)
    distorted_image = tf.image.random_contrast(distorted_image, lower=0.2, upper=1.8)
    # Subtract off the mean and divide by the variance of the pixels.
    float_image = tf.image.per_image_whitening(distorted_image)
    return generate_train_batch(record.label, float_image)
开发者ID:dllatas,项目名称:deepLearning,代码行数:34,代码来源:input.py


示例5: pre_process_img

def pre_process_img(image):
    image = tf.image.random_flip_left_right(image)
    image = tf.image.random_brightness(image, max_delta=32./255)
    image = tf.image.random_contrast(image, lower=0.8, upper=1.2)
    image = tf.random_crop(image, [default_height-np.random.randint(0, 4), default_width-np.random.randint(0, 4), 1])
    image = tf.image.resize_images(image, [default_height, default_width])
    return image
开发者ID:UGuess,项目名称:emotion_classifier,代码行数:7,代码来源:cnn_cv_tfrecord.py


示例6: preprocess_example

  def preprocess_example(self, example, mode, hparams):

    # Crop to target shape instead of down-sampling target, leaving target
    # of maximum available resolution.
    target_shape = (self.output_dim, self.output_dim, self.num_channels)
    example["targets"] = tf.random_crop(example["targets"], target_shape)

    example["inputs"] = image_utils.resize_by_area(example["targets"],
                                                   self.input_dim)

    if self.inpaint_fraction is not None and self.inpaint_fraction > 0:

      mask = random_square_mask((self.input_dim,
                                 self.input_dim,
                                 self.num_channels),
                                self.inpaint_fraction)

      example["inputs"] = tf.multiply(
          tf.convert_to_tensor(mask, dtype=tf.int64),
          example["inputs"])

      if self.input_dim is None:
        raise ValueError("Cannot train in-painting for examples with "
                         "only targets (i.e. input_dim is None, "
                         "implying there are only targets to be "
                         "generated).")

    return example
开发者ID:qixiuai,项目名称:tensor2tensor,代码行数:28,代码来源:allen_brain.py


示例7: preprocess_for_train

def preprocess_for_train(image,
                         output_height,
                         output_width,
                         padding=_PADDING):
  """Preprocesses the given image for training.

  Note that the actual resizing scale is sampled from
    [`resize_size_min`, `resize_size_max`].

  Args:
    image: A `Tensor` representing an image of arbitrary size.
    output_height: The height of the image after preprocessing.
    output_width: The width of the image after preprocessing.
    padding: The amound of padding before and after each dimension of the image.

  Returns:
    A preprocessed image.
  """
  padded_image = tf.pad(image, [[padding, padding], [padding, padding], [0, 0]])
  # Randomly crop a [height, width] section of the image.
  distorted_image = tf.random_crop(padded_image,
                                   [output_height, output_width, 3])

  # Randomly flip the image horizontally.
  distorted_image = tf.image.random_flip_left_right(distorted_image)

  # Because these operations are not commutative, consider randomizing
  # the order their operation.
  distorted_image = tf.image.random_brightness(distorted_image,
                                               max_delta=63)
  distorted_image = tf.image.random_contrast(distorted_image,
                                             lower=0.2, upper=1.8)

  # Subtract off the mean and divide by the variance of the pixels.
  return tf.image.per_image_whitening(distorted_image)
开发者ID:alexalemi,项目名称:models,代码行数:35,代码来源:cifar10_preprocessing.py


示例8: add_image_distortion

    def add_image_distortion(self):
        with tf.variable_scope('distort_image'):
            image = tf.image.decode_jpeg(self.jpeg, channels=3)
            image = tf.image.convert_image_dtype(image, dtype=tf.float32)
            crop_scale = tf.random_uniform([], minval=0.5, maxval=1)
            height = tf.cast(INPUT_SIZE[0] / crop_scale, tf.int32)
            width = tf.cast(INPUT_SIZE[1] / crop_scale, tf.int32)
            image = tf.image.resize_images(image, height, width)

            image = tf.random_crop(image, [INPUT_SIZE[0], INPUT_SIZE[1], 3])
            image = tf.image.random_flip_left_right(image)

            def distort_colors_1():
                i = tf.image.random_brightness(image, max_delta=32. / 255.)
                i = tf.image.random_saturation(i, lower=0.5, upper=1.5)
                i = tf.image.random_hue(i, max_delta=0.2)
                i = tf.image.random_contrast(i, lower=0.5, upper=1.5)
                return i

            def distort_colors_2():
                i = tf.image.random_brightness(image, max_delta=32. / 255.)
                i = tf.image.random_contrast(i, lower=0.5, upper=1.5)
                i = tf.image.random_saturation(i, lower=0.5, upper=1.5)
                i = tf.image.random_hue(i, max_delta=0.2)
                return i

            image = tf.cond(tf.equal(0, tf.random_uniform(shape=[], maxval=2, dtype=tf.int32)),
                            distort_colors_1, distort_colors_2)

            image = tf.sub(image, 0.5)
            image = tf.mul(image, 2.0)
            self.distorted_image = image
开发者ID:thran,项目名称:neuron_nets,代码行数:32,代码来源:inception_model.py


示例9: random_distort_image

def random_distort_image(image):
  distorted_image = image
  distorted_image = tf.image.pad_to_bounding_box(
    image, 4, 4, 40, 40)  # pad 4 pixels to each side
  distorted_image = tf.random_crop(distorted_image, [32, 32, 3])
  distorted_image = tf.image.random_flip_left_right(distorted_image)
  return distorted_image
开发者ID:bgshih,项目名称:tf_resnet_cifar,代码行数:7,代码来源:model_resnet.py


示例10: distort_inputs

def distort_inputs(reshaped_image):
  distorted_image = tf.random_crop(reshaped_image, imshape)
  distorted_image = tf.image.random_flip_left_right(distorted_image)
  distorted_image = tf.image.random_brightness(distorted_image, max_delta=63)
  distorted_image = tf.image.random_contrast(distorted_image, lower=0.2, upper=1.8)
  float_image = tf.image.per_image_whitening(distorted_image)
  return float_image
开发者ID:tcoatale,项目名称:cnn_framework,代码行数:7,代码来源:cifar10.py


示例11: random_shift

 def random_shift(v):
     if random_shift_y:
         v = tf.concat([v[-random_shift_y:], v, v[:random_shift_y]], 0)
     if random_shift_x:
         v = tf.concat([v[:, -random_shift_x:], v, v[:, :random_shift_x]],
                       1)
     return tf.random_crop(v, [resize[0], resize[1], size[2]])
开发者ID:shikharbahl,项目名称:acai,代码行数:7,代码来源:data.py


示例12: testNoOp

 def testNoOp(self):
   # No random cropping is performed since the size is value.shape.
   for shape in (2, 1, 1), (2, 1, 3), (4, 5, 3):
     value = np.arange(0, np.prod(shape), dtype=np.int32).reshape(shape)
     with self.test_session():
       crop = tf.random_crop(value, shape).eval()
       self.assertAllEqual(crop, value)
开发者ID:0ruben,项目名称:tensorflow,代码行数:7,代码来源:random_crop_test.py


示例13: distorted_inputs

def distorted_inputs(data_dir, batch_size):
    filenames = [os.path.join(data_dir, "data_batch_%d.bin" % i) for i in xrange(1, 6)]
    print(filenames)
    for f in filenames:
        if not tf.gfile.Exists(f):
            raise ValueError("Failed to find file: " + f)

    filename_queue = tf.train.string_input_producer(filenames)

    read_input = read_cifar10(filename_queue)
    reshaped_image = tf.cast(read_input.uint8image, tf.float32)

    height = IMAGE_SIZE
    width = IMAGE_SIZE

    distorted_image = tf.random_crop(reshaped_image, [height, width, 3])

    distorted_image = tf.image.random_flip_left_right(distorted_image)

    distorted_image = tf.image.random_brightness(distorted_image, max_delta=63)
    distorted_image = tf.image.random_contrast(distorted_image, lower=0.2, upper=1.8)

    float_image = tf.image.per_image_whitening(distorted_image)

    min_fraction_of_examples_in_queue = 0.4
    min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * min_fraction_of_examples_in_queue)
    print(
        "Filling queue with %d CIFAR images before starting to train. "
        "This will take a few minutes." % min_queue_examples
    )

    return _generate_image_and_label_batch(float_image, read_input.label, min_queue_examples, batch_size)
开发者ID:izeye,项目名称:samples-tensorflow,代码行数:32,代码来源:cifar10_input.py


示例14: image_batch

def image_batch(image_paths, batch_size, load_size=286, crop_size=256, channels=3, shuffle=True,
                num_threads=4, min_after_dequeue=100, allow_smaller_final_batch=False):
    """ for jpg and png files """
    # queue and reader
    img_queue = tf.train.string_input_producer(image_paths, shuffle=shuffle)
    reader = tf.WholeFileReader()

    # preprocessing
    _, img = reader.read(img_queue)
    img = tf.image.decode_image(img, channels=3)
    '''
    tf.image.random_flip_left_right should be used before tf.image.resize_images,
    because tf.image.decode_image reutrns a tensor without shape which makes
    tf.image.resize_images collapse. Maybe it's a bug!
    '''
    img = tf.image.random_flip_left_right(img)
    img = tf.image.resize_images(img, [load_size, load_size])
    img = tf.random_crop(img, [crop_size, crop_size, channels])
    img = tf.cast(img, tf.float32) / 127.5 - 1

    # batch
    if shuffle:
        capacity = min_after_dequeue + (num_threads + 1) * batch_size
        img_batch = tf.train.shuffle_batch([img],
                                           batch_size=batch_size,
                                           capacity=capacity,
                                           min_after_dequeue=min_after_dequeue,
                                           num_threads=num_threads,
                                           allow_smaller_final_batch=allow_smaller_final_batch)
    else:
        img_batch = tf.train.batch([img],
                                   batch_size=batch_size,
                                   allow_smaller_final_batch=allow_smaller_final_batch)
    return img_batch, len(image_paths)
开发者ID:BenJamesbabala,项目名称:CycleGAN-Tensorflow-Simple,代码行数:34,代码来源:data.py


示例15: _parser

  def _parser(serialized_example):
    """Parses a single tf.Example into image and label tensors."""
    features = tf.parse_single_example(
        serialized_example,
        features={
            "image": tf.FixedLenFeature([], tf.string),
            "label": tf.FixedLenFeature([], tf.int64),
        })
    image = tf.decode_raw(features["image"], tf.uint8)
    # Initially reshaping to [H, W, C] does not work
    image = tf.reshape(image, [NUM_CHANNEL, IMAGE_HEIGHT, IMAGE_WIDTH])
    # This is needed for `tf.image.resize_image_with_crop_or_pad`
    image = tf.transpose(image, [1, 2, 0])

    image = tf.cast(image, dtype)
    label = tf.cast(features["label"], tf.int32)

    if data_aug:
      image = tf.image.resize_image_with_crop_or_pad(image, IMAGE_HEIGHT + 4,
                                                     IMAGE_WIDTH + 4)
      image = tf.random_crop(image, [IMAGE_HEIGHT, IMAGE_WIDTH, NUM_CHANNEL])
      image = tf.image.random_flip_left_right(image)

    if data_format == "channels_first":
      image = tf.transpose(image, [2, 0, 1])

    if div255:
      image /= 255.

    return image, label
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:30,代码来源:cifar_input.py


示例16: read_and_augment_data

def read_and_augment_data(image_list, label_list, image_size, batch_size, max_nrof_epochs, 
        random_crop, random_flip, random_rotate, nrof_preprocess_threads, shuffle=True):
    
    images = ops.convert_to_tensor(image_list, dtype=tf.string)
    labels = ops.convert_to_tensor(label_list, dtype=tf.int32)
    
    # Makes an input queue
    input_queue = tf.train.slice_input_producer([images, labels],
        num_epochs=max_nrof_epochs, shuffle=shuffle)

    images_and_labels = []
    for _ in range(nrof_preprocess_threads):
        image, label = read_images_from_disk(input_queue)
        if random_rotate:
            image = tf.py_func(random_rotate_image, [image], tf.uint8)
        if random_crop:
            image = tf.random_crop(image, [image_size, image_size, 3])
        else:
            image = tf.image.resize_image_with_crop_or_pad(image, image_size, image_size)
        if random_flip:
            image = tf.image.random_flip_left_right(image)
        #pylint: disable=no-member
        image.set_shape((image_size, image_size, 3))
        image = tf.image.per_image_standardization(image)
        images_and_labels.append([image, label])

    image_batch, label_batch = tf.train.batch_join(
        images_and_labels, batch_size=batch_size,
        capacity=4 * nrof_preprocess_threads * batch_size,
        allow_smaller_final_batch=True)
  
    return image_batch, label_batch
开发者ID:kissthink,项目名称:facenet_regonistant,代码行数:32,代码来源:facenet.py


示例17: preprocess_for_train

def preprocess_for_train(image,
                         output_height,
                         output_width,
                         padding):
  """Preprocesses the given image for training.
  Note that the actual resizing scale is sampled from
    [`resize_size_min`, `resize_size_max`].
  Args:
    image: A `Tensor` representing an image of arbitrary size.
    output_height: The height of the image after preprocessing.
    output_width: The width of the image after preprocessing.
    padding: The amound of padding before and after each dimension of the image.
  Returns:
    A preprocessed image.
  """

  # Transform the image to floats.
  image = tf.to_float(image)
  if padding > 0:
    image = tf.pad(image, [[padding, padding], [padding, padding], [0, 0]])
  angles = 0.1 * np.pi * np.random.randint(8,size=1) - 0.4 * np.pi
  image = tf.contrib.image.rotate(image, angles)
  # Randomly crop a [height, width] section of the image.
  distorted_image = tf.random_crop(image,
                                   [output_height, output_width, 3])

  # Randomly flip the image horizontally.
  distorted_image = tf.image.random_flip_left_right(distorted_image)

  distorted_image = tf.image.random_brightness(distorted_image, max_delta=63)
  #distorted_image = tf.image.random_contrast(distorted_image,lower=0.2, upper=1.8)
  # Subtract off the mean and divide by the variance of the pixels.
  return tf.image.per_image_standardization(distorted_image)
开发者ID:ZhenqiWangC,项目名称:models,代码行数:33,代码来源:deeplearning_cifar.py


示例18: distorted_inputs

def distorted_inputs(data_dir, batch_size):
  """Construct distorted input for CIFAR training using the Reader ops.

  Args:
    data_dir: file name list.
    batch_size: Number of images per batch.

  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 1] size.
    labels: Labels. 1D tensor of [batch_size] size.
  """
  filenames = get_train_filenames(data_dir)
  print(filenames)
  for f in filenames:
    if not gfile.Exists(f):
      raise ValueError('Failed to find file: ' + f)

  # Create a queue that produces the filenames to read.
  filename_queue = tf.train.string_input_producer(filenames)

  # Read examples from files in the filename queue.
  read_input = read_aurora(filename_queue)
  reshaped_image = tf.cast(read_input.uint8image, tf.float32)

  height = IMAGE_SIZE
  width = IMAGE_SIZE
  # angle = int(random.random()*360)
  # M = cv2.getRotationMatrix2D((IMAGE_SIZE/2, IMAGE_SIZE/2), angle, 1)
  # dst = cv2.warpAffine(reshaped_image, M, (IMAGE_SIZE, IMAGE_SIZE))
  # # Convert rotated image back to tensor
  # rotated_tensor = tf.convert_to_tensor(np.array(dst))

  # Image processing for training the network. Note the many random
  # distortions applied to the image.

  # Randomly crop a [height, width] section of the image.
  distorted_image = tf.random_crop(reshaped_image, [height, width, 1])
  # distorted_image = tf.image.resize_area()

  # Randomly flip the image horizontally.
  distorted_image = tf.image.random_flip_left_right(distorted_image)

  # Because these operations are not commutative, consider randomizing
  # randomize the order their operation.
  # distorted_image = tf.image.random_brightness(distorted_image,
  #                                              max_delta=63)
  distorted_image = tf.image.random_contrast(distorted_image, lower=0.2, upper=1.8)

  # Subtract off the mean and divide by the variance of the pixels.
  float_image = tf.image.per_image_whitening(distorted_image)

  # Ensure that the random shuffling has good mixing properties.
  min_fraction_of_examples_in_queue = 0.4
  min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * min_fraction_of_examples_in_queue)
  print ('Filling queue with %d aurora images before starting to train. '
         'This will take a few minutes.' % min_queue_examples)

  # Generate a batch of images and labels by building up a queue of examples.
  return _generate_image_and_label_batch(float_image, read_input.label,
                                         min_queue_examples, batch_size)
开发者ID:xuptlib,项目名称:annet,代码行数:60,代码来源:input_data.py


示例19: random_crop_and_pad_image_and_labels

def random_crop_and_pad_image_and_labels(image, label, crop_h, crop_w, ignore_label=255):
    """
    Randomly crop and pads the input images.

    Args:
      image: Training image to crop/ pad.
      label: Segmentation mask to crop/ pad.
      crop_h: Height of cropped segment.
      crop_w: Width of cropped segment.
      ignore_label: Label to ignore during the training.
    """

    label = tf.cast(label, dtype=tf.float32)
    label = label - ignore_label # Needs to be subtracted and later added due to 0 padding.
    combined = tf.concat(axis=2, values=[image, label]) 
    image_shape = tf.shape(image)
    combined_pad = tf.image.pad_to_bounding_box(combined, 0, 0, tf.maximum(crop_h, image_shape[0]), tf.maximum(crop_w, image_shape[1]))
    
    last_image_dim = tf.shape(image)[-1]
    # last_label_dim = tf.shape(label)[-1]
    combined_crop = tf.random_crop(combined_pad, [crop_h, crop_w, 4])
    img_crop = combined_crop[:, :, :last_image_dim]
    label_crop = combined_crop[:, :, last_image_dim:]
    label_crop = label_crop + ignore_label
    label_crop = tf.cast(label_crop, dtype=tf.uint8)
    
    # Set static shape so that tensorflow knows shape at compile time. 
    img_crop.set_shape((crop_h, crop_w, 3))
    label_crop.set_shape((crop_h,crop_w, 1))
    return img_crop, label_crop  
开发者ID:YCYchunyan,项目名称:Deeplab-v2--ResNet-101--Tensorflow,代码行数:30,代码来源:image_reader.py


示例20: distorted_inputs

def distorted_inputs(batch_size):
  path = "train"
  read_input = read_cifar10(path)
  reshaped_image = tf.cast(read_input.uint8image, tf.float32)

  height = IMAGE_SIZE_Y
  width = IMAGE_SIZE_X

  distorted_image = tf.random_crop(reshaped_image, [height, width, 3])

  # Randomly flip the image horizontally.
  distorted_image = tf.image.random_flip_left_right(distorted_image)

  # Because these operations are not commutative, consider randomizing
  # the order their operation.
  distorted_image = tf.image.random_brightness(distorted_image,
                                               max_delta=63)
  distorted_image = tf.image.random_contrast(distorted_image,
                                             lower=0.2, upper=1.8)

  # Subtract off the mean and divide by the variance of the pixels.
  float_image = tf.image.per_image_whitening(distorted_image)

  # Ensure that the random shuffling has good mixing properties.
  min_fraction_of_examples_in_queue = 0.4
  min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN *
                           min_fraction_of_examples_in_queue)
  print ('Filling queue with %d CIFAR images before starting to train. '
         'This will take a few minutes.' % min_queue_examples)

  # Generate a batch of images and labels by building up a queue of examples.
  return _generate_image_and_label_batch(float_image, read_input.label,
                                         min_queue_examples, batch_size,
                                         shuffle=True)
开发者ID:isunglee,项目名称:project_iii,代码行数:34,代码来源:cifar10_input.py



注:本文中的tensorflow.random_crop函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensorflow.random_normal函数代码示例发布时间:2022-05-27
下一篇:
Python tensorflow.py_func函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap