本文整理汇总了Python中tensorflow.placeholder函数的典型用法代码示例。如果您正苦于以下问题:Python placeholder函数的具体用法?Python placeholder怎么用?Python placeholder使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了placeholder函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: __init__
def __init__(self, model_path = "models", threshold = [0.6, 0.7, 0.7], factor = 0.709, scale_factor = 1):
'''
:param face_rec_sess: FaceRecSession
:param threshold: detection threshold
:param factor: default 0.709 image pyramid -- magic number
:param model_path:
'''
self.threshold = threshold
self.factor = factor
self.scale_factor = scale_factor;
with tf.Graph().as_default(), tf.device('/cpu:0'):
print("Loading Face detection model")
self.sess = tf.Session()
if not model_path:
model_path, _ = os.path.split(os.path.realpath(__file__))
with tf.variable_scope('pnet'):
data = tf.placeholder(tf.float32, (None, None, None, 3), 'input')
pnet = PNet({'data': data})
pnet.load(os.path.join(model_path, 'det1.npy'), self.sess)
with tf.variable_scope('rnet'):
data = tf.placeholder(tf.float32, (None, 24, 24, 3), 'input')
rnet = RNet({'data': data})
rnet.load(os.path.join(model_path, 'det2.npy'), self.sess)
with tf.variable_scope('onet'):
data = tf.placeholder(tf.float32, (None, 48, 48, 3), 'input')
onet = ONet({'data': data})
onet.load(os.path.join(model_path, 'det3.npy'), self.sess)
self.pnet = lambda img: self.sess.run(('pnet/conv4-2/BiasAdd:0', 'pnet/prob1:0'), feed_dict={'pnet/input:0': img})
self.rnet = lambda img: self.sess.run(('rnet/conv5-2/conv5-2:0', 'rnet/prob1:0'), feed_dict={'rnet/input:0': img})
self.onet = lambda img: self.sess.run(('onet/conv6-2/conv6-2:0', 'onet/conv6-3/conv6-3:0', 'onet/prob1:0'),
feed_dict={'onet/input:0': img})
print("Face detection model loaded")
开发者ID:nxp-gf,项目名称:flask-facep-reg-v3,代码行数:34,代码来源:mtcnn_detect.py
示例2: add_placeholders
def add_placeholders(self):
"""Generate placeholder variables to represent the input tensors
These placeholders are used as inputs by the rest of the model building
code and will be fed data during training. Note that when "None" is in a
placeholder's shape, it's flexible
Adds following nodes to the computational graph
input_placeholder: Input placeholder tensor of shape
(None, window_size), type tf.int32
labels_placeholder: Labels placeholder tensor of shape
(None, label_size), type tf.float32
dropout_placeholder: Dropout value placeholder (scalar),
type tf.float32
Add these placeholders to self as the instance variables
self.input_placeholder
self.labels_placeholder
self.dropout_placeholder
(Don't change the variable names)
"""
### YOUR CODE HERE
window_size = self.config.window_size
self.input_placeholder = tf.placeholder(tf.int32, shape=(None, window_size))
self.labels_placeholder = tf.placeholder(tf.float32, shape=(None, self.config.label_size))
self.dropout_placeholder = tf.placeholder(tf.float32)
开发者ID:tracholar,项目名称:cs224d,代码行数:29,代码来源:q2_NER.py
示例3: __init__
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False):
nenv = nbatch // nsteps
self.pdtype = make_pdtype(ac_space)
X, processed_x = observation_input(ob_space, nbatch)
M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
with tf.variable_scope("model", reuse=reuse):
h = nature_cnn(X)
xs = batch_to_seq(h, nenv, nsteps)
ms = batch_to_seq(M, nenv, nsteps)
h5, snew = lstm(xs, ms, S, 'lstm1', nh=nlstm)
h5 = seq_to_batch(h5)
vf = fc(h5, 'v', 1)
self.pd, self.pi = self.pdtype.pdfromlatent(h5)
v0 = vf[:, 0]
a0 = self.pd.sample()
neglogp0 = self.pd.neglogp(a0)
self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32)
def step(ob, state, mask):
return sess.run([a0, v0, snew, neglogp0], {X:ob, S:state, M:mask})
def value(ob, state, mask):
return sess.run(v0, {X:ob, S:state, M:mask})
self.X = X
self.M = M
self.S = S
self.vf = vf
self.step = step
self.value = value
开发者ID:Divyankpandey,项目名称:baselines,代码行数:33,代码来源:policies.py
示例4: __init__
def __init__(self):
# Import data
error = None
for _ in range(10):
try:
self.mnist = input_data.read_data_sets(
"/tmp/tensorflow/mnist/input_data", one_hot=True)
error = None
break
except Exception as e:
error = e
time.sleep(5)
if error:
raise ValueError("Failed to import data", error)
# Set seed and build layers
tf.set_random_seed(0)
self.x = tf.placeholder(tf.float32, [None, 784], name="x")
self.y_ = tf.placeholder(tf.float32, [None, 10], name="y_")
y_conv, self.keep_prob = deepnn(self.x)
# Need to define loss and optimizer attributes
self.loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(
labels=self.y_, logits=y_conv))
self.optimizer = tf.train.AdamOptimizer(1e-4)
self.variables = ray_tf_utils.TensorFlowVariables(
self.loss, tf.get_default_session())
# For evaluating test accuracy
correct_prediction = tf.equal(
tf.argmax(y_conv, 1), tf.argmax(self.y_, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
开发者ID:robertnishihara,项目名称:ray,代码行数:34,代码来源:mnist_example.py
示例5: build_graph
def build_graph(self, nn_im_w, nn_im_h, num_colour_channels=3, weights=None, biases=None):
num_outputs = 1 #ofc
self.nn_im_w = nn_im_w
self.nn_im_h = nn_im_h
if weights is None:
weights = [None, None, None, None, None]
if biases is None:
biases = [None, None, None, None, None]
with tf.device('/cpu:0'):
# Placeholder variables for the input image and output images
self.x = tf.placeholder(tf.float32, shape=[None, nn_im_w*nn_im_h*3])
self.y_ = tf.placeholder(tf.float32, shape=[None, num_outputs])
self.threshold = tf.placeholder(tf.float32)
# Build the convolutional and pooling layers
conv1_output_channels = 32
conv2_output_channels = 16
conv3_output_channels = 8
conv_layer_1_input = tf.reshape(self.x, [-1, nn_im_h, nn_im_w, num_colour_channels]) #The resized input image
self.build_conv_layer(conv_layer_1_input, num_colour_channels, conv1_output_channels, initial_weights=weights[0], initial_biases=biases[0]) # layer 1
self.build_conv_layer(self.layers[0][0], conv1_output_channels, conv2_output_channels, initial_weights=weights[1], initial_biases=biases[1])# layer 2
self.build_conv_layer(self.layers[1][0], conv2_output_channels, conv3_output_channels, initial_weights=weights[2], initial_biases=biases[2])# layer 3
# Build the fully connected layer
convnet_output_w = nn_im_w//8
convnet_output_h = nn_im_h//8
fully_connected_layer_input = tf.reshape(self.layers[2][0], [-1, convnet_output_w * convnet_output_h * conv3_output_channels])
self.build_fully_connected_layer(fully_connected_layer_input, convnet_output_w, convnet_output_h, conv3_output_channels, initial_weights=weights[3], initial_biases=biases[3])
# The dropout stage and readout layer
self.keep_prob, self.h_drop = self.dropout(self.layers[3][0])
self.y_conv,_,_ = self.build_readout_layer(self.h_drop, num_outputs, initial_weights=weights[4], initial_biases=biases[4])
self.mean_error = tf.sqrt(tf.reduce_mean(tf.square(self.y_ - self.y_conv)))
self.train_step = tf.train.AdamOptimizer(1e-4).minimize(self.mean_error)
self.accuracy = (1.0 - tf.reduce_mean(tf.abs(self.y_ - tf.round(self.y_conv))))
positive_examples = tf.greater_equal(self.y_, 0.5)
negative_examples = tf.logical_not(positive_examples)
positive_classifications = tf.greater_equal(self.y_conv, self.threshold)
negative_classifications = tf.logical_not(positive_classifications)
self.true_positive = tf.reduce_sum(tf.cast(tf.logical_and(positive_examples, positive_classifications),tf.int32)) # count the examples that are positive and classified as positive
self.false_positive = tf.reduce_sum(tf.cast(tf.logical_and(negative_examples, positive_classifications),tf.int32)) # count the examples that are negative but classified as positive
self.true_negative = tf.reduce_sum(tf.cast(tf.logical_and(negative_examples, negative_classifications),tf.int32)) # count the examples that are negative and classified as negative
self.false_negative = tf.reduce_sum(tf.cast(tf.logical_and(positive_examples, negative_classifications),tf.int32)) # count the examples that are positive but classified as negative
self.positive_count = tf.reduce_sum(tf.cast(positive_examples, tf.int32)) # count the examples that are positive
self.negative_count = tf.reduce_sum(tf.cast(negative_examples, tf.int32)) # count the examples that are negative
self.confusion_matrix = tf.reshape(tf.pack([self.true_positive, self.false_positive, self.false_negative, self.true_negative]), [2,2])
self.sess.run(tf.initialize_all_variables())
开发者ID:JTKBowers,项目名称:CNN-people-detect,代码行数:60,代码来源:Model.py
示例6: ce
def ce(model, config, scope, connect, threshold = 1e-5):
with tf.variable_scope(scope), tf.name_scope(scope):
with tf.variable_scope('inputs'), tf.name_scope('inputs'):
model['%s_in0length' %scope] = model['%s_out0length' %connect]
model['%s_in1length' %scope] = model['%s_out1length' %connect]
model['%s_in2length' %scope] = model['%s_out2length' %connect]
model['%s_maxin2length' %scope] = model['%s_maxout2length' %connect]
model['%s_inputs' %scope] = tf.clip_by_value(tf.nn.softmax(model['%s_outputs' %connect]), threshold, 1. - threshold, name = '%s_inputs' %scope)
model['%s_out0length' %scope] = model['%s_in0length' %scope]
model['%s_out1length' %scope] = model['%s_in1length' %scope]
model['%s_out2length' %scope] = tf.placeholder(tf.int32, [model['%s_in0length' %scope]], '%s_out2length' %scope)
model['%s_maxout2length' %scope] = model['%s_maxin2length' %scope]
with tf.variable_scope('labels'), tf.name_scope('labels'):
model['%s_labels_len' %scope] = tf.placeholder(tf.int32, [model['%s_in0length' %scope]], '%s_labels_len' %scope)
model['%s_labels_ind' %scope] = tf.placeholder(tf.int64, [None, 2], '%s_labels_ind' %scope)
model['%s_labels_val' %scope] = tf.placeholder(tf.int32, [None], '%s_labels_val' %scope)
model['%s_labels_collapsed' %scope] = tf.sparse_to_dense(model['%s_labels_ind' %scope], [model['%s_maxin2length' %scope], model['%s_in0length' %scope]], model['%s_labels_val' %scope], -1, name = '%s_labels_collapsed' %scope)
model['%s_labels' %scope] = tf.one_hot(model['%s_labels_collapsed' %scope], model['%s_out1length' %scope], name = '%s_labels' %scope)
with tf.variable_scope('loss'), tf.name_scope('loss'):
model['%s_loss' %scope] = tf.reduce_sum(-tf.multiply(model['%s_labels' %scope], tf.log(model['%s_inputs' %scope])), name = '%s_loss' %scope)
with tf.variable_scope('outputs'), tf.name_scope('outputs'):
model['%s_output' %scope] = model['%s_inputs' %scope]
return model
开发者ID:aaiijmrtt,项目名称:DEEPSPEECH,代码行数:27,代码来源:ce.py
示例7: __init__
def __init__(self, encoders, vocabulary, data_id,
layers=[], activation=tf.tanh, dropout_keep_p=0.5, name='seq_classifier'):
self.encoders = encoders
self.vocabulary = vocabulary
self.data_id = data_id
self.layers = layers
self.activation = activation
self.dropout_keep_p = dropout_keep_p
self.name = name
self.max_output_len = 1
with tf.variable_scope(name):
self.learning_step = tf.Variable(0, name="learning_step", trainable=False)
self.dropout_placeholder = tf.placeholder(tf.float32, name="dropout_plc")
self.gt_inputs = [tf.placeholder(tf.int32, shape=[None], name="targets")]
mlp_input = tf.concat(1, [enc.encoded for enc in encoders])
mlp = MultilayerPerceptron(mlp_input, layers, self.dropout_placeholder, len(vocabulary))
self.loss_with_gt_ins = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(mlp.logits, self.gt_inputs[0]))
self.loss_with_decoded_ins = self.loss_with_gt_ins
self.cost = self.loss_with_gt_ins
self.decoded_seq = [mlp.classification]
self.decoded_logits = [mlp.logits]
tf.scalar_summary('val_optimization_cost', self.cost, collections=["summary_val"])
tf.scalar_summary('train_optimization_cost', self.cost, collections=["summary_train"])
开发者ID:archerbroler,项目名称:neuralmonkey,代码行数:28,代码来源:sequence_classifier.py
示例8: recover_feeling
def recover_feeling(checkpoint):
#设置变量
in_sentence = tf.placeholder(tf.float32, [None, 140])
weight = tf.Variable(tf.zeros([140, 6]))
biases = tf.Variable(tf.zeros([6]))
global_step = tf.Variable(0, name='global_step', trainable=False)
#y = softmax(Wx + b)
y = tf.nn.softmax(tf.matmul(in_sentence, weight) + biases)
y_ = tf.placeholder(tf.float32, [None, 6])
sess = tf.InteractiveSession()
#恢复模型.
saver = tf.train.Saver()
saver.restore(sess, checkpoint)
#读取模型完毕,加载词表
vocab, tmp_vocab = read_vocabulary('data/emotion/vocabulary.txt')
#把一些句子转化为vec的array
vec_list1 = convert_sentence_to_vec_list('你今天感觉怎么样', vocab, 140)
vec_list2 = convert_sentence_to_vec_list('高兴啊', vocab, 140)
vec_list_final = [np.array(vec_list1), np.array(vec_list2)]
print (vec_list_final)
#交给sess进行检查
data = np.array(vec_list_final)
result = sess.run(y, feed_dict={in_sentence: data})
print (result)
开发者ID:chibimiku,项目名称:InoueAoi,代码行数:30,代码来源:train_emotion.py
示例9: main
def main():
sess = tf.Session()
# 2進数3ビットから10進数
x = tf.placeholder(tf.float32, [None, 3])
w = tf.Variable(tf.zeros([3, 8]))
b = tf.Variable(tf.zeros([8]))
y = tf.nn.softmax(tf.matmul(x, w) + b)
y_ = tf.placeholder(tf.float32, [None, 8])
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.05).minimize(cross_entropy)
sess.run(tf.initialize_all_variables())
for i in range(1000):
train_step.run({x: [[0, 0, 0]], y_: [[1, 0, 0, 0, 0, 0, 0, 0]]}, session=sess)
train_step.run({x: [[1, 0, 0]], y_: [[0, 1, 0, 0, 0, 0, 0, 0]]}, session=sess)
train_step.run({x: [[0, 1, 0]], y_: [[0, 0, 1, 0, 0, 0, 0, 0]]}, session=sess)
train_step.run({x: [[1, 1, 0]], y_: [[0, 0, 0, 1, 0, 0, 0, 0]]}, session=sess)
train_step.run({x: [[0, 0, 1]], y_: [[0, 0, 0, 0, 1, 0, 0, 0]]}, session=sess)
train_step.run({x: [[1, 0, 1]], y_: [[0, 0, 0, 0, 0, 1, 0, 0]]}, session=sess)
train_step.run({x: [[0, 1, 1]], y_: [[0, 0, 0, 0, 0, 0, 1, 0]]}, session=sess)
train_step.run({x: [[1, 1, 1]], y_: [[0, 0, 0, 0, 0, 0, 0, 1]]}, session=sess)
## 1に近い予測があってるか 平均
#correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
#accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(y, feed_dict={x: [[0, 0, 0]]}))
print(sess.run(y, feed_dict={x: [[1, 0, 0]]}))
print(sess.run(y, feed_dict={x: [[0, 1, 0]]}))
print(sess.run(y, feed_dict={x: [[1, 1, 0]]}))
print(sess.run(y, feed_dict={x: [[0, 0, 1]]}))
return 0
开发者ID:octaltree,项目名称:tensorFlowTest,代码行数:35,代码来源:binary.py
示例10: create_model
def create_model(self):
print "Setting up model",
sys.stdout.flush()
# placeholders for data + targets
self._input_data = tf.placeholder(tf.int32, shape=(self.batch_size, self.num_steps))
self._targets = tf.placeholder(tf.int32, [self.batch_size, self.num_steps])
# set up lookup function
self.embedding = tf.constant(self.saved_embedding,name="embedding")
self.inputs = tf.nn.embedding_lookup(self.embedding, self._input_data)
# lstm model
self.lstm_cell = rnn_cell.BasicLSTMCell(self.lstm_size)
self.cell = rnn_cell.MultiRNNCell([self.lstm_cell] * self.num_layers)
self._initial_state = self.cell.zero_state(self.batch_size, tf.float32)
from tensorflow.models.rnn import rnn
self.inputs = [tf.squeeze(input_, [1]) for input_ in tf.split(1, self.num_steps, self.inputs)]
self.outputs, self.states = rnn.rnn(self.cell, self.inputs, initial_state=self._initial_state)
self.output = tf.reshape(tf.concat(1, self.outputs), [-1, self.lstm_size])
self.softmax_w = tf.get_variable("softmax_w", [self.lstm_size, self.vocab_size])
self.softmax_b = tf.get_variable("softmax_b", [self.vocab_size])
self.logits = tf.matmul(self.output, self.softmax_w) + self.softmax_b
#print "self.states.get_shape():",self.states.get_shape()
#print "tf.shape(self.states)",tf.shape(self.states)
self._final_state = self.states
self.saver = tf.train.Saver()
#delete data to save memory if network is used for sampling only
if self.only_for_sampling:
del self.data
print "done"
开发者ID:wohnjayne,项目名称:what-will-you-publish-next,代码行数:35,代码来源:lstm.py
示例11: testModelWithBucketsScopeAndLoss
def testModelWithBucketsScopeAndLoss(self):
"""Test that variable scope reuse is not reset after model_with_buckets."""
classes = 10
buckets = [(4, 4), (8, 8)]
with self.test_session():
# Here comes a sample Seq2Seq model using GRU cells.
def SampleGRUSeq2Seq(enc_inp, dec_inp, weights, per_example_loss):
"""Example sequence-to-sequence model that uses GRU cells."""
def GRUSeq2Seq(enc_inp, dec_inp):
cell = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.GRUCell(24)] * 2)
return tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols=classes,
num_decoder_symbols=classes, embedding_size=24)
targets = [dec_inp[i+1] for i in range(len(dec_inp) - 1)] + [0]
return tf.nn.seq2seq.model_with_buckets(
enc_inp, dec_inp, targets, weights, buckets, GRUSeq2Seq,
per_example_loss=per_example_loss)
# Now we construct the copy model.
inp = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
out = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
weights = [tf.ones_like(inp[0], dtype=tf.float32) for _ in range(8)]
with tf.variable_scope("root"):
_, losses1 = SampleGRUSeq2Seq(inp, out, weights, per_example_loss=False)
# Now check that we did not accidentally set reuse.
self.assertEqual(False, tf.get_variable_scope().reuse)
# Construct one more model with per-example loss.
tf.get_variable_scope().reuse_variables()
_, losses2 = SampleGRUSeq2Seq(inp, out, weights, per_example_loss=True)
# First loss is scalar, the second one is a 1-dimensinal tensor.
self.assertEqual([], losses1[0].get_shape().as_list())
self.assertEqual([None], losses2[0].get_shape().as_list())
开发者ID:AngleFork,项目名称:tensorflow,代码行数:33,代码来源:seq2seq_test.py
示例12: modelOpt
def modelOpt(self):
bn_params = {'decay': 0.999, 'center': True, 'scale': True, 'epsilon': 0.001, 'updates_collections': None,
'is_training': self.is_training}
self.global_step = tf.Variable(0, trainable=False)
self.learning_rate = layers.decayLearningRate(LEARNING_RATE, self.global_step, DECAY_STEPS, DECAY_RATE)
self.towerLogits = tf.placeholder(dtype=tf.float32, shape=[None, self.dataset.frames, 64])
self.Y = tf.placeholder(dtype=tf.int32, shape=[None])
self.Yoh = layers.toOneHot(self.Y, self.dataset.num_classes)
net_shape = self.towerLogits.get_shape()
net = tf.reshape(self.towerLogits, [BATCH_SIZE, int(net_shape[1]) * int(net_shape[2])])
layer_num = 1
for fully_connected_num in [64]:
net = layers.fc(net, fully_connected_num, name='temporal_FC{}'.format(layer_num),
weights_regularizer=layers.l2_regularizer(REGULARIZER_SCALE),
normalizer_fn=layers.batchNormalization, normalizer_params=bn_params)
layer_num += 1
self.logits = layers.fc(net, self.dataset.num_classes, activation_fn=None, name='logits')
self.preds = layers.softmax(self.logits)
cross_entropy_loss = layers.reduce_mean(layers.softmax_cross_entropy(logits=self.logits, labels=self.Yoh))
regularization_loss = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
self.loss = cross_entropy_loss + REGULARIZER_SCALE * tf.reduce_sum(regularization_loss)
self.opt = layers.adam(self.learning_rate)
self.train_op = self.opt.minimize(self.loss, global_step=self.global_step)
self.accuracy, self.precision, self.recall = self.createSummaries(self.Yoh, self.preds, self.loss,
self.learning_rate)
开发者ID:Tiyanak,项目名称:lip-reading,代码行数:34,代码来源:vgg16_time_pooling.py
示例13: runNN
def runNN (train_x, train_y, test_x, test_y, numHidden):
print "NN({})".format(numHidden)
session = tf.InteractiveSession()
x = tf.placeholder("float", shape=[None, train_x.shape[1]])
y_ = tf.placeholder("float", shape=[None, 2])
W1 = tf.Variable(tf.truncated_normal([train_x.shape[1],numHidden], stddev=0.01))
b1 = tf.Variable(tf.truncated_normal([numHidden], stddev=0.01))
W2 = tf.Variable(tf.truncated_normal([numHidden,2], stddev=0.01))
b2 = tf.Variable(tf.truncated_normal([2], stddev=0.01))
z = tf.nn.relu(tf.matmul(x,W1) + b1)
y = tf.nn.softmax(tf.matmul(z,W2) + b2)
cross_entropy = -tf.reduce_sum(y_*tf.log(tf.clip_by_value(y,1e-10,1.0)))
#cross_entropy = -tf.reduce_sum(y_*tf.log(y))
train_step = tf.train.MomentumOptimizer(learning_rate=.001, momentum=0.1).minimize(cross_entropy)
#train_step = tf.train.AdamOptimizer(learning_rate=.01).minimize(cross_entropy)
session.run(tf.initialize_all_variables())
for i in range(NUM_EPOCHS):
offset = i*BATCH_SIZE % (train_x.shape[0] - BATCH_SIZE)
train_step.run({x: train_x[offset:offset+BATCH_SIZE, :], y_: makeLabels(train_y[offset:offset+BATCH_SIZE])})
if i % 100 == 0:
util.showProgress(cross_entropy, x, y, y_, test_x, test_y)
session.close()
开发者ID:jwhitehill,项目名称:MultiEnrollmentProjectWithDustin,代码行数:27,代码来源:run_tensorflow.py
示例14: init
def init():
d_model = 512
d_k = 64
d_v = 64
sequence_length =6 #5
decoder_sent_length=6
h = 8
batch_size = 4*32
num_layer=6
# 2.set Q,K,V
vocab_size = 1000
embed_size = d_model
initializer = tf.random_normal_initializer(stddev=0.1)
Embedding = tf.get_variable("Embedding_d", shape=[vocab_size, embed_size], initializer=initializer)
decoder_input_x = tf.placeholder(tf.int32, [batch_size, decoder_sent_length], name="input_x") # [4,10]
print("1.decoder_input_x:", decoder_input_x)
decoder_input_embedding = tf.nn.embedding_lookup(Embedding, decoder_input_x) # [batch_size*sequence_length,embed_size]
#Q = embedded_words # [batch_size*sequence_length,embed_size]
#K_s = embedded_words # [batch_size*sequence_length,embed_size]
#K_v_encoder = tf.placeholder(tf.float32, [batch_size,decoder_sent_length, d_model], name="input_x") #sequence_length
Q = tf.placeholder(tf.float32, [batch_size,sequence_length, d_model], name="input_x")
K_s=decoder_input_embedding
K_v_encoder= tf.get_variable("v_variable",shape=[batch_size,decoder_sent_length, d_model],initializer=initializer) #tf.float32,
print("2.output from encoder:",K_v_encoder)
mask = get_mask(decoder_sent_length) #sequence_length
decoder = Decoder(d_model, d_k, d_v, sequence_length, h, batch_size, Q, K_s, K_v_encoder,decoder_sent_length,mask=mask,num_layer=num_layer)
return decoder,Q, K_s
开发者ID:AmjadHisham,项目名称:text_classification,代码行数:27,代码来源:a2_decoder.py
示例15: create_network
def create_network(self, name):
with tf.variable_scope(name) as scope:
inputs = tf.placeholder(fl32, [None, self.state_dim], 'inputs')
actions = tf.placeholder(fl32, [None, self.action_dim], 'actions')
with slim.arg_scope(
[slim.fully_connected],
activation_fn=relu,
weights_initializer=uniform,
weights_regularizer=None
):
net = tf.concat(1, [inputs, actions])
net = slim.fully_connected(net, 1024)
res = net = slim.fully_connected(net, 128)
net = slim.fully_connected(net, 256)
net = slim.fully_connected(net, 128, activation_fn=None)
net = relu(net+res)
res = net = slim.fully_connected(net, 128)
net = slim.fully_connected(net, 256)
net = slim.fully_connected(net, 128, activation_fn=None)
net = relu(net+res)
res = net = slim.fully_connected(net, 128)
net = slim.fully_connected(net, 256)
net = slim.fully_connected(net, 128, activation_fn=None)
net = relu(net+res)
out = slim.fully_connected(net, 1, activation_fn=None)
return (inputs, actions, out, scope.name)
开发者ID:jpp46,项目名称:CurrentProjects,代码行数:33,代码来源:resnet.py
示例16: __init__
def __init__(self, data_dictionary):
# init some parameters
self.replay_buffer = []
self.time_step = 0
self.epsilon = INITIAL_EPSILON
self.state_dim = data_dictionary["input"]
self.action_dim = data_dictionary["action"]
self.n_input = self.state_dim
self.state_input = tf.placeholder("float", [None, self.n_input])
self.y_input = tf.placeholder("float",[None, self.action_dim])
self.create_pg_network(data_dictionary)
self.create_training_method()
# Init session
self.session = tf.InteractiveSession()
self.session.run(tf.initialize_all_variables())
# loading networks
self.saver = tf.train.Saver()
checkpoint = tf.train.get_checkpoint_state("pg_saved_networks")
if checkpoint and checkpoint.model_checkpoint_path:
self.saver.restore(self.session, checkpoint.model_checkpoint_path)
print "Successfully loaded:", checkpoint.model_checkpoint_path
else:
print "Could not find old network weights"
global summary_writer
summary_writer = tf.train.SummaryWriter('logs',graph=self.session.graph)
开发者ID:helloyhan,项目名称:deep_trader,代码行数:28,代码来源:pg_stock_model.py
示例17: __init__
def __init__(self,num_classes, learning_rate, batch_size, decay_steps, decay_rate,sequence_length,
vocab_size,embed_size,is_training,initializer=tf.random_normal_initializer(stddev=0.1)):
"""init all hyperparameter here"""
# set hyperparamter
self.num_classes = num_classes
self.batch_size = batch_size
self.sequence_length=sequence_length
self.vocab_size=vocab_size
self.embed_size=embed_size
self.hidden_size=embed_size
self.is_training=is_training
self.learning_rate=learning_rate
self.initializer=initializer
self.num_sampled=20
# add placeholder (X,label)
self.input_x = tf.placeholder(tf.int32, [None, self.sequence_length], name="input_x") # X
self.input_y = tf.placeholder(tf.int32,[None], name="input_y") # y [None,num_classes]
self.dropout_keep_prob=tf.placeholder(tf.float32,name="dropout_keep_prob")
self.global_step = tf.Variable(0, trainable=False, name="Global_Step")
self.epoch_step=tf.Variable(0,trainable=False,name="Epoch_Step")
self.epoch_increment=tf.assign(self.epoch_step,tf.add(self.epoch_step,tf.constant(1)))
self.decay_steps, self.decay_rate = decay_steps, decay_rate
self.instantiate_weights()
self.logits = self.inference() #[None, self.label_size]. main computation graph is here.
if not is_training:
return
self.loss_val = self.loss() #-->self.loss_nce()
self.train_op = self.train()
self.predictions = tf.argmax(self.logits, axis=1, name="predictions") # shape:[None,]
correct_prediction = tf.equal(tf.cast(self.predictions,tf.int32), self.input_y) #tf.argmax(self.logits, 1)-->[batch_size]
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name="Accuracy") # shape=()
开发者ID:brucexia6116,项目名称:text_classification,代码行数:34,代码来源:p8_TextRNN_model.py
示例18: testMixtureOfEnqueueAndEnqueueMany
def testMixtureOfEnqueueAndEnqueueMany(self):
with self.test_session() as sess:
q = tf.PaddingFIFOQueue(10, tf.int32, shapes=((),))
enqueue_placeholder = tf.placeholder(tf.int32, shape=())
enqueue_op = q.enqueue((enqueue_placeholder,))
enqueuemany_placeholder = tf.placeholder(
tf.int32, shape=(None,))
enqueuemany_op = q.enqueue_many((enqueuemany_placeholder,))
dequeued_t = q.dequeue()
close_op = q.close()
def dequeue():
for i in xrange(250):
self.assertEqual(i, sess.run(dequeued_t))
dequeue_thread = self.checkedThread(target=dequeue)
dequeue_thread.start()
elements_enqueued = 0
while elements_enqueued < 250:
# With equal probability, run Enqueue or enqueue_many.
if random.random() > 0.5:
enqueue_op.run({enqueue_placeholder: elements_enqueued})
elements_enqueued += 1
else:
count = random.randint(0, min(20, 250 - elements_enqueued))
range_to_enqueue = np.arange(elements_enqueued,
elements_enqueued + count,
dtype=np.int32)
enqueuemany_op.run({enqueuemany_placeholder: range_to_enqueue})
elements_enqueued += count
close_op.run()
dequeue_thread.join()
self.assertEqual(0, q.size().eval())
开发者ID:agouwin,项目名称:udacity_deep_learning_homework,代码行数:35,代码来源:padding_fifo_queue_test.py
示例19: testGradient
def testGradient(self):
with tf.Graph().as_default() as g:
inputs = tf.placeholder(tf.float32, shape=[None, 100], name="input")
weights = tf.placeholder(tf.float32, shape=[100, 10], name="weights")
biases = tf.placeholder(tf.float32, shape=[10], name="biases")
activations = tf.nn.relu(tf.matmul(inputs, weights) + biases,
name="activations")
loss = tf.reduce_mean(activations, name="loss")
gdef = g.as_graph_def()
with tf.Graph().as_default() as g:
input_placeholder = tf.placeholder(tf.float32, shape=[32, 100])
weights_var = tf.Variable(tf.truncated_normal([100, 10]), name="weights")
biases_var = tf.Variable(tf.zeros(10), name="biases")
activations, loss = tf.import_graph_def(
gdef,
input_map={"input:0": input_placeholder,
"weights:0": weights_var,
"biases:0": biases_var},
return_elements=["activations:0", "loss:0"])
self.assertEqual([32, 10], activations.get_shape())
self.assertEqual([], loss.get_shape())
weights_grad, biases_grad = tf.gradients(loss, [weights_var, biases_var])
self.assertEqual([100, 10], weights_grad.get_shape())
self.assertEqual([10], biases_grad.get_shape())
开发者ID:yevgeniyfrenkel,项目名称:tensorflow,代码行数:25,代码来源:importer_test.py
示例20: main
def main(output_dir, summaries_every, num_steps):
graph = tf.Graph()
with graph.as_default():
features = tf.placeholder(tf.float32, shape=[4, 2])
labels = tf.placeholder(tf.int32, shape=[4])
train_op, loss, gs, update_acc = make_graph(features, labels)
init = tf.global_variables_initializer()
init_local = tf.local_variables_initializer()
summary_op = tf.summary.merge_all()
writer = tf.summary.FileWriter(output_dir, graph=graph, flush_secs=1)
with tf.Session(graph=graph) as sess:
init.run()
init_local.run()
step = 0
xy = np.array([
[True, False],
[True, True],
[False, False],
[False, True]
], dtype=np.float)
y_ = np.array([True, False, False, True], dtype=np.int32)
while step < num_steps:
_, _, step, loss_value, summaries = sess.run(
[train_op, update_acc, gs, loss, summary_op],
feed_dict={features: xy, labels: y_}
)
if step % summaries_every == 0:
writer.add_summary(summaries, global_step=step)
开发者ID:amygdala,项目名称:tensorflow-workshop,代码行数:35,代码来源:xor_summaries.py
注:本文中的tensorflow.placeholder函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论