• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensorflow.ones_initializer函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.ones_initializer函数的典型用法代码示例。如果您正苦于以下问题:Python ones_initializer函数的具体用法?Python ones_initializer怎么用?Python ones_initializer使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了ones_initializer函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: bacthnorm

def bacthnorm(inputs, scope, epsilon=1e-05, momentum=0.99, is_training=True):
    inputs_shape = inputs.get_shape().as_list()# 输出 形状尺寸
    params_shape = inputs_shape[-1:]# 输入参数的长度
    axis = list(range(len(inputs_shape) - 1))

    with tf.variable_scope(scope):
        beta = create_variable("beta", params_shape,
                               initializer=tf.zeros_initializer())
        gamma = create_variable("gamma", params_shape,
                                initializer=tf.ones_initializer())
        # 均值 常量 不需要训练 for inference
        moving_mean = create_variable("moving_mean", params_shape,
                            initializer=tf.zeros_initializer(), trainable=False)
		# 方差 常量 不需要训练
        moving_variance = create_variable("moving_variance", params_shape,
                            initializer=tf.ones_initializer(), trainable=False)
    if is_training:
        mean, variance = tf.nn.moments(inputs, axes=axis)# 计算均值和方差
		# 移动平均求 均值和 方差  考虑上一次的量 xt = a * x_t-1 +(1-a)*x_now
        update_move_mean = moving_averages.assign_moving_average(moving_mean,
                                                mean, decay=momentum)
        update_move_variance = moving_averages.assign_moving_average(moving_variance,
                                                variance, decay=momentum)
        tf.add_to_collection(UPDATE_OPS_COLLECTION, update_move_mean)
        tf.add_to_collection(UPDATE_OPS_COLLECTION, update_move_variance)
    else:
        mean, variance = moving_mean, moving_variance
    return tf.nn.batch_normalization(inputs, mean, variance, beta, gamma, epsilon)
开发者ID:dyz-zju,项目名称:MVision,代码行数:28,代码来源:MobileNet_tf.py


示例2: batch_norm

def batch_norm(x, decay=0.999, epsilon=1e-03, is_training=True,
               scope="scope"):
    x_shape = x.get_shape()
    num_inputs = x_shape[-1]
    reduce_dims = list(range(len(x_shape) - 1))
    with tf.variable_scope(scope):
        beta = create_var("beta", [num_inputs,],
                               initializer=tf.zeros_initializer())
        gamma = create_var("gamma", [num_inputs,],
                                initializer=tf.ones_initializer())
        # for inference
        moving_mean = create_var("moving_mean", [num_inputs,],
                                 initializer=tf.zeros_initializer(),
                                 trainable=False)
        moving_variance = create_var("moving_variance", [num_inputs],
                                     initializer=tf.ones_initializer(),
                                     trainable=False)
    if is_training:
        mean, variance = tf.nn.moments(x, axes=reduce_dims)
        update_move_mean = moving_averages.assign_moving_average(moving_mean,
                                                mean, decay=decay)
        update_move_variance = moving_averages.assign_moving_average(moving_variance,
                                                variance, decay=decay)
        tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_move_mean)
        tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_move_variance)
    else:
        mean, variance = moving_mean, moving_variance
    return tf.nn.batch_normalization(x, mean, variance, beta, gamma, epsilon)
开发者ID:kaka7,项目名称:DeepLearning_tutorials,代码行数:28,代码来源:ResNet50.py


示例3: _batch_norm_without_layers

 def _batch_norm_without_layers(self, input_layer, decay, use_scale,
                                epsilon):
     """Batch normalization on `input_layer` without tf.layers."""
     shape = input_layer.shape
     num_channels = shape[3] if self.data_format == 'NHWC' else shape[1]
     beta = self.get_variable(
         'beta', [num_channels],
         tf.float32,
         tf.float32,
         initializer=tf.zeros_initializer())
     if use_scale:
         gamma = self.get_variable(
             'gamma', [num_channels],
             tf.float32,
             tf.float32,
             initializer=tf.ones_initializer())
     else:
         gamma = tf.constant(1.0, tf.float32, [num_channels])
     moving_mean = tf.get_variable(
         'moving_mean', [num_channels],
         tf.float32,
         initializer=tf.zeros_initializer(),
         trainable=False)
     moving_variance = tf.get_variable(
         'moving_variance', [num_channels],
         tf.float32,
         initializer=tf.ones_initializer(),
         trainable=False)
     if self.phase_train:
         bn, batch_mean, batch_variance = tf.nn.fused_batch_norm(
             input_layer,
             gamma,
             beta,
             epsilon=epsilon,
             data_format=self.data_format,
             is_training=True)
         mean_update = moving_averages.assign_moving_average(
             moving_mean, batch_mean, decay=decay, zero_debias=False)
         variance_update = moving_averages.assign_moving_average(
             moving_variance,
             batch_variance,
             decay=decay,
             zero_debias=False)
         tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, mean_update)
         tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, variance_update)
     else:
         bn, _, _ = tf.nn.fused_batch_norm(
             input_layer,
             gamma,
             beta,
             mean=moving_mean,
             variance=moving_variance,
             epsilon=epsilon,
             data_format=self.data_format,
             is_training=False)
     return bn
开发者ID:jamescasbon,项目名称:ray,代码行数:56,代码来源:convnet_builder.py


示例4: __init__

    def __init__(self, size, eps=1e-2, default_clip_range=np.inf, sess=None):
        """A normalizer that ensures that observations are approximately distributed according to
        a standard Normal distribution (i.e. have mean zero and variance one).

        Args:
            size (int): the size of the observation to be normalized
            eps (float): a small constant that avoids underflows
            default_clip_range (float): normalized observations are clipped to be in
                [-default_clip_range, default_clip_range]
            sess (object): the TensorFlow session to be used
        """
        self.size = size
        self.eps = eps
        self.default_clip_range = default_clip_range
        self.sess = sess if sess is not None else tf.get_default_session()

        self.local_sum = np.zeros(self.size, np.float32)
        self.local_sumsq = np.zeros(self.size, np.float32)
        self.local_count = np.zeros(1, np.float32)

        self.sum_tf = tf.get_variable(
            initializer=tf.zeros_initializer(), shape=self.local_sum.shape, name='sum',
            trainable=False, dtype=tf.float32)
        self.sumsq_tf = tf.get_variable(
            initializer=tf.zeros_initializer(), shape=self.local_sumsq.shape, name='sumsq',
            trainable=False, dtype=tf.float32)
        self.count_tf = tf.get_variable(
            initializer=tf.ones_initializer(), shape=self.local_count.shape, name='count',
            trainable=False, dtype=tf.float32)
        self.mean = tf.get_variable(
            initializer=tf.zeros_initializer(), shape=(self.size,), name='mean',
            trainable=False, dtype=tf.float32)
        self.std = tf.get_variable(
            initializer=tf.ones_initializer(), shape=(self.size,), name='std',
            trainable=False, dtype=tf.float32)
        self.count_pl = tf.placeholder(name='count_pl', shape=(1,), dtype=tf.float32)
        self.sum_pl = tf.placeholder(name='sum_pl', shape=(self.size,), dtype=tf.float32)
        self.sumsq_pl = tf.placeholder(name='sumsq_pl', shape=(self.size,), dtype=tf.float32)

        self.update_op = tf.group(
            self.count_tf.assign_add(self.count_pl),
            self.sum_tf.assign_add(self.sum_pl),
            self.sumsq_tf.assign_add(self.sumsq_pl)
        )
        self.recompute_op = tf.group(
            tf.assign(self.mean, self.sum_tf / self.count_tf),
            tf.assign(self.std, tf.sqrt(tf.maximum(
                tf.square(self.eps),
                self.sumsq_tf / self.count_tf - tf.square(self.sum_tf / self.count_tf)
            ))),
        )
        self.lock = threading.Lock()
开发者ID:Divyankpandey,项目名称:baselines,代码行数:52,代码来源:normalizer.py


示例5: initialize_model

def initialize_model(sess, train_data_flat, train_labels):
  """Reproduce model from train-on-mnist/mnist_lbfgs"""

  dtype = tf.float64
  batchSize = 100
  learningRate = 0.1

  W = tf.Variable(tf.ones_initializer((1024, 10), dtype=dtype))
  b = tf.Variable(tf.ones_initializer((1, 10), dtype=dtype))
  x = tf.Variable(tf.zeros_initializer((batchSize, 1024), dtype=dtype))
  targets = tf.Variable(tf.zeros_initializer((batchSize, 10), dtype=dtype))
  logits = tf.matmul(x, W) + b

  # cross entropy expects batch dimension to be first, transpose inputs
  cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits, targets)
  cross_entropy_loss = tf.reduce_mean(cross_entropy)
  Wnorm = tf.reduce_sum(tf.square(W))
  bnorm = tf.reduce_sum(tf.square(b))
  loss = cross_entropy_loss + (bnorm + Wnorm)/2
  loss_handle_op = tf.get_session_handle(loss)

  # grads = tf.gradients(loss, [W, b])
  opt = tf.train.GradientDescentOptimizer(learning_rate=learningRate)
  grads_and_vars = opt.compute_gradients(loss, [W, b])
  train_step = opt.apply_gradients(grads_and_vars)

  W_grad = grads_and_vars[0][0]
  b_grad = grads_and_vars[1][0]
  flat_grad = concat_flatten([tf.transpose(W_grad), b_grad])
  flat_grad_handle_op = tf.get_session_handle(flat_grad)
  flat_params = concat_flatten([tf.transpose(W), b])

  # initialize x and targets
  x_placeholder = tf.placeholder(dtype=dtype)
  x_init = x.assign(x_placeholder)

  # initialize labels
  labels_placeholder = tf.placeholder(shape=(batchSize), dtype=tf.int32)
  # Lua labels are off-by-one hence -1
  labels_onehot = tf.one_hot(labels_placeholder - 1, 10, dtype=dtype)
  targets_init = targets.assign(labels_onehot)

  sess.run(x_init, feed_dict={x_placeholder:train_data_flat[:batchSize]})
  sess.run(targets_init, feed_dict={labels_placeholder:
                                    train_labels[:batchSize]})
  sess.run([W.initializer, b.initializer])
  [(Wgrad, W), (bgrad, b)] = grads_and_vars
  return [loss, loss_handle_op, flat_params, flat_grad, flat_grad_handle_op,
          W, b, train_step]
开发者ID:yaroslavvb,项目名称:lbfgs,代码行数:49,代码来源:lbfgs_reproduce.py


示例6: _network_template

 def _network_template(self, state):
   # This dummy network allows us to deterministically anticipate that
   # action 0 will be selected by an argmax.
   inputs = tf.constant(
       np.zeros((state.shape[0], stack_size)), dtype=tf.float32)
   # In Rainbow we are dealing with a distribution over Q-values,
   # which are represented as num_atoms bins, ranging from -vmax to vmax.
   # The output layer will have num_actions * num_atoms elements,
   # so each group of num_atoms weights represent the logits for a
   # particular action. By setting 1s everywhere, except for the first
   # num_atoms (representing the logits for the first action), which are
   # set to np.arange(num_atoms), we are ensuring that the first action
   # places higher weight on higher Q-values; this results in the first
   # action being chosen.
   first_row = np.tile(np.ones(self._num_atoms), self.num_actions - 1)
   first_row = np.concatenate((np.arange(self._num_atoms), first_row))
   bottom_rows = np.tile(
       np.ones(self.num_actions * self._num_atoms), (stack_size - 1, 1))
   weights_initializer = np.concatenate(([first_row], bottom_rows))
   net = slim.fully_connected(
       inputs,
       self.num_actions * self._num_atoms,
       weights_initializer=tf.constant_initializer(weights_initializer),
       biases_initializer=tf.ones_initializer(),
       activation_fn=None)
   logits = tf.reshape(net, [-1, self.num_actions, self._num_atoms])
   probabilities = tf.contrib.layers.softmax(logits)
   qs = tf.reduce_sum(self._support * probabilities, axis=2)
   return self._get_network_type()(qs, logits, probabilities)
开发者ID:veronicachelu,项目名称:dopamine,代码行数:29,代码来源:rainbow_agent_test.py


示例7: test_basic_rnn_cell

    def test_basic_rnn_cell(self):
        """see test_basic_rnn_cell.png for the graph"""
        batch_size = 1
        input_shape = [batch_size, 2]
        state_shape = [batch_size, 3]
        num_units = 4  # should be equal to state_shape[1] to be recurrent

        input_value = np.random.rand(*input_shape)
        state_value = np.random.rand(*state_shape)
        np_result = TestRNNCells._basic_linear(input_value, state_value, num_units)

        with tf.Session() as sess:
            with tf.variable_scope('test_basic_rnn_cell', initializer=tf.ones_initializer()):
                inputs = tf.placeholder(tf.float32, input_shape, 'inputs')
                prev_state = tf.placeholder(tf.float32, state_shape, 'prev_state')

                cell = tf.contrib.rnn.BasicRNNCell(num_units)
                output_op, new_state_op = cell(inputs, prev_state)

                self.assertIsInstance(output_op, tf.Tensor)

                tf.summary.FileWriter('/tmp/test_basic_rnn_cell', sess.graph)
                sess.run(tf.global_variables_initializer())

                output, new_state = sess.run([output_op, new_state_op],
                                             feed_dict={
                                                 inputs: input_value,
                                                 prev_state: state_value
                                             })

                self.assertIsInstance(output, np.ndarray)
                self.assertEqual(output.shape, (batch_size, num_units))
                self.assertTrue(np.array_equal(output, new_state))
                np.testing.assert_array_almost_equal(np_result, output)
开发者ID:ninotoshi,项目名称:playground,代码行数:34,代码来源:test_rnn.py


示例8: get_logits

    def get_logits(self, image):
        gauss_init = tf.random_normal_initializer(stddev=0.01)
        with argscope(Conv2D,
                      kernel_initializer=tf.variance_scaling_initializer(scale=2.)), \
                argscope([Conv2D, FullyConnected], activation=tf.nn.relu), \
                argscope([Conv2D, MaxPooling], data_format='channels_last'):
            # necessary padding to get 55x55 after conv1
            image = tf.pad(image, [[0, 0], [2, 2], [2, 2], [0, 0]])
            l = Conv2D('conv1', image, filters=96, kernel_size=11, strides=4, padding='VALID')
            # size: 55
            visualize_conv1_weights(l.variables.W)
            l = tf.nn.lrn(l, 2, bias=1.0, alpha=2e-5, beta=0.75, name='norm1')
            l = MaxPooling('pool1', l, 3, strides=2, padding='VALID')
            # 27
            l = Conv2D('conv2', l, filters=256, kernel_size=5, split=2)
            l = tf.nn.lrn(l, 2, bias=1.0, alpha=2e-5, beta=0.75, name='norm2')
            l = MaxPooling('pool2', l, 3, strides=2, padding='VALID')
            # 13
            l = Conv2D('conv3', l, filters=384, kernel_size=3)
            l = Conv2D('conv4', l, filters=384, kernel_size=3, split=2)
            l = Conv2D('conv5', l, filters=256, kernel_size=3, split=2)
            l = MaxPooling('pool3', l, 3, strides=2, padding='VALID')

            l = FullyConnected('fc6', l, 4096,
                               kernel_initializer=gauss_init,
                               bias_initializer=tf.ones_initializer())
            l = Dropout(l, rate=0.5)
            l = FullyConnected('fc7', l, 4096, kernel_initializer=gauss_init)
            l = Dropout(l, rate=0.5)
        logits = FullyConnected('fc8', l, 1000, kernel_initializer=gauss_init)
        return logits
开发者ID:quanlzheng,项目名称:tensorpack,代码行数:31,代码来源:alexnet.py


示例9: layer_norm

def layer_norm(x: tf.Tensor, epsilon: float = 1e-6) -> tf.Tensor:
    """Layer normalize the tensor x, averaging over the last dimension.

    Implementation based on tensor2tensor.

    Arguments:
        x: The ``Tensor`` to normalize.
        epsilon: The smoothing parameter of the normalization.

    Returns:
        The normalized tensor.
    """
    with tf.variable_scope("LayerNorm"):
        gamma = get_variable(
            name="gamma",
            shape=[x.get_shape()[-1]],
            dtype=tf.float32,
            initializer=tf.ones_initializer())
        beta = get_variable(
            name="beta",
            shape=[x.get_shape()[-1]],
            dtype=tf.float32,
            initializer=tf.zeros_initializer())

        mean = tf.reduce_mean(x, axis=[-1], keepdims=True)
        variance = tf.reduce_mean(
            tf.square(x - mean),
            axis=[-1],
            keepdims=True)
        norm_x = (x - mean) * tf.rsqrt(variance + epsilon)
        return norm_x * gamma + beta
开发者ID:ufal,项目名称:neuralmonkey,代码行数:31,代码来源:tf_utils.py


示例10: batch_norm

def batch_norm(inputs, name_scope, is_training, epsilon=1e-3, decay=0.99):
    with tf.variable_scope(name_scope):
        size = inputs.get_shape().as_list()[1]

        gamma = tf.get_variable(
            'gamma', [size], initializer=tf.constant_initializer(0.1))
        # beta = tf.get_variable('beta', [size], initializer=tf.constant_initializer(0))
        beta = tf.get_variable('beta', [size])

        pop_mean = tf.get_variable('pop_mean', [size],
                                   initializer=tf.zeros_initializer(), trainable=False)
        pop_var = tf.get_variable('pop_var', [size],
                                  initializer=tf.ones_initializer(), trainable=False)
        batch_mean, batch_var = tf.nn.moments(inputs, [0])

        train_mean_op = tf.assign(
            pop_mean, pop_mean * decay + batch_mean * (1 - decay))
        train_var_op = tf.assign(
            pop_var, pop_var * decay + batch_var * (1 - decay))

        def batch_statistics():
            with tf.control_dependencies([train_mean_op, train_var_op]):
                return tf.nn.batch_normalization(inputs, batch_mean, batch_var, beta, gamma, epsilon)

        def pop_statistics():
            return tf.nn.batch_normalization(inputs, pop_mean, pop_var, beta, gamma, epsilon)

        # control flow
        return tf.cond(is_training, batch_statistics, pop_statistics)
开发者ID:seasky100,项目名称:tensorflow_end2end_speech_recognition,代码行数:29,代码来源:batch_normalization.py


示例11: conv2d_zeros

def conv2d_zeros(x,
                 width,
                 filter_size=[3, 3],
                 stride=[1, 1],
                 pad="SAME",
                 logscale_factor=3,
                 skip=1,
                 edge_bias=True,
                 name=None):
    with tf.variable_scope(name, "conv2d"):
        if edge_bias and pad == "SAME":
            x = add_edge_padding(x, filter_size)
            pad = 'VALID'

        n_in = int(x.get_shape()[3])
        stride_shape = [1] + stride + [1]
        filter_shape = filter_size + [n_in, width]
        w = tf.get_variable("W", filter_shape, tf.float32,
                            initializer=tf.zeros_initializer())
        if skip == 1:
            x = tf.nn.conv2d(x, w, stride_shape, pad, data_format='NHWC')
        else:
            assert stride[0] == 1 and stride[1] == 1
            x = tf.nn.atrous_conv2d(x, w, skip, pad)
        x += tf.get_variable("b", [1, 1, 1, width],
                             initializer=tf.ones_initializer())
        x *= tf.exp(tf.get_variable("logs",
                                    [1, width], initializer=tf.zeros_initializer()) * logscale_factor)
    return x
开发者ID:gdahia,项目名称:DLF,代码行数:29,代码来源:ops.py


示例12: batch_norm

def batch_norm(x, name_scope, training, epsilon=1e-3, decay=0.999):
    """Assume 2d [batch, values] tensor"""

    with tf.variable_scope(name_scope):
        size = x.get_shape().as_list()[1]

        scale = tf.get_variable('scale', [size],
            initializer=tf.constant_initializer(0.1))
        offset = tf.get_variable('offset', [size])

        pop_mean = tf.get_variable('pop_mean', [size],
            initializer=tf.zeros_initializer(),
            trainable=False)
        pop_var = tf.get_variable('pop_var', [size],
            initializer=tf.ones_initializer(),
            trainable=False)
        batch_mean, batch_var = tf.nn.moments(x, [0])

        train_mean_op = tf.assign(
            pop_mean,
            pop_mean * decay + batch_mean * (1 - decay))
        train_var_op = tf.assign(
            pop_var,
            pop_var * decay + batch_var * (1 - decay))

        def batch_statistics():
            with tf.control_dependencies([train_mean_op, train_var_op]):
                return tf.nn.batch_normalization(x, batch_mean, batch_var, offset, scale, epsilon)

        def population_statistics():
            return tf.nn.batch_normalization(x, pop_mean, pop_var, offset, scale, epsilon)

        return tf.cond(training, batch_statistics, population_statistics)
开发者ID:siddrtm,项目名称:hierarchical-attention-networks,代码行数:33,代码来源:bn_lstm.py


示例13: call

  def call(self, x, h):
    channels = x.shape[self._feature_axis].value

    with tf.variable_scope('gates'):
      inputs = tf.concat([x, h], axis=self._feature_axis)
      n = channels + self._filters
      m = 2 * self._filters if self._filters > 1 else 2
      W = tf.get_variable('kernel', self._kernel + [n, m])
      y = tf.nn.convolution(inputs, W, 'SAME', data_format=self._data_format)
      if self._normalize:
        r, u = tf.split(y, 2, axis=self._feature_axis)
        r = tf.contrib.layers.layer_norm(r)
        u = tf.contrib.layers.layer_norm(u)
      else:
        y += tf.get_variable('bias', [m], initializer=tf.ones_initializer())
        r, u = tf.split(y, 2, axis=self._feature_axis)
      r, u = tf.sigmoid(r), tf.sigmoid(u)

      # TODO
      #tf.summary.histogram('reset_gate', r)
      #tf.summary.histogram('update_gate', u)

    with tf.variable_scope('candidate'):
      inputs = tf.concat([x, r * h], axis=self._feature_axis)
      n = channels + self._filters
      m = self._filters
      W = tf.get_variable('kernel', self._kernel + [n, m])
      y = tf.nn.convolution(inputs, W, 'SAME', data_format=self._data_format)
      if self._normalize:
        y = tf.contrib.layers.layer_norm(y)
      else:
        y += tf.get_variable('bias', [m], initializer=tf.zeros_initializer())
      h = u * h + (1 - u) * self._activation(y)

	return h, h
开发者ID:ascenoputing,项目名称:SemanticSegmentation_DL,代码行数:35,代码来源:ConvLSTM_Cell.py


示例14: __init__

 def __init__ (self, name, inputs, training, data_format, start=None, end=None, weights=None, 
                     weight_scope=None, fake=False):
     super(BatchNorm, self).__init__(name = name, start=start, end=end)
     self.fake = fake
     if not self.fake:
         if weights is not None:
             params_name = weight_scope + '/' + str(name) + '/batch_normalization/'
             np_dict = load_pkl_obj(weights)
             beta_np = np_dict[params_name+'beta:0']
             gamma_np = np_dict[params_name+'gamma:0']
             moving_mean_np = np_dict[params_name+'moving_mean:0']
             moving_variance_np = np_dict[params_name+'moving_variance:0']
             in_shp = inputs.shape.as_list()[1]
             if not beta_np.shape[0] == in_shp:
                 beta_np = np.resize(beta_np, (in_shp,))
                 gamma_np = np.resize(gamma_np, (in_shp,))
                 moving_mean_np = np.resize(moving_mean_np, (in_shp))
                 moving_variance_np = np.resize(moving_variance_np, (in_shp))
             beta_initializer = tf.constant_initializer(beta_np)
             gamma_initializer = tf.constant_initializer(gamma_np)
             moving_mean_initializer = tf.constant_initializer(moving_mean_np)
             moving_variance_initializer = tf.constant_initializer(moving_variance_np)            
         else:
             beta_initializer = tf.zeros_initializer()
             gamma_initializer = tf.ones_initializer()
             moving_mean_initializer = tf.zeros_initializer()
             moving_variance_initializer = tf.ones_initializer()            
         with tf.variable_scope(self._name):
             self.output=tf.layers.batch_normalization(inputs=inputs,
                                                     axis=1 if data_format == 'channels_first' else 3,
                                                     momentum=_BATCH_NORM_DECAY,
                                                     epsilon=_BATCH_NORM_EPSILON,
                                                     center=True,
                                                     scale=True,
                                                     training=training,
                                                     beta_initializer=beta_initializer,
                                                     gamma_initializer=gamma_initializer,
                                                     moving_mean_initializer=moving_mean_initializer,
                                                     moving_variance_initializer=moving_variance_initializer,
                                                     fused=True )
         self._tf_name = self.output.name.split('/')[0] + '/' + self.output.name.split('/')[1]
     else:
         assert isinstance(inputs, Fake)
         self.output=Fake(inputs.shape)
         self.param=Fake(inputs.shape[1] * 4)
     self.description.append('BatchNorm')
     self.description.append(self.get_memory_footprint())
开发者ID:FNDaily,项目名称:amazon-sagemaker-examples,代码行数:47,代码来源:batch_norm.py


示例15: main

def main(_):
  ed.set_seed(42)

  # DATA
  x_data = build_toy_dataset(FLAGS.N)

  # MODEL
  pi = Dirichlet(concentration=tf.ones(FLAGS.K))
  mu = Normal(0.0, 1.0, sample_shape=[FLAGS.K, FLAGS.D])
  sigma = InverseGamma(concentration=1.0, rate=1.0,
                       sample_shape=[FLAGS.K, FLAGS.D])
  c = Categorical(logits=tf.log(pi) - tf.log(1.0 - pi), sample_shape=FLAGS.N)
  x = Normal(loc=tf.gather(mu, c), scale=tf.gather(sigma, c))

  # INFERENCE
  qpi = Empirical(params=tf.get_variable(
      "qpi/params",
      [FLAGS.T, FLAGS.K],
      initializer=tf.constant_initializer(1.0 / FLAGS.K)))
  qmu = Empirical(params=tf.get_variable("qmu/params",
                                         [FLAGS.T, FLAGS.K, FLAGS.D],
                                         initializer=tf.zeros_initializer()))
  qsigma = Empirical(params=tf.get_variable("qsigma/params",
                                            [FLAGS.T, FLAGS.K, FLAGS.D],
                                            initializer=tf.ones_initializer()))
  qc = Empirical(params=tf.get_variable("qc/params",
                                        [FLAGS.T, FLAGS.N],
                                        initializer=tf.zeros_initializer(),
                                        dtype=tf.int32))

  gpi = Dirichlet(concentration=tf.constant([1.4, 1.6]))
  gmu = Normal(loc=tf.constant([[1.0, 1.0], [-1.0, -1.0]]),
               scale=tf.constant([[0.5, 0.5], [0.5, 0.5]]))
  gsigma = InverseGamma(concentration=tf.constant([[1.1, 1.1], [1.1, 1.1]]),
                        rate=tf.constant([[1.0, 1.0], [1.0, 1.0]]))
  gc = Categorical(logits=tf.zeros([FLAGS.N, FLAGS.K]))

  inference = ed.MetropolisHastings(
      latent_vars={pi: qpi, mu: qmu, sigma: qsigma, c: qc},
      proposal_vars={pi: gpi, mu: gmu, sigma: gsigma, c: gc},
      data={x: x_data})

  inference.initialize()

  sess = ed.get_session()
  tf.global_variables_initializer().run()

  for _ in range(inference.n_iter):
    info_dict = inference.update()
    inference.print_progress(info_dict)

    t = info_dict['t']
    if t == 1 or t % inference.n_print == 0:
      qpi_mean, qmu_mean = sess.run([qpi.mean(), qmu.mean()])
      print("")
      print("Inferred membership probabilities:")
      print(qpi_mean)
      print("Inferred cluster means:")
      print(qmu_mean)
开发者ID:JoyceYa,项目名称:edward,代码行数:59,代码来源:mixture_gaussian_mh.py


示例16: make_params

def make_params():
  params_size = 250*1000*FLAGS.data_mb # 1MB is 250k integers
  dtype=tf.int32
  ps_device = get_ps_device(0)
  with tf.device(ps_device):
    params = tf.get_variable("params", [params_size], dtype,
                             initializer=tf.ones_initializer())
  return params
开发者ID:yaroslavvb,项目名称:stuff,代码行数:8,代码来源:async_adder.py


示例17: build

 def build(self, _):
   self.scale = tf.get_variable("layer_norm_scale", [self.hidden_size],
                                initializer=tf.ones_initializer(dtype=tf.float32),
                                dtype=tf.float32)
   self.bias = tf.get_variable("layer_norm_bias", [self.hidden_size],
                               initializer=tf.zeros_initializer(dtype=tf.float32),
                               dtype=tf.float32)
   self.built = True
开发者ID:fotwo,项目名称:OpenSeq2Seq,代码行数:8,代码来源:common.py


示例18: create_graph

def create_graph(device0, device1):
  """Create graph that keeps var1 on device0, var2 on device1 and adds them"""
  
  tf.reset_default_graph()
  dtype=tf.int32
  params_size = 250*1000*FLAGS.data_mb # 1MB is 250k integers

  with tf.device(device0):
    var1 = tf.get_variable("var1", [params_size], dtype,
                             initializer=tf.ones_initializer())
  with tf.device(device1):
    var2 = tf.get_variable("var2", [params_size], dtype,
                           initializer=tf.ones_initializer())
    add_op = var1.assign_add(var2)
    
  init_op = tf.global_variables_initializer()
  return init_op, add_op
开发者ID:yaroslavvb,项目名称:stuff,代码行数:17,代码来源:benchmark_grpc_recv.py


示例19: bn

def bn(x, c):
    x_shape = x.get_shape()
    params_shape = x_shape[-1:]

    if c['use_bias']:
        bias = _get_variable('bias', params_shape,
                             initializer=tf.zeros_initializer)
        return x + bias


    axis = list(range(len(x_shape) - 1))

    beta = _get_variable('beta',
                         params_shape,
                         initializer=tf.zeros_initializer)
    gamma = _get_variable('gamma',
                          params_shape,
                          initializer=tf.ones_initializer())

    moving_mean = _get_variable('moving_mean',
                                params_shape,
                                initializer=tf.zeros_initializer,
                                trainable=False)
    moving_variance = _get_variable('moving_variance',
                                    params_shape,
                                    initializer=tf.ones_initializer(),
                                    trainable=False)

    # These ops will only be preformed when training.
    mean, variance = tf.nn.moments(x, axis)
    update_moving_mean = moving_averages.assign_moving_average(moving_mean,
                                                               mean, BN_DECAY)
    update_moving_variance = moving_averages.assign_moving_average(
        moving_variance, variance, BN_DECAY)
    tf.add_to_collection(UPDATE_OPS_COLLECTION, update_moving_mean)
    tf.add_to_collection(UPDATE_OPS_COLLECTION, update_moving_variance)

    mean, variance = control_flow_ops.cond(
        c['is_training'], lambda: (mean, variance),
        lambda: (moving_mean, moving_variance))

    x = tf.nn.batch_normalization(x, mean, variance, beta, gamma, BN_EPSILON)
    #x.set_shape(inputs.get_shape()) ??

    return x
开发者ID:UCBerkeleySETI,项目名称:breakthrough,代码行数:45,代码来源:WRN_ops.py


示例20: layer_norm

def layer_norm(x, nmaps, prefix, epsilon=1e-5):
  """Layer normalize the 4D tensor x, averaging over the last dimension."""
  with tf.variable_scope(prefix):
    scale = tf.get_variable("layer_norm_scale", [nmaps],
                            initializer=tf.ones_initializer())
    bias = tf.get_variable("layer_norm_bias", [nmaps],
                           initializer=tf.zeros_initializer())
    mean, variance = tf.nn.moments(x, [3], keep_dims=True)
    norm_x = (x - mean) / tf.sqrt(variance + epsilon)
    return norm_x * scale + bias
开发者ID:Jmq14,项目名称:models,代码行数:10,代码来源:neural_gpu.py



注:本文中的tensorflow.ones_initializer函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensorflow.ones_like函数代码示例发布时间:2022-05-27
下一篇:
Python tensorflow.ones函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap