• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensorflow.one_hot函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.one_hot函数的典型用法代码示例。如果您正苦于以下问题:Python one_hot函数的具体用法?Python one_hot怎么用?Python one_hot使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了one_hot函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _build_graph

    def _build_graph(self, inputs, is_training):
        state, action, reward, next_state, isOver = inputs
        self.predict_value = self._get_DQN_prediction(state, is_training)
        action_onehot = tf.one_hot(action, NUM_ACTIONS)
        pred_action_value = tf.reduce_sum(self.predict_value * action_onehot, 1)    #N,
        max_pred_reward = tf.reduce_mean(tf.reduce_max(
            self.predict_value, 1), name='predict_reward')
        add_moving_summary(max_pred_reward)
        self.greedy_choice = tf.argmax(self.predict_value, 1)   # N,

        with tf.variable_scope('target'):
            targetQ_predict_value = self._get_DQN_prediction(next_state, False)    # NxA

            # DQN
            #best_v = tf.reduce_max(targetQ_predict_value, 1)    # N,

            # Double-DQN
            predict_onehot = tf.one_hot(self.greedy_choice, NUM_ACTIONS, 1.0, 0.0)
            best_v = tf.reduce_sum(targetQ_predict_value * predict_onehot, 1)

            target = reward + (1.0 - tf.cast(isOver, tf.float32)) * GAMMA * tf.stop_gradient(best_v)

        sqrcost = tf.square(target - pred_action_value)
        abscost = tf.abs(target - pred_action_value)    # robust error func
        cost = tf.select(abscost < 1, sqrcost, abscost)
        summary.add_param_summary([('conv.*/W', ['histogram', 'rms']),
                                   ('fc.*/W', ['histogram', 'rms']) ])   # monitor all W
        self.cost = tf.reduce_mean(cost, name='cost')
开发者ID:xhrwang,项目名称:tensorpack,代码行数:28,代码来源:DQN.py


示例2: build

	def build(self, sampling):
		if sampling == True:
			batch_size, num_steps = 1, 1
		else:
			batch_size = self.__batch_size
			num_steps = self.__num_steps
		tf_x = tf.placeholder(tf.int32, shape=[batch_size, num_steps], name='tf_x')
		tf_y = tf.placeholder(tf.int32, shape=[batch_size, num_steps], name='tf_y')
		tf_keepprob = tf.placeholder(tf.float32, name='tf_keepprob')
		# one-hot encoding:
		x_onehot = tf.one_hot(tf_x, depth=self.__num_classes)
		y_onehot = tf.one_hot(tf_y, depth=self.__num_classes)
		# build the multi-layer RNN cells
		cells = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.BasicLSTMCell(self.__lstm_size), output_keep_prob=tf_keepprob) for _ in range(self.__num_layers)])
		# Define the initial state
		self.__initial_state = cells.zero_state(batch_size, tf.float32)
		# Run each sequence step through the RNN
		lstm_outputs, self.__final_state =  tf.nn.dynamic_rnn(cells, x_onehot, initial_state = self.__initial_state)
		print(' << lstm_outputs >>', lstm_outputs)
		seq_output_reshaped = tf.reshape(lstm_outputs, shape=[-1, self.__lstm_size], name='seq_output_reshaped')
		logits = tf.layers.dense(inputs=seq_output_reshaped, units=self.__num_classes, activation=None, name='logits')
		proba = tf.nn.softmax(logits, name='probabilities')
		y_reshaped = tf.reshape(y_onehot, shape=[-1, self.__num_classes], name='y_reshaped')
		cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y_reshaped), name='cost')
		# Gradient clipping to avoid 'exploding gradients'
		tvars = tf.trainable_variables()
		grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars), self.__grad_clip)
		optimizer = tf.train.AdamOptimizer(self.__learning_rate)
		train_op = optimizer.apply_gradients(zip(grads, tvars), name='train_op')
开发者ID:dazhouze,项目名称:helloWorld,代码行数:29,代码来源:ML_16_2_charRNN.py


示例3: prob_is_largest

    def prob_is_largest(self, Y, mu, var, gh_x, gh_w):
        # work out what the mean and variance is of the indicated latent function.
        oh_on = tf.cast(tf.one_hot(tf.reshape(Y, (-1,)), self.num_classes, 1.0, 0.0), float_type)
        mu_selected = tf.reduce_sum(oh_on * mu, 1)
        var_selected = tf.reduce_sum(oh_on * var, 1)

        # generate Gauss Hermite grid
        X = tf.reshape(mu_selected, (-1, 1)) + gh_x * tf.reshape(
            tf.sqrt(tf.clip_by_value(2.0 * var_selected, 1e-10, np.inf)), (-1, 1)
        )

        # compute the CDF of the Gaussian between the latent functions and the grid (including the selected function)
        dist = (tf.expand_dims(X, 1) - tf.expand_dims(mu, 2)) / tf.expand_dims(
            tf.sqrt(tf.clip_by_value(var, 1e-10, np.inf)), 2
        )
        cdfs = 0.5 * (1.0 + tf.erf(dist / np.sqrt(2.0)))

        cdfs = cdfs * (1 - 2e-4) + 1e-4

        # blank out all the distances on the selected latent function
        oh_off = tf.cast(tf.one_hot(tf.reshape(Y, (-1,)), self.num_classes, 0.0, 1.0), float_type)
        cdfs = cdfs * tf.expand_dims(oh_off, 2) + tf.expand_dims(oh_on, 2)

        # take the product over the latent functions, and the sum over the GH grid.
        return tf.matmul(tf.reduce_prod(cdfs, reduction_indices=[1]), tf.reshape(gh_w / np.sqrt(np.pi), (-1, 1)))
开发者ID:GPflow,项目名称:GPflow,代码行数:25,代码来源:likelihoods.py


示例4: char_rnn_model

def char_rnn_model(features, labels, mode):
  """Character level recurrent neural network model to predict classes."""
  byte_vectors = tf.one_hot(features[CHARS_FEATURE], 256, 1., 0.)
  byte_list = tf.unstack(byte_vectors, axis=1)

  cell = tf.contrib.rnn.GRUCell(HIDDEN_SIZE)
  _, encoding = tf.contrib.rnn.static_rnn(cell, byte_list, dtype=tf.float32)

  logits = tf.layers.dense(encoding, MAX_LABEL, activation=None)

  predicted_classes = tf.argmax(logits, 1)
  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(
        mode=mode,
        predictions={
            'class': predicted_classes,
            'prob': tf.nn.softmax(logits)
        })

  onehot_labels = tf.one_hot(labels, MAX_LABEL, 1, 0)
  loss = tf.losses.softmax_cross_entropy(
      onehot_labels=onehot_labels, logits=logits)
  if mode == tf.estimator.ModeKeys.TRAIN:
    optimizer = tf.train.AdamOptimizer(learning_rate=0.01)
    train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())
    return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)

  eval_metric_ops = {
      'accuracy': tf.metrics.accuracy(
          labels=labels, predictions=predicted_classes)
  }
  return tf.estimator.EstimatorSpec(
      mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:33,代码来源:text_classification_character_rnn.py


示例5: get_online_sequences

def get_online_sequences(sequence_length, batch_size):
    """Gets tensor which constantly produce new random examples.

    Args:
        sequence_length: total length of the sequences.
        batch_size: how many at a time.

    Returns:
        (data, targets): data is `[sequence_length, batch_size, 2]` and targets
            are `[batch_size]`.
    """
    # getting the random channel is easy
    random_data = tf.random_uniform([sequence_length, batch_size, 1],
                                    minval=0.0, maxval=1.0)
    # now we need a random marker in each half of the data
    random_index_1 = tf.random_uniform([1, batch_size], minval=0,
                                       maxval=sequence_length//2,
                                       dtype=tf.int32)
    random_index_2 = tf.random_uniform([1, batch_size], minval=0,
                                       maxval=sequence_length//2,
                                       dtype=tf.int32)
    markers = tf.concat(axis=2, values=[tf.one_hot(random_index_1, sequence_length//2),
                            tf.one_hot(random_index_2, sequence_length//2)])
    markers = tf.transpose(markers)
    targets = tf.reduce_sum(random_data * markers,
                            axis=0)
    return tf.concat(axis=2, values=[random_data, markers]), tf.squeeze(targets)
开发者ID:PFCM,项目名称:datasets,代码行数:27,代码来源:addition.py


示例6: build_graph

    def build_graph(self, state, action, futurereward, action_prob):
        logits, value = self._get_NN_prediction(state)
        value = tf.squeeze(value, [1], name='pred_value')  # (B,)
        policy = tf.nn.softmax(logits, name='policy')
        is_training = get_current_tower_context().is_training
        if not is_training:
            return
        log_probs = tf.log(policy + 1e-6)

        log_pi_a_given_s = tf.reduce_sum(
            log_probs * tf.one_hot(action, NUM_ACTIONS), 1)
        advantage = tf.subtract(tf.stop_gradient(value), futurereward, name='advantage')

        pi_a_given_s = tf.reduce_sum(policy * tf.one_hot(action, NUM_ACTIONS), 1)  # (B,)
        importance = tf.stop_gradient(tf.clip_by_value(pi_a_given_s / (action_prob + 1e-8), 0, 10))

        policy_loss = tf.reduce_sum(log_pi_a_given_s * advantage * importance, name='policy_loss')
        xentropy_loss = tf.reduce_sum(policy * log_probs, name='xentropy_loss')
        value_loss = tf.nn.l2_loss(value - futurereward, name='value_loss')

        pred_reward = tf.reduce_mean(value, name='predict_reward')
        advantage = tf.sqrt(tf.reduce_mean(tf.square(advantage)), name='rms_advantage')
        entropy_beta = tf.get_variable('entropy_beta', shape=[],
                                       initializer=tf.constant_initializer(0.01), trainable=False)
        cost = tf.add_n([policy_loss, xentropy_loss * entropy_beta, value_loss])
        cost = tf.truediv(cost, tf.cast(tf.shape(futurereward)[0], tf.float32), name='cost')
        summary.add_moving_summary(policy_loss, xentropy_loss,
                                   value_loss, pred_reward, advantage,
                                   cost, tf.reduce_mean(importance, name='importance'))
        return cost
开发者ID:tobyma,项目名称:tensorpack,代码行数:30,代码来源:train-atari.py


示例7: create_tf_operations

    def create_tf_operations(self, config):
        super(DQNModel, self).create_tf_operations(config)

        num_actions = {name: action.num_actions for name, action in config.actions}

        # Training network
        with tf.variable_scope('training'):
            self.training_network = NeuralNetwork(config.network, inputs=self.state)

            self.internal_inputs.extend(self.training_network.internal_inputs)
            self.internal_outputs.extend(self.training_network.internal_outputs)
            self.internal_inits.extend(self.training_network.internal_inits)
            training_output = dict()

            for action in self.action:
                training_output[action] = layers['linear'](x=self.training_network.output, size=num_actions[action])
                self.action_taken[action] = tf.argmax(training_output[action], axis=1)

        # Target network
        with tf.variable_scope('target'):
            self.target_network = NeuralNetwork(config.network, inputs=self.state)
            self.internal_inputs.extend(self.target_network.internal_inputs)
            self.internal_outputs.extend(self.target_network.internal_outputs)
            self.internal_inits.extend(self.target_network.internal_inits)
            target_value = dict()

            for action in self.action:
                target_output = layers['linear'](x=self.target_network.output, size=num_actions[action])
                if config.double_dqn:
                    selector = tf.one_hot(self.action_taken[action], num_actions[action])
                    target_value[action] = tf.reduce_sum(tf.multiply(target_output, selector), axis=1)
                else:
                    target_value[action] = tf.reduce_max(target_output, axis=1)

        with tf.name_scope('update'):
            for action in self.action:
                # One_hot tensor of the actions that have been taken
                action_one_hot = tf.one_hot(self.action[action][:-1], num_actions[action])
                # Training output, so we get the expected rewards given the actual states and actions
                q_value = tf.reduce_sum(training_output[action][:-1] * action_one_hot, axis=1)

                # Surrogate loss as the mean squared error between actual observed rewards and expected rewards
                q_target = self.reward[:-1] + (1.0 - tf.cast(self.terminal[:-1], tf.float32)) * self.discount * target_value[action][1:]
                delta = q_target - q_value
                self.loss_per_instance = tf.square(delta)

                # If gradient clipping is used, calculate the huber loss
                if config.clip_gradients > 0.0:
                    huber_loss = tf.where(tf.abs(delta) < config.clip_gradients, 0.5 * self.loss_per_instance, tf.abs(delta) - 0.5)
                    loss = tf.reduce_mean(huber_loss)
                else:
                    loss = tf.reduce_mean(self.loss_per_instance)
                tf.losses.add_loss(loss)

        # Update target network
        with tf.name_scope("update_target"):
            self.target_network_update = list()
            for v_source, v_target in zip(self.training_network.variables, self.target_network.variables):
                update = v_target.assign_sub(config.update_target_weight * (v_target - v_source))
                self.target_network_update.append(update)
开发者ID:et0803,项目名称:tensorforce,代码行数:60,代码来源:dqn_model.py


示例8: make_update_op

  def make_update_op(self, upd_idxs, upd_keys, upd_vals,
                     batch_size, use_recent_idx, intended_output):
    """Function that creates all the update ops."""
    base_update_op = super(LSHMemory, self).make_update_op(
        upd_idxs, upd_keys, upd_vals,
        batch_size, use_recent_idx, intended_output)

    # compute hash slots to be updated
    hash_slot_idxs = self.get_hash_slots(upd_keys)

    # make updates
    update_ops = []
    with tf.control_dependencies([base_update_op]):
      for i, slot_idxs in enumerate(hash_slot_idxs):
        # for each slot, choose which entry to replace
        entry_idx = tf.random_uniform([batch_size],
                                      maxval=self.num_per_hash_slot,
                                      dtype=tf.int32)
        entry_mul = 1 - tf.one_hot(entry_idx, self.num_per_hash_slot,
                                   dtype=tf.int32)
        entry_add = (tf.expand_dims(upd_idxs, 1) *
                     tf.one_hot(entry_idx, self.num_per_hash_slot,
                                dtype=tf.int32))

        mul_op = tf.scatter_mul(self.hash_slots[i], slot_idxs, entry_mul)
        with tf.control_dependencies([mul_op]):
          add_op = tf.scatter_add(self.hash_slots[i], slot_idxs, entry_add)
          update_ops.append(add_op)

    return tf.group(*update_ops)
开发者ID:tsingcoo,项目名称:models,代码行数:30,代码来源:memory.py


示例9: load_mnist

def load_mnist(path, is_training):
    fd = open(os.path.join(cfg.dataset, 'train-images-idx3-ubyte'))
    loaded = np.fromfile(file=fd, dtype=np.uint8)
    trX = loaded[16:].reshape((60000, 28, 28, 1)).astype(np.float)

    fd = open(os.path.join(cfg.dataset, 'train-labels-idx1-ubyte'))
    loaded = np.fromfile(file=fd, dtype=np.uint8)
    trY = loaded[8:].reshape((60000)).astype(np.float)

    fd = open(os.path.join(cfg.dataset, 't10k-images-idx3-ubyte'))
    loaded = np.fromfile(file=fd, dtype=np.uint8)
    teX = loaded[16:].reshape((10000, 28, 28, 1)).astype(np.float)

    fd = open(os.path.join(cfg.dataset, 't10k-labels-idx1-ubyte'))
    loaded = np.fromfile(file=fd, dtype=np.uint8)
    teY = loaded[8:].reshape((10000)).astype(np.float)

    # normalization and convert to a tensor [60000, 28, 28, 1]
    trX = tf.convert_to_tensor(trX / 255., tf.float32)

    # => [num_samples, 10]
    trY = tf.one_hot(trY, depth=10, axis=1, dtype=tf.float32)
    teY = tf.one_hot(teY, depth=10, axis=1, dtype=tf.float32)

    if is_training:
        return trX, trY
    else:
        return teX / 255., teY
开发者ID:SrGrace,项目名称:Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials,代码行数:28,代码来源:utils.py


示例10: predict

    def predict(self, test_features, test_labels, result_path):

        train_labels = tf.one_hot(self.train_labels, depth=2, on_value=1, off_value=0)
        test_labels = tf.one_hot(test_labels, depth=2, on_value=1, off_value=0)

        init = tf.global_variables_initializer()

        # Start training
        with tf.Session() as sess:

            # Run the initializer
            sess.run(init)

            y_, y = sess.run([test_labels, train_labels])

            # loop over test data
            for index in range(len(test_features)):

                feed_dict = {self.xtr: self.train_features, self.xte: test_features[index, :]}

                nn_index = sess.run(self.prediction, feed_dict=feed_dict)

                print('Test [{}] Actual Class: {}, Predicted Class : {}'.format(index, np.argmax(y_[index]),
                                                                                np.argmax(y[nn_index])))

                self.save_labels(predictions=np.argmax(y[nn_index]), actual=np.argmax(y_[index]),
                                 result_path=result_path, step=index, phase='testing')

                if np.argmax(y[nn_index]) == np.argmax(y_[index]):
                    self.accuracy += 1. / len(test_features)

        print('Accuracy : {}'.format(self.accuracy))
开发者ID:TaihuLight,项目名称:wisconsin-breast-cancer,代码行数:32,代码来源:nearest_neighbor.py


示例11: char_cnn_model

def char_cnn_model(features, target):
    """Character level convolutional neural network model to predict classes."""
    target = tf.one_hot(target, 15, 1, 0)
    byte_list = tf.reshape(tf.one_hot(features, 256, 1, 0), [-1, MAX_DOCUMENT_LENGTH, 256, 1])
    with tf.variable_scope("CNN_Layer1"):
        # Apply Convolution filtering on input sequence.
        conv1 = tf.contrib.layers.convolution2d(byte_list, N_FILTERS, FILTER_SHAPE1, padding="VALID")
        # Add a RELU for non linearity.
        conv1 = tf.nn.relu(conv1)
        # Max pooling across output of Convolution+Relu.
        pool1 = tf.nn.max_pool(
            conv1, ksize=[1, POOLING_WINDOW, 1, 1], strides=[1, POOLING_STRIDE, 1, 1], padding="SAME"
        )
        # Transpose matrix so that n_filters from convolution becomes width.
        pool1 = tf.transpose(pool1, [0, 1, 3, 2])
    with tf.variable_scope("CNN_Layer2"):
        # Second level of convolution filtering.
        conv2 = tf.contrib.layers.convolution2d(pool1, N_FILTERS, FILTER_SHAPE2, padding="VALID")
        # Max across each filter to get useful features for classification.
        pool2 = tf.squeeze(tf.reduce_max(conv2, 1), squeeze_dims=[1])

    # Apply regular WX + B and classification.
    logits = tf.contrib.layers.fully_connected(pool2, 15, activation_fn=None)
    loss = tf.contrib.losses.softmax_cross_entropy(logits, target)

    train_op = tf.contrib.layers.optimize_loss(
        loss, tf.contrib.framework.get_global_step(), optimizer="Adam", learning_rate=0.01
    )

    return ({"class": tf.argmax(logits, 1), "prob": tf.nn.softmax(logits)}, loss, train_op)
开发者ID:brchiu,项目名称:tensorflow,代码行数:30,代码来源:text_classification_character_cnn.py


示例12: char_cnn_model

def char_cnn_model(features, labels, mode):
  """Character level convolutional neural network model to predict classes."""
  features_onehot = tf.one_hot(features[CHARS_FEATURE], 256)
  input_layer = tf.reshape(
      features_onehot, [-1, MAX_DOCUMENT_LENGTH, 256, 1])
  with tf.variable_scope('CNN_Layer1'):
    # Apply Convolution filtering on input sequence.
    conv1 = tf.layers.conv2d(
        input_layer,
        filters=N_FILTERS,
        kernel_size=FILTER_SHAPE1,
        padding='VALID',
        # Add a ReLU for non linearity.
        activation=tf.nn.relu)
    # Max pooling across output of Convolution+Relu.
    pool1 = tf.layers.max_pooling2d(
        conv1,
        pool_size=POOLING_WINDOW,
        strides=POOLING_STRIDE,
        padding='SAME')
    # Transpose matrix so that n_filters from convolution becomes width.
    pool1 = tf.transpose(pool1, [0, 1, 3, 2])
  with tf.variable_scope('CNN_Layer2'):
    # Second level of convolution filtering.
    conv2 = tf.layers.conv2d(
        pool1,
        filters=N_FILTERS,
        kernel_size=FILTER_SHAPE2,
        padding='VALID')
    # Max across each filter to get useful features for classification.
    pool2 = tf.squeeze(tf.reduce_max(conv2, 1), squeeze_dims=[1])

  # Apply regular WX + B and classification.
  logits = tf.layers.dense(pool2, MAX_LABEL, activation=None)

  predicted_classes = tf.argmax(logits, 1)
  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(
        mode=mode,
        predictions={
            'class': predicted_classes,
            'prob': tf.nn.softmax(logits)
        })

  onehot_labels = tf.one_hot(labels, MAX_LABEL, 1, 0)
  loss = tf.losses.softmax_cross_entropy(
      onehot_labels=onehot_labels, logits=logits)
  if mode == tf.estimator.ModeKeys.TRAIN:
    optimizer = tf.train.AdamOptimizer(learning_rate=0.01)
    train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())
    return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)

  eval_metric_ops = {
      'accuracy': tf.metrics.accuracy(
          labels=labels, predictions=predicted_classes)
  }
  return tf.estimator.EstimatorSpec(
      mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
开发者ID:DjangoPeng,项目名称:tensorflow,代码行数:58,代码来源:text_classification_character_cnn.py


示例13: one_hot_categorical_model

def one_hot_categorical_model(features, target):
    target = tf.one_hot(target, 2, 1.0, 0.0)
    features = tf.one_hot(features, n_classes, 1.0, 0.0)
    prediction, loss = learn.models.logistic_regression(
      tf.squeeze(features, [1]), target)
    train_op = layers.optimize_loss(loss,
        tf.contrib.framework.get_global_step(), optimizer='SGD',
        learning_rate=0.01)
    return tf.argmax(prediction, dimension=1), loss, train_op
开发者ID:ilblackdragon,项目名称:tf_examples,代码行数:9,代码来源:titanic_categorical_variables.py


示例14: posterior_mean_and_sample

  def posterior_mean_and_sample(self, candidates):
    """Draw samples for test predictions.

    Given a Tensor of 'candidates' inputs, returns samples from the posterior
    and the posterior mean prediction for those inputs.

    Args:
      candidates: A (num-examples x num-dims) Tensor containing the inputs for
      which to return predictions.
    Returns:
      y_mean: The posterior mean prediction given these inputs
      y_sample: A sample from the posterior of the outputs given these inputs
    """
    # Cross-covariance for test predictions
    w = tf.identity(self.weights_train)
    inds = tf.squeeze(
        tf.reshape(
            tf.tile(
                tf.reshape(tf.range(self.n_out), (self.n_out, 1)),
                (1, tf.shape(candidates)[0])), (-1, 1)))

    cross_cov = self.cov(tf.tile(candidates, [self.n_out, 1]), self.x_train)
    cross_task_cov = self.task_cov(tf.one_hot(inds, self.n_out), w)
    cross_cov *= cross_task_cov

    # Test mean prediction
    y_mean = tf.matmul(cross_cov, tf.matmul(self.input_inv, self.y_train))

    # Test sample predictions
    # Note this can be done much more efficiently using Kronecker products
    # if all tasks are fully observed (which we won't assume)
    test_cov = (
        self.cov(tf.tile(candidates, [self.n_out, 1]),
                 tf.tile(candidates, [self.n_out, 1])) *
        self.task_cov(tf.one_hot(inds, self.n_out),
                      tf.one_hot(inds, self.n_out)) -
        tf.matmul(cross_cov,
                  tf.matmul(self.input_inv,
                            tf.transpose(cross_cov))))

    # Get the matrix square root through an SVD for drawing samples
    # This seems more numerically stable than the Cholesky
    s, _, v = tf.svd(test_cov, full_matrices=True)
    test_sqrt = tf.matmul(v, tf.matmul(tf.diag(s), tf.transpose(v)))

    y_sample = (
        tf.matmul(
            test_sqrt,
            tf.random_normal([tf.shape(test_sqrt)[0], 1], dtype=tf.float64)) +
        y_mean)

    y_sample = (
        tf.transpose(tf.reshape(y_sample,
                                (self.n_out, -1))) * self.input_std +
        self.input_mean)

    return y_mean, y_sample
开发者ID:812864539,项目名称:models,代码行数:57,代码来源:multitask_gp.py


示例15: __init__

    def __init__(self, env, env_name, _optimizer='adam'):
        """
        :param env:
        Output of this Discriminator is reward for learning agent. Not the cost.
        Because discriminator predicts  P(expert|s,a) = 1 - P(agent|s,a).
        """
        self._optimizer = _optimizer
        env_header = env_name.split('-')[0]
        # CartPole-v1, Arcobot-v1, Pendulum-v0, HalfCheetah-v2, Hopper-v2, Walker2d-v2, Humanoid-v2
        if env_header == 'CartPole' or env_header == 'Arcobot' or env_header == 'Pendulum' or env_header == 'MountainCar': #Classic control Gym
            action_space_count = env.action_space.n
        else: #Mujoco
            action_space_count = env.action_space.shape[0]

        with tf.variable_scope('discriminator'):
            self.scope = tf.get_variable_scope().name
            self.expert_s = tf.placeholder(dtype=tf.float32, shape=[None] + list(env.observation_space.shape))
            self.expert_a = tf.placeholder(dtype=tf.int32, shape=[None])
            expert_a_one_hot = tf.one_hot(self.expert_a, depth=action_space_count)
            # add noise for stabilise training
            expert_a_one_hot += tf.random_normal(tf.shape(expert_a_one_hot), mean=0.2, stddev=0.1, dtype=tf.float32)/1.2
            expert_s_a = tf.concat([self.expert_s, expert_a_one_hot], axis=1)

            self.agent_s = tf.placeholder(dtype=tf.float32, shape=[None] + list(env.observation_space.shape))
            self.agent_a = tf.placeholder(dtype=tf.int32, shape=[None])
            agent_a_one_hot = tf.one_hot(self.agent_a, depth=action_space_count)
            # add noise for stabilise training
            agent_a_one_hot += tf.random_normal(tf.shape(agent_a_one_hot), mean=0.2, stddev=0.1, dtype=tf.float32)/1.2
            agent_s_a = tf.concat([self.agent_s, agent_a_one_hot], axis=1)

            with tf.variable_scope('network') as network_scope:
                prob_1 = self.construct_network(input=expert_s_a)
                network_scope.reuse_variables()  # share parameter
                prob_2 = self.construct_network(input=agent_s_a)

            with tf.variable_scope('loss'):
                loss_expert = tf.reduce_mean(tf.log(tf.clip_by_value(prob_1, 0.01, 1)))
                loss_agent = tf.reduce_mean(tf.log(tf.clip_by_value(1 - prob_2, 0.01, 1)))
                loss = loss_expert + loss_agent
                loss = -loss
                tf.summary.scalar('discriminator', loss)

            # optimizer: adagrad, rmsprop, adadelta, adam, cocob
            if self._optimizer == 'adagrad':
                optimizer = tf.train.AdagradOptimizer(learning_rate=0.01)  # initial_accumulator_value=0.1
            elif self._optimizer == 'rmsprop':
                optimizer = tf.train.RMSPropOptimizer(learning_rate=0.00025)  # decay=0.9, momentum=0.0, epsilon=1e-10, use_locking=False, centered=False
            elif self._optimizer == 'adadelta':
                optimizer = tf.train.AdadeltaOptimizer(learning_rate=0.5)  # learning_rate=0.001, rho=0.95, epsilon=1e-08, use_locking=False
            elif self._optimizer == 'cocob':
                optimizer = cocob.COCOB()
            else:  # adam
                optimizer = tf.train.AdamOptimizer()  # lr=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, use_locking=False
            self.train_op = optimizer.minimize(loss)

            self.rewards = tf.log(tf.clip_by_value(prob_2, 1e-10, 1))  # log(P(expert|s,a)) larger is better for agent
开发者ID:6-Billionaires,项目名称:gail_ppo_optimizer,代码行数:56,代码来源:discriminator.py


示例16: crappy_plot

def crappy_plot(val, levels):
    x_len = val.get_shape().as_list()[1]
    left_val = tf.concat(1, (val[:, 0:1], val[:, 0:x_len - 1]))
    right_val = tf.concat(1, (val[:, 1:], val[:, x_len - 1:]))

    left_mean = (val + left_val) // 2
    right_mean = (val + right_val) // 2
    low_val = tf.minimum(tf.minimum(left_mean, right_mean), val)
    high_val = tf.maximum(tf.maximum(left_mean, right_mean), val + 1)
    return tf.cumsum(tf.one_hot(low_val, levels, axis=1) - tf.one_hot(high_val, levels, axis=1), axis=1)
开发者ID:NoahDStein,项目名称:NeuralNetSandbox,代码行数:10,代码来源:tfutil.py


示例17: nearest_neighbor

def nearest_neighbor(x,
                     means,
                     block_v_size,
                     random_top_k=1,
                     soft_em=False,
                     num_samples=1):
  """Find the nearest element in means to elements in x.

  Args:
    x: Batch of encoder continuous latent states sliced/projected into shape
      [-1, num_blocks, block_dim].
    means: Embedding table of shpae [num_blocks, block_v_size, block_dim].
    block_v_size: Number of table entries per block.
    random_top_k: Noisy top-k if this is bigger than 1 (Default: 1).
    soft_em: If True then use soft EM rather than hard EM (Default: False).
    num_samples: Number of samples to take in soft EM (Default: 1).

  Returns:
    Tensor with nearest element in mean encoded in one-hot notation
    and distances.
  """
  x_norm_sq = tf.reduce_sum(tf.square(x), axis=-1, keep_dims=True)
  means_norm_sq = tf.reduce_sum(tf.square(means), axis=-1, keep_dims=True)
  scalar_prod = tf.matmul(
      tf.transpose(x, perm=[1, 0, 2]), tf.transpose(means, perm=[0, 2, 1]))
  scalar_prod = tf.transpose(scalar_prod, perm=[1, 0, 2])
  dist = x_norm_sq + tf.transpose(
      means_norm_sq, perm=[2, 0, 1]) - 2 * scalar_prod

  # computing cluster probabilities
  if soft_em:
    num_blocks = common_layers.shape_list(dist)[1]
    nearest_idx = tf.stack(
        [
            tf.multinomial(-dist[:, i, :], num_samples=num_samples)
            for i in range(num_blocks)
        ],
        axis=1)
    nearest_hot = tf.one_hot(nearest_idx, depth=block_v_size)
    nearest_hot = tf.reduce_mean(nearest_hot, axis=-2)
  else:
    if random_top_k > 1:
      _, top_k_idx = tf.nn.top_k(-dist, k=random_top_k)
      nearest_idx = tf.gather(
          top_k_idx,
          tf.random_uniform(
              [1], minval=0, maxval=random_top_k - 1, dtype=tf.int32),
          axis=-1)
    else:
      nearest_idx = tf.argmax(-dist, axis=-1)
    nearest_hot = tf.one_hot(nearest_idx, block_v_size)
  return nearest_hot
开发者ID:kltony,项目名称:tensor2tensor,代码行数:52,代码来源:discretization.py


示例18: _testOneHot

 def _testOneHot(self, truth, use_gpu=False, expected_err_re=None, 
                 raises=None, **inputs):
   with self.test_session(use_gpu=use_gpu):
     if raises is not None:
       with self.assertRaises(raises):
         tf.one_hot(**inputs)
     else:
       ans = tf.one_hot(**inputs)
       if expected_err_re is None:
         tf_ans = ans.eval()
         self.assertAllClose(tf_ans, truth, atol=1e-10)
         self.assertEqual(tf_ans.shape, ans.get_shape())
       else:
         with self.assertRaisesOpError(expected_err_re):
           ans.eval()
开发者ID:0-T-0,项目名称:tensorflow,代码行数:15,代码来源:one_hot_op_test.py


示例19: one_hot_matrix

def one_hot_matrix(labels, C):
    """
    Creates a matrix where the i-th row corresponds to the ith class number and the jth column
                     corresponds to the jth training example. So if example j had a label i. Then entry (i,j) 
                     will be 1. 
                     
    Arguments:
    labels -- vector containing the labels 
    C -- number of classes, the depth of the one hot dimension
    
    Returns: 
    one_hot -- one hot matrix
    """
    
    
    # Create a tf.constant equal to C (depth), name it 'C'. (approx. 1 line)
    C = tf.constant(C, name = "C")
    
    # Use tf.one_hot, be careful with the axis (approx. 1 line)
    one_hot_matrix = tf.one_hot(labels, C)
    
    # Create the session (approx. 1 line)
    sess = tf.Session()
    
    # Run the session (approx. 1 line)
    one_hot = sess.run(one_hot_matrix).T
    
    # Close the session (approx. 1 line). See method 1 above.
    session.close()
    
    ### END CODE HERE ###
    
    return one_hot
开发者ID:shriavi,项目名称:datasciencecoursera,代码行数:33,代码来源:Tensorflow+Tutorial.py


示例20: rnn_model

def rnn_model(features, target):
  """RNN model to predict from sequence of words to a class."""
  # Convert indexes of words into embeddings.
  # This creates embeddings matrix of [n_words, EMBEDDING_SIZE] and then
  # maps word indexes of the sequence into [batch_size, sequence_length,
  # EMBEDDING_SIZE].
  word_vectors = tf.contrib.layers.embed_sequence(
      features, vocab_size=n_words, embed_dim=EMBEDDING_SIZE, scope='words')

  # Split into list of embedding per word, while removing doc length dim.
  # word_list results to be a list of tensors [batch_size, EMBEDDING_SIZE].
  word_list = tf.unstack(word_vectors, axis=1)

  # Create a Gated Recurrent Unit cell with hidden size of EMBEDDING_SIZE.
  cell = tf.nn.rnn_cell.GRUCell(EMBEDDING_SIZE)

  # Create an unrolled Recurrent Neural Networks to length of
  # MAX_DOCUMENT_LENGTH and passes word_list as inputs for each unit.
  _, encoding = tf.nn.rnn(cell, word_list, dtype=tf.float32)

  # Given encoding of RNN, take encoding of last step (e.g hidden size of the
  # neural network of last step) and pass it as features for logistic
  # regression over output classes.
  target = tf.one_hot(target, 15, 1, 0)
  logits = tf.contrib.layers.fully_connected(encoding, 15, activation_fn=None)
  loss = tf.contrib.losses.softmax_cross_entropy(logits, target)

  # Create a training op.
  train_op = tf.contrib.layers.optimize_loss(
      loss, tf.contrib.framework.get_global_step(),
      optimizer='Adam', learning_rate=0.01)

  return (
      {'class': tf.argmax(logits, 1), 'prob': tf.nn.softmax(logits)},
      loss, train_op)
开发者ID:ComeOnGetMe,项目名称:tensorflow,代码行数:35,代码来源:text_classification.py



注:本文中的tensorflow.one_hot函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensorflow.ones函数代码示例发布时间:2022-05-27
下一篇:
Python tensorflow.not_equal函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap