• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensorflow.name_scope函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.name_scope函数的典型用法代码示例。如果您正苦于以下问题:Python name_scope函数的具体用法?Python name_scope怎么用?Python name_scope使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了name_scope函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: bboxes_clip

def bboxes_clip(bbox_ref, bboxes, scope=None):
    """Clip bounding boxes to a reference box.
    Batch-compatible if the first dimension of `bbox_ref` and `bboxes`
    can be broadcasted.

    Args:
      bbox_ref: Reference bounding box. Nx4 or 4 shaped-Tensor;
      bboxes: Bounding boxes to clip. Nx4 or 4 shaped-Tensor or dictionary.
    Return:
      Clipped bboxes.
    """
    # Bboxes is dictionary.
    if isinstance(bboxes, dict):
        with tf.name_scope(scope, 'bboxes_clip_dict'):
            d_bboxes = {}
            for c in bboxes.keys():
                d_bboxes[c] = bboxes_clip(bbox_ref, bboxes[c])
            return d_bboxes

    # Tensors inputs.
    with tf.name_scope(scope, 'bboxes_clip'):
        # Easier with transposed bboxes. Especially for broadcasting.
        bbox_ref = tf.transpose(bbox_ref)
        bboxes = tf.transpose(bboxes)
        # Intersection bboxes and reference bbox.
        ymin = tf.maximum(bboxes[0], bbox_ref[0])
        xmin = tf.maximum(bboxes[1], bbox_ref[1])
        ymax = tf.minimum(bboxes[2], bbox_ref[2])
        xmax = tf.minimum(bboxes[3], bbox_ref[3])
        # Double check! Empty boxes when no-intersection.
        ymin = tf.minimum(ymin, ymax)
        xmin = tf.minimum(xmin, xmax)
        bboxes = tf.transpose(tf.stack([ymin, xmin, ymax, xmax], axis=0))
        return bboxes
开发者ID:bowrian,项目名称:SSD-Tensorflow,代码行数:34,代码来源:bboxes.py


示例2: fc_layers

    def fc_layers(self):
        # fc1
        with tf.name_scope('fc1') as scope:
            shape = int(np.prod(self.pool5.get_shape()[1:]))
            fc1w = tf.Variable(tf.truncated_normal([shape, 4096],
                                                         dtype=tf.float32,
                                                         stddev=1e-1), name='weights')
            fc1b = tf.Variable(tf.constant(1.0, shape=[4096], dtype=tf.float32),
                                 trainable=True, name='biases')
            pool5_flat = tf.reshape(self.pool5, [-1, shape])
            fc1l = tf.nn.bias_add(tf.matmul(pool5_flat, fc1w), fc1b)
            self.fc1 = tf.nn.relu(fc1l)
            self.parameters += [fc1w, fc1b]

        # fc2
        with tf.name_scope('fc2') as scope:
            fc2w = tf.Variable(tf.truncated_normal([4096, 4096],
                                                         dtype=tf.float32,
                                                         stddev=1e-1), name='weights')
            fc2b = tf.Variable(tf.constant(1.0, shape=[4096], dtype=tf.float32),
                                 trainable=True, name='biases')
            fc2l = tf.nn.bias_add(tf.matmul(self.fc1, fc2w), fc2b)
            self.fc2 = tf.nn.relu(fc2l)
            self.parameters += [fc2w, fc2b]

        # fc3
        with tf.name_scope('fc3') as scope:
            fc3w = tf.Variable(tf.truncated_normal([4096, 1000],
                                                         dtype=tf.float32,
                                                         stddev=1e-1), name='weights')
            fc3b = tf.Variable(tf.constant(1.0, shape=[1000], dtype=tf.float32),
                                 trainable=True, name='biases')
            self.fc3l = tf.nn.bias_add(tf.matmul(self.fc2, fc3w), fc3b)
            self.parameters += [fc3w, fc3b]
开发者ID:muhammadzak,项目名称:TensorFlow-Book,代码行数:34,代码来源:vgg16.py


示例3: make_HBF2_model

def make_HBF2_model(x,W1,S1,C1,W2,S2,C2,phase_train):
    with tf.name_scope("layer1") as scope:
        layer1 = ml.get_Gaussian_layer(x,W1,S1,C1,phase_train)
    with tf.name_scope("layer2") as scope:
        layer2 = ml.get_Gaussian_layer(layer1,W2,S2,C2,phase_train)
    y = layer2
    return y
开发者ID:brando90,项目名称:tensor_flow_experiments,代码行数:7,代码来源:test_hbf2_tensorboard.py


示例4: ce

def ce(model, config, scope, connect, threshold = 1e-5):
	with tf.variable_scope(scope), tf.name_scope(scope):
		with tf.variable_scope('inputs'), tf.name_scope('inputs'):
			model['%s_in0length' %scope] = model['%s_out0length' %connect]
			model['%s_in1length' %scope] = model['%s_out1length' %connect]
			model['%s_in2length' %scope] = model['%s_out2length' %connect]
			model['%s_maxin2length' %scope] = model['%s_maxout2length' %connect]
			model['%s_inputs' %scope] = tf.clip_by_value(tf.nn.softmax(model['%s_outputs' %connect]), threshold, 1. - threshold, name = '%s_inputs' %scope)
			model['%s_out0length' %scope] = model['%s_in0length' %scope]
			model['%s_out1length' %scope] = model['%s_in1length' %scope]
			model['%s_out2length' %scope] = tf.placeholder(tf.int32, [model['%s_in0length' %scope]], '%s_out2length' %scope)
			model['%s_maxout2length' %scope] = model['%s_maxin2length' %scope]

		with tf.variable_scope('labels'), tf.name_scope('labels'):
			model['%s_labels_len' %scope] = tf.placeholder(tf.int32, [model['%s_in0length' %scope]], '%s_labels_len' %scope)
			model['%s_labels_ind' %scope] = tf.placeholder(tf.int64, [None, 2], '%s_labels_ind' %scope)
			model['%s_labels_val' %scope] = tf.placeholder(tf.int32, [None], '%s_labels_val' %scope)
			model['%s_labels_collapsed' %scope] = tf.sparse_to_dense(model['%s_labels_ind' %scope], [model['%s_maxin2length' %scope], model['%s_in0length' %scope]], model['%s_labels_val' %scope], -1, name = '%s_labels_collapsed' %scope)
			model['%s_labels' %scope] = tf.one_hot(model['%s_labels_collapsed' %scope], model['%s_out1length' %scope], name = '%s_labels' %scope)

		with tf.variable_scope('loss'), tf.name_scope('loss'):
			model['%s_loss' %scope] = tf.reduce_sum(-tf.multiply(model['%s_labels' %scope], tf.log(model['%s_inputs' %scope])), name = '%s_loss' %scope)

		with tf.variable_scope('outputs'), tf.name_scope('outputs'):
			model['%s_output' %scope] = model['%s_inputs' %scope]

	return model
开发者ID:aaiijmrtt,项目名称:DEEPSPEECH,代码行数:27,代码来源:ce.py


示例5: nn_conv_layer

    def nn_conv_layer(input_tensor, patch_size, num_channels,output_depth, layer_name, biases=False,act=None, pool=None):
        """Reusable code for making a simple neural net layer.

    """
        # Adding a name scope ensures logical grouping of the layers in the graph.
        with tf.name_scope(layer_name):
            # This Variable will hold the state of the weights for the layer
            with tf.name_scope('weights'):
                weights = weight_variable([patch_size,patch_size,num_channels,output_depth])
                # print ("weights:%s"%(weights.get_shape()))
                variable_summaries(weights, layer_name + '/weights')
            if (biases==True):
                with tf.name_scope('biases'):
                    biases = bias_variable([output_depth])
                    # print("biases:%s" % (biases.get_shape()))
                    variable_summaries(biases, layer_name + '/biases')
            with tf.name_scope('conv2d'):
                # print("input:%s" % (input_tensor.get_shape()))
                preactivate = tf.nn.conv2d(input_tensor, weights, [1, 1, 1, 1], padding='SAME')
                tf.histogram_summary(layer_name + '/pre_activations', preactivate)
                print("preactivate:%s" % (preactivate.get_shape()))
            if (pool!=None):
                max_pool=pool(preactivate,ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
                                         padding='SAME',name='max_pool')
            if (act!=None):
                activations = act(max_pool+biases, 'activation')
                # tf.histogram_summary(layer_name + '/activations', activations)

            return preactivate
开发者ID:KannShi,项目名称:Udacity_DL,代码行数:29,代码来源:CNN.py


示例6: inference

def inference(input_tensor,train,regularizer):
    #第一层卷积
    with tf.variable_scope('layer1-conv1'):
        conv1_weights = tf.get_variable("weight",
                [CONV1_SIZE,CONV1_SIZE,NUM_CHANNELS,CONV1_DEEP],
                initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv1_biases = tf.get_variable("biases",[CONV1_DEEP],
                 initializer=tf.constant_initializer(0.0))
        conv1 = tf.nn.conv2d(input_tensor,conv1_weights,
                             strides=[1,1,1,1],padding='SAME')
        relu1 = tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases))
    #第二层池化    
    with tf.name_scope('layer2-pool1'):
        pool1 = tf.nn.max_pool(relu1,ksize=[1,2,2,1],
                               strides=[1,2,2,1],padding='SAME')
    #第三层卷积
    with tf.variable_scope('layer3-conv2'):
        conv2_weights = tf.get_variable("weight",
                [CONV2_SIZE,CONV2_SIZE,CONV1_DEEP,CONV2_DEEP],
                initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv2_biases = tf.get_variable("biases",[CONV2_DEEP],
                 initializer=tf.constant_initializer(0.0))
        conv2 = tf.nn.conv2d(pool1,conv2_weights,
                             strides=[1,1,1,1],padding='SAME')
        relu2 = tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases))    
        
    #第四层池化
    with tf.name_scope('layer4-pool2'):
        pool2 = tf.nn.max_pool(relu2,ksize=[1,2,2,1],
                               strides=[1,2,2,1],padding='SAME')
        
    pool_shape = pool2.get_shape().as_list()
    nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]
    
    reshaped = tf.reshape(pool2,[pool_shape[0],nodes])
    
    #第五层全连接层
    with tf.variable_scope('layer5-fc1'):
        fc1_weights = tf.get_variable("weight",[nodes,FC_SIZE],
                initializer=tf.truncated_normal_initializer(stddev=0.1))
        #只有全连接层的权重需要加入正则化
        if regularizer != None:
            tf.add_to_collection('losses',regularizer(fc1_weights))
        fc1_biases = tf.get_variable("bias",[FC_SIZE],
                initializer=tf.constant_initializer(0.1))
        fc1 = tf.nn.relu(tf.matmul(reshaped,fc1_weights) + fc1_biases)
        if train: fc1 = tf.nn.dropout(fc1,0.5)

    #第六层全连接层
    with tf.variable_scope('layer6-fc2'):
        fc2_weights = tf.get_variable("weight",[FC_SIZE,NUM_LABELS],
                initializer=tf.truncated_normal_initializer(stddev=0.1))
        #只有全连接层的权重需要加入正则化
        if regularizer != None:
            tf.add_to_collection('losses',regularizer(fc2_weights))
        fc2_biases = tf.get_variable("bias",[NUM_LABELS],
                initializer=tf.constant_initializer(0.1))
        logit = tf.matmul(fc1,fc2_weights) + fc2_biases

    return logit
开发者ID:yyzahuopu,项目名称:Deep-learning,代码行数:60,代码来源:mnist_inferenceCNN.py


示例7: build

    def build(self):
        """None
        Build the model graph
        :return:
        """
        with tf.name_scope('G_'):
            self.predict_g = self.__G__()
            self.predict_g2 = self.__G2__()

        with tf.name_scope('D_'):

            # Create reference examples
            # Input d holds real&imaginary values. The discriminative decision based on reconstructed image
            self.reconstructed_image_reference = self.get_reconstructed_image(real=self.input_d['real'],
                                                                              imag=self.input_d['imag'], name='Both_gt')

            predict_g2_stacked = tf.stack([self.predict_g2['real'][:,0,:,:], self.predict_g2['imag'][:,0,:,:]], axis=1)

            self.predict, self.predict_logits = self.__D__([self.reconstructed_image_reference, predict_g2_stacked])

            self.predict_d, self.predict_d_for_g = tf.split(value=self.predict, num_or_size_splits=2, axis=0)
            self.predict_d_logits, self.predict_d_logits_for_g = tf.split(value=self.predict_logits,
                                                                          num_or_size_splits=2, axis=0)
            self.clip_weights = self.__clip_weights__()

        with tf.name_scope('loss'):
            # self.loss_g = self.__loss_g__(predict=self.predict_g, self.labels, reg=self.regularization_sum)
            self.__loss__()

        with tf.name_scope('training'):
            self.train_op_d, self.train_op_g = self.__training__(learning_rate=self.FLAGS.learning_rate)

        with tf.name_scope('evaluation'):
            # Calculate accuracy L2 norm
            self.evaluation = self.__evaluation__(predict=self.predict_g, labels=self.labels)
开发者ID:shohad25,项目名称:thesis,代码行数:35,代码来源:k_space_wgan_gl_g2_unet_Gloss.py


示例8: loss

    def loss(self, logits, labels, regularization):
        """Adds to the inference model the layers required to generate loss."""
        with tf.name_scope('loss'):
            with tf.name_scope('var_loss'):
                labels = tf.cast(labels, tf.float32)
                shape = labels.get_shape()

                same_class = tf.boolean_mask(logits, tf.equal(labels, tf.ones(shape)))
                diff_class = tf.boolean_mask(logits, tf.not_equal(labels, tf.ones(shape)))
                same_mean, same_var = tf.nn.moments(same_class, [0])
                diff_mean, diff_var = tf.nn.moments(diff_class, [0])
                var_loss = same_var + diff_var

            with tf.name_scope('mean_loss'):
                mean_loss = self.lamda * tf.where(tf.greater(self.mu - (same_mean - diff_mean), 0),
                                                  self.mu - (same_mean - diff_mean), 0)

            with tf.name_scope('regularization'):
                regularization *= tf.add_n(self.regularizers)

            loss = var_loss + mean_loss + regularization

            # Summaries for TensorBoard.
            tf.summary.scalar('loss/total', loss)
            with tf.name_scope('averages'):
                averages = tf.train.ExponentialMovingAverage(0.9)
                op_averages = averages.apply([var_loss, mean_loss, regularization, loss])
                tf.summary.scalar('loss/avg/var_loss', averages.average(var_loss))
                tf.summary.scalar('loss/avg/mean_loss', averages.average(mean_loss))
                tf.summary.scalar('loss/avg/regularization', averages.average(regularization))
                tf.summary.scalar('loss/avg/total', averages.average(loss))
                with tf.control_dependencies([op_averages]):
                    loss_average = tf.identity(averages.average(loss), name='control')
            return loss, loss_average
开发者ID:parisots,项目名称:gcn_metric_learning,代码行数:34,代码来源:models_siamese.py


示例9: inference

def inference(images,hidden1_units,hidden2_units):
    """建立前馈神经网络模型
    Args:
        images:输入图像数据
        hidden1_units:第一个隐藏层的神经元数目
        hidden2_units:第二个隐藏层 的神经元数目
    returns:
        softmax_linear:输出张量为计算后的结果
    """
    #隐藏层1
    with tf.name_scope('hidden1'):
        weights = tf.Variable(tf.truncated_normal([IMAGE_PIXELS,hidden1_units],stddev=1.0/math.sqrt(float(IMAGE_PIXELS))),name='weights')#?
        biases = tf.Variable(tf.zeros([hidden1_units]),name='biases')
        hidden1 = tf.nn.relu(tf.matmul(images,weights)+biases)

    #隐藏层2
    with tf.name_scope('hidden2'):
        weights = tf.Variable(tf.truncated_normal([hidden1_units,hidden2_units],stddev=1.0/math.sqrt(float(hidden1_units))),name='weights')
        biases = tf.Variable(tf.zeros([hidden2_units]),name='biases')
        hidden2 = tf.nn.relu(tf.matmul(hidden1,weights)+biases)
    #线性输出层
    with tf.name_scope('softmax_linear'):
        weights = tf.Variable(tf.truncated_normal([hidden2_units,NUM_CLASSES]),name='biases')
        biases = tf.Variable(tf.zeros([NUM_CLASSES]),name='biases')
        logits = tf.matmul(hidden2,weights) + biases
    return logits
开发者ID:rickyall,项目名称:tensorflow,代码行数:26,代码来源:MNIST_FFNN.py


示例10: generate_model

	def generate_model(self, model, name=''):
		if not model: return self
		with tf.name_scope('state'):
			self.keep_prob = tf.placeholder(tf.float32)  # 1 for testing! else 1 - dropout
			self.train_phase = tf.placeholder(tf.bool, name='train_phase')
			with tf.device(_cpu): self.global_step = tf.Variable(
				0)  # dont set, feed or increment global_step, tensorflow will do it automatically
		with tf.name_scope('data'):
			if len(self.input_shape) == 1:
				self.input_width = self.input_shape[0]
			elif self.input_shape:
				self.x = x = self.input = tf.placeholder(tf.float32, [None, self.input_shape[0], self.input_shape[1]])
				# todo [None, self.input_shape]
				self.last_layer = x
				self.last_shape = x
			elif self.input_width:
				self.x = x = self.target = tf.placeholder(tf.float32, [None, self.input_width])
				self.last_layer = x
			else:
				raise Exception("need input_shape or input_width by now")
			self.y = y = self.target = tf.placeholder(tf.float32, [None, self.output_width])
		with tf.name_scope('model'):
			model(self)
		if (self.last_width != self.output_width):
			self.classifier()  # 10 classes auto
开发者ID:duydb2,项目名称:tensorflow-speech-recognition,代码行数:25,代码来源:net.py


示例11: build

    def build(self):
        """None
        Build the model graph
        :return:
        """
        with tf.name_scope('G_'):
            self.predict_g = self.__G__()

        with tf.name_scope('D_'):
            self.predict, self.predict_logits = self.__D__([self.input_d, self.predict_g], input_type="Real")

            self.predict_d, self.predict_d_for_g = tf.split(value=self.predict, num_or_size_splits=2, axis=0)
            self.predict_d_logits, self.predict_d_logits_for_g = tf.split(value=self.predict_logits,
                                                                          num_or_size_splits=2, axis=0)

            # self.predict_d, self.predict_d_logits
            # with tf.variable_scope(tf.get_variable_scope(), reuse=True):
            #     self.predict_d_for_g, self.predict_d_logits_for_g = self.__D__(self.predict_g, input_type="Gen")

            if len(self.regularization_values_d) > 0:
                self.regularization_sum_d = sum(self.regularization_values_d)

        with tf.name_scope('loss'):
            # self.loss_g = self.__loss_g__(predict=self.predict_g, self.labels, reg=self.regularization_sum)
            self.__loss__()

        with tf.name_scope('training'):
            self.train_op_d, self.train_op_g = self.__training__(learning_rate=self.FLAGS.learning_rate)

        with tf.name_scope('evaluation'):
            # Calculate accuracy L2 norm
            self.evaluation = self.__evaluation__(predict=self.predict_g, labels=self.labels)
开发者ID:shohad25,项目名称:thesis,代码行数:32,代码来源:k_space_gan_unet2.py


示例12: testSharingWeightsWithDifferentNamescope

  def testSharingWeightsWithDifferentNamescope(self):
    num_units = 3
    input_size = 5
    batch_size = 2
    num_proj = 4
    with self.test_session(graph=tf.Graph()) as sess:
      initializer = tf.random_uniform_initializer(-1, 1, seed=self._seed)
      inputs = 10 * [
          tf.placeholder(tf.float32, shape=(None, input_size))]
      cell = rnn_cell.LSTMCell(
          num_units, input_size, use_peepholes=True,
          num_proj=num_proj, initializer=initializer)

      with tf.name_scope("scope0"):
        with tf.variable_scope("share_scope"):
          outputs0, _ = rnn.rnn(cell, inputs, dtype=tf.float32)
      with tf.name_scope("scope1"):
        with tf.variable_scope("share_scope", reuse=True):
          outputs1, _ = rnn.rnn(cell, inputs, dtype=tf.float32)

      tf.initialize_all_variables().run()
      input_value = np.random.randn(batch_size, input_size)
      output_values = sess.run(
          outputs0 + outputs1, feed_dict={inputs[0]: input_value})
      outputs0_values = output_values[:10]
      outputs1_values = output_values[10:]
      self.assertEqual(len(outputs0_values), len(outputs1_values))
      for out0, out1 in zip(outputs0_values, outputs1_values):
        self.assertAllEqual(out0, out1)
开发者ID:adam-erickson,项目名称:tensorflow,代码行数:29,代码来源:rnn_test.py


示例13: bboxes_resize

def bboxes_resize(bbox_ref, bboxes, name=None):
    """Resize bounding boxes based on a reference bounding box,
    assuming that the latter is [0, 0, 1, 1] after transform. Useful for
    updating a collection of boxes after cropping an image.
    """
    # Bboxes is dictionary.
    if isinstance(bboxes, dict):
        with tf.name_scope(name, 'bboxes_resize_dict'):
            d_bboxes = {}
            for c in bboxes.keys():
                d_bboxes[c] = bboxes_resize(bbox_ref, bboxes[c])
            return d_bboxes

    # Tensors inputs.
    with tf.name_scope(name, 'bboxes_resize'):
        # Translate.
        v = tf.stack([bbox_ref[0], bbox_ref[1], bbox_ref[0], bbox_ref[1]])
        bboxes = bboxes - v
        # Scale.
        s = tf.stack([bbox_ref[2] - bbox_ref[0],
                      bbox_ref[3] - bbox_ref[1],
                      bbox_ref[2] - bbox_ref[0],
                      bbox_ref[3] - bbox_ref[1]])
        bboxes = bboxes / s
        return bboxes
开发者ID:bowrian,项目名称:SSD-Tensorflow,代码行数:25,代码来源:bboxes.py


示例14: feature_extraction

def feature_extraction(x, Nx, Ny, Ch, conv_w_1, conv_b_1, conv_w_2, conv_b_2, ff_w_1, ff_b_1, m1s = 4, m2s = 2, No = 512):
    """ Creates a convolutional neural network to analyze some world tensor and return features from it. """
    # Check that all the sizes are consistent
    assert(Nx/m1s == int(Nx/m1s) and (Nx/m1s/m2s == int(Nx/m1s/m2s)))
    assert(Ny/m1s == int(Ny/m1s) and (Ny/m1s/m2s == int(Ny/m1s/m2s)))
    
    # First Convolutional Layer
    with tf.name_scope("Convolution1"):
        conv1_act = tf.nn.conv2d(x, conv_w_1, strides=[1, 1, 1, 1], padding='SAME') + conv_b_1
        conv1 = tf.nn.relu(conv1_act, 'relu')
        
    # First Max Pooling Layer
    with tf.name_scope("Max1"):
        max1 = tf.nn.max_pool(conv1, ksize=[1, m1s, m1s, 1], strides=[1, m1s, m1s, 1], padding='SAME')
        
    # Second Convolutional Layer
    with tf.name_scope("Convolution2"):
        conv2_act = tf.nn.conv2d(max1, conv_w_2, strides=[1, 1, 1, 1], padding='SAME') + conv_b_2
        conv2 = tf.nn.relu(conv2_act, 'relu')

    # Second Max Pooling Layer
    with tf.name_scope("Max2"):
        max2 = tf.nn.max_pool(conv2, ksize=[1, m2s, m2s, 1], strides=[1, m2s, m2s, 1], padding='SAME')

    # Reshaping max2 for FF1
    max2_rshp = tf.reshape(max2, [-1, 288]) # Layer shape [None, 5, 5, 64] 1600 Total
    
    # First Feed Forward Layer
    with tf.name_scope('FF1'):
        ff1_act = tf.matmul(max2_rshp, ff_w_1) + ff_b_1
        ff1 = tf.nn.relu(ff1_act, 'relu')
    
    return ff1
开发者ID:ryanpeach,项目名称:SurvivalAI,代码行数:33,代码来源:AnalogyBuilder.py


示例15: testVarOpScopeReuseParam

  def testVarOpScopeReuseParam(self):
    with self.test_session():
      with tf.variable_scope("outer") as outer:
        with tf.variable_op_scope([], "tower", "default"):
          self.assertEqual(tf.get_variable("w", []).name,
                           "outer/tower/w:0")
          with tf.name_scope("scope2") as sc2:
            self.assertEqual(sc2, "outer/tower/scope2/")
        with tf.variable_op_scope([], None, "default"):
          self.assertEqual(tf.get_variable("w", []).name,
                           "outer/default/w:0")
          with tf.name_scope("scope2") as sc2:
            self.assertEqual(sc2, "outer/default/scope2/")

      with tf.variable_scope(outer) as outer:
        with tf.variable_op_scope([], "tower", "default", reuse=True):
          self.assertEqual(tf.get_variable("w", []).name,
                           "outer/tower/w:0")
          with tf.name_scope("scope2") as sc2:
            self.assertEqual(sc2, "outer_1/tower/scope2/")
        outer.reuse_variables()
        with tf.variable_op_scope([], None, "default"):
          self.assertEqual(tf.get_variable("w", []).name,
                           "outer/default/w:0")
          with tf.name_scope("scope2") as sc2:
            self.assertEqual(sc2, "outer_1/default/scope2/")
开发者ID:285219011,项目名称:hello-world,代码行数:26,代码来源:variable_scope_test.py


示例16: encode

  def encode(self, inputs, attention_bias):
    """Generate continuous representation for inputs.

    Args:
      inputs: int tensor with shape [batch_size, input_length].
      attention_bias: float tensor with shape [batch_size, 1, 1, input_length]

    Returns:
      float tensor with shape [batch_size, input_length, hidden_size]
    """
    with tf.name_scope("encode"):
      # Prepare inputs to the layer stack by adding positional encodings and
      # applying dropout.
      embedded_inputs = self.embedding_softmax_layer(inputs)
      inputs_padding = model_utils.get_padding(inputs)

      with tf.name_scope("add_pos_encoding"):
        length = tf.shape(embedded_inputs)[1]
        pos_encoding = model_utils.get_position_encoding(
            length, self.params.hidden_size)
        encoder_inputs = embedded_inputs + pos_encoding

      if self.train:
        encoder_inputs = tf.nn.dropout(
            encoder_inputs, 1 - self.params.layer_postprocess_dropout)

      return self.encoder_stack(encoder_inputs, attention_bias, inputs_padding)
开发者ID:cybermaster,项目名称:reference,代码行数:27,代码来源:transformer.py


示例17: testVarOpScopeOuterScope

  def testVarOpScopeOuterScope(self):
    with self.test_session():
      with tf.variable_scope("outer") as outer:
        pass
      with tf.variable_op_scope([], outer, "default"):
        self.assertEqual(tf.get_variable("w", []).name,
                         "outer/w:0")
        with tf.name_scope("scope2") as sc2:
          self.assertEqual(sc2, "outer_1/scope2/")
        with tf.variable_op_scope([], None, "default"):
          self.assertEqual(tf.get_variable("w", []).name,
                           "outer/default/w:0")
          with tf.name_scope("scope2") as sc2:
            self.assertEqual(sc2, "outer_1/default/scope2/")

      with tf.variable_op_scope([], outer, "default", reuse=True):
        self.assertEqual(tf.get_variable("w", []).name,
                         "outer/w:0")
        with tf.name_scope("scope2") as sc2:
          self.assertEqual(sc2, "outer_2/scope2/")
        outer.reuse_variables()
        with tf.variable_op_scope([], None, "default"):
          self.assertEqual(tf.get_variable("w", []).name,
                           "outer/default/w:0")
          with tf.name_scope("scope2") as sc2:
            self.assertEqual(sc2, "outer_2/default/scope2/")
开发者ID:285219011,项目名称:hello-world,代码行数:26,代码来源:variable_scope_test.py


示例18: add_evaluation_step

def add_evaluation_step(result_tensor, ground_truth_tensor):
  """Inserts the operations we need to evaluate the accuracy of our results.

  Args:
    result_tensor: The new final node that produces results.
    ground_truth_tensor: The node we feed ground truth data
    into.

  Returns:
    Nothing.
  """
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      # tf.argmax(result_tensor, 1) = return index of maximal value (= 1 in a 1-of-N encoding vector) in each row (axis = 1)
      # But we have more ones (indicating multiple labels) in one row of result_tensor due to the multi-label classification
      # correct_prediction = tf.equal(tf.argmax(result_tensor, 1), \
      #   tf.argmax(ground_truth_tensor, 1))

      # ground_truth is not a binary tensor, it contains the probabilities of each label = we need to tf.round() it
      # to acquire a binary tensor allowing comparison by tf.equal()
      # See: http://stackoverflow.com/questions/39219414/in-tensorflow-how-can-i-get-nonzero-values-and-their-indices-from-a-tensor-with

      correct_prediction = tf.equal(tf.round(result_tensor), ground_truth_tensor)
    with tf.name_scope('accuracy'):
      # Mean accuracy over all labels:
      # http://stackoverflow.com/questions/37746670/tensorflow-multi-label-accuracy-calculation
      evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.scalar_summary('accuracy', evaluation_step)
  return evaluation_step
开发者ID:samhains,项目名称:Multi-label-Inception-net,代码行数:29,代码来源:retrain.py


示例19: ced

def ced(model, config, scope, connect, threshold = 1e-5):
	with tf.variable_scope(scope), tf.name_scope(scope):
		with tf.variable_scope('inputs'), tf.name_scope('inputs'):
			model['%s_in0length' %scope] = model['%s_out0length' %connect]
			model['%s_in1length' %scope] = model['%s_out1length' %connect]
			model['%s_in2length' %scope] = model['%s_out2length' %connect]
			model['%s_maxin2length' %scope] = model['%s_maxout2length' %connect]
			model['%s_inputs' %scope] = tf.clip_by_value(model['%s_outputs' %connect], threshold, 1. - threshold, name = '%s_inputs' %scope)
			model['%s_out0length' %scope] = model['%s_in0length' %scope]
			model['%s_out1length' %scope] = model['%s_in1length' %scope]
			model['%s_out2length' %scope] = tf.placeholder(tf.int32, [model['%s_in0length' %scope]], '%s_out2length' %scope)
			model['%s_maxout2length' %scope] = model['%s_maxin2length' %scope]

		with tf.variable_scope('labels'), tf.name_scope('labels'):
			model['%s_labels_len' %scope] = tf.placeholder(tf.int32, [model['%s_in0length' %scope]], '%s_labels_len' %scope)
			model['%s_labels_ind' %scope] = tf.placeholder(tf.int64, [None, 3], '%s_labels_ind' %scope)
			model['%s_labels_val' %scope] = tf.placeholder(tf.float32, [None], '%s_labels_val' %scope)
			model['%s_labels' %scope] = tf.sparse_to_dense(model['%s_labels_ind' %scope], [model['%s_in0length' %scope], model['%s_maxin2length' %scope], model['%s_maxin2length' %scope]], model['%s_labels_val' %scope], -1, name = '%s_labels' %scope)

		with tf.variable_scope('loss'), tf.name_scope('loss'):
			model['%s_loss' %scope] = tf.reduce_sum(tf.where(tf.less(model['%s_labels' %scope], tf.zeros([model['%s_in0length' %scope], model['%s_maxin2length' %scope], model['%s_maxin2length' %scope]], tf.float32)), tf.zeros([model['%s_in0length' %scope], model['%s_maxin2length' %scope], model['%s_maxin2length' %scope]], tf.float32), -tf.add(tf.multiply(model['%s_labels' %scope], tf.log(model['%s_inputs' %scope])), tf.multiply(tf.subtract(1., model['%s_labels' %scope]), tf.log(tf.subtract(1., model['%s_inputs' %scope]))))), name = '%s_loss' %scope)

		with tf.variable_scope('outputs'), tf.name_scope('outputs'):
			model['%s_output' %scope] = model['%s_inputs' %scope]

	return model
开发者ID:aaiijmrtt,项目名称:DEEPSPEECH,代码行数:26,代码来源:ced.py


示例20: conv_net

def conv_net(x, weights, biases, dropout):
    with tf.name_scope('input_czm'):
        # Reshape input picture
        x = tf.reshape(x, shape=[-1, 28, 28, 1])


    with tf.name_scope('first_layer'):
        # Convolution Layer
        conv1 = conv2d(x, weights['wc1'], biases['bc1'])
        # Max Pooling (down-sampling)
        conv1 = maxpool2d(conv1, k=2)

    with tf.name_scope('sec_layer'):
        # Convolution Layer
        conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
        # Max Pooling (down-sampling)
        conv2 = maxpool2d(conv2, k=2)

    with tf.name_scope('full_conn'):
        # Fully connected layer
        # Reshape conv2 output to fit fully connected layer input
        fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
        fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
        fc1 = tf.nn.relu(fc1)

    with tf.name_scope('dropout_ops'):
        # Apply Dropout
        fc1 = tf.nn.dropout(fc1, dropout)

    # Output, class prediction
    out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
    return out
开发者ID:nanqiangyipo,项目名称:PyCodeFragment,代码行数:32,代码来源:04_tensorboard_cnn.py



注:本文中的tensorflow.name_scope函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensorflow.neg函数代码示例发布时间:2022-05-27
下一篇:
Python tensorflow.multiply函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap