• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensorflow.multinomial函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.multinomial函数的典型用法代码示例。如果您正苦于以下问题:Python multinomial函数的具体用法?Python multinomial怎么用?Python multinomial使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了multinomial函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: body

 def body(i, prev_base_state, prev_high_states, prev_y, prev_emb,
          y_array):
     state1 = decoder.grustep1.forward(prev_base_state, prev_emb)
     att_ctx = decoder.attstep.forward(state1)
     base_state = decoder.grustep2.forward(state1, att_ctx)
     if decoder.high_gru_stack == None:
         output = base_state
         high_states = []
     else:
         if decoder.high_gru_stack.context_state_size == 0:
             output, high_states = decoder.high_gru_stack.forward_single(
                 prev_high_states, base_state)
         else:
             output, high_states = decoder.high_gru_stack.forward_single(
                 prev_high_states, base_state, context=att_ctx)
     logits = decoder.predictor.get_logits(prev_emb, output, att_ctx,
                                        multi_step=False)
     new_y = tf.multinomial(logits, num_samples=1)
     new_y = tf.cast(new_y, dtype=tf.int32)
     new_y = tf.squeeze(new_y, axis=1)
     new_y = tf.where(tf.equal(prev_y, tf.constant(0, dtype=tf.int32)),
                      tf.zeros_like(new_y), new_y)
     y_array = y_array.write(index=i, value=new_y)
     new_emb = decoder.y_emb_layer.forward(new_y, factor=0)
     return i+1, base_state, high_states, new_y, new_emb, y_array
开发者ID:rsennrich,项目名称:nematus,代码行数:25,代码来源:rnn_inference.py


示例2: decoder_fn

 def decoder_fn(time, cell_state, cell_input, cell_output, context_state):
     with tf.name_scope(name, "simple_decoder_fn_inference",
                        [time, cell_state, cell_input, cell_output,
                         context_state]):
         if cell_input is not None:
             raise ValueError("Expected cell_input to be None, but saw: %s" %
                              cell_input)
         if cell_output is None:
             # invariant that this is time == 0
             next_input_id = tf.ones([batch_size], dtype=dtype) * (
                 start_of_sequence_id)
             done = tf.zeros([batch_size], dtype=tf.bool)
             cell_state = encoder_state
             cell_output = tf.zeros([cell_size],
                                    dtype=tf.float32)
         else:
             softmax_output = output_fn(cell_output)
             if sample:
                 next_input_id = tf.squeeze(tf.multinomial(softmax_output, 1), 1)
             else:
                 next_input_id = tf.argmax(softmax_output, 1)
             next_input_id = tf.cast(next_input_id, dtype=dtype)
             done = tf.equal(next_input_id, end_of_sequence_id)
         next_input = tf.gather(embeddings, next_input_id)
         # if time > maxlen, return all true vector
         done = tf.cond(
             tf.greater(time, maximum_length),
             lambda: tf.ones([batch_size], dtype=tf.bool),
             lambda: done)
         return (done, cell_state, next_input, next_input_id, context_state)
开发者ID:futurulus,项目名称:rl-cards,代码行数:30,代码来源:tfutils.py


示例3: UpdateProbs

  def UpdateProbs(self, inp):
    """Update probabilities of each particle based on 2D matrix inp which is a 2D perspectiuve projection of the scene"""

    projection, onscreen = self.project()
    filtered_projection = tf.to_int64(tf.select(onscreen, projection, tf.zeros_like(projection)))
    per_state_probabilities = tf.gather_nd(inp, filtered_projection)
    
    filtered_probabilities = tf.select(onscreen, per_state_probabilities, tf.zeros_like(per_state_probabilities))
    
    new_state_indicies = tf.squeeze(tf.multinomial(tf.expand_dims(tf.log(filtered_probabilities),0), self.particles/10*9))
    
    new_state = tf.gather(self.state, new_state_indicies)
    
    # Add momentum
    new_state = tf.concat(1, [new_state[:, 0:3] + new_state[:, 3:6], new_state[:, 3:10]])
    
    # Add in particles for the "just come onscreen" case.
    new_state = tf.concat(0, [new_state, tf.random_normal([self.particles/10, 10]) * self.initial_std + self.initial_bias])

    
    new_state = new_state + tf.random_normal([self.particles, 10]) * self.update_std
    # Todo:  permute state by adding noise.

    
    return self.state.assign(new_state)
开发者ID:Hello1024,项目名称:quadcopter,代码行数:25,代码来源:particle.py


示例4: loop_function

  def loop_function(prev,_):

    prev = tf.nn.xw_plus_b(
          prev, output_projection[0], output_projection[1])
    prev_symbol = tf.cast(tf.reshape(tf.multinomial(prev, 1), [FLAGS.batch_size*FLAGS.max_dec_sen_num]), tf.int32)
    emb_prev = tf.nn.embedding_lookup(embedding, prev_symbol)
    return emb_prev
开发者ID:dbolshak,项目名称:DPGAN,代码行数:7,代码来源:model.py


示例5: multinomial_squeeze

 def multinomial_squeeze(logits, temperature=1.0):
   logits_shape = common_layers.shape_list(logits)
   reshaped_logits = (
       tf.reshape(logits, [-1, logits_shape[-1]]) / temperature)
   choices = tf.multinomial(reshaped_logits, 1)
   choices = tf.reshape(choices, logits_shape[:-1])
   return choices
开发者ID:AranKomat,项目名称:tensor2tensor,代码行数:7,代码来源:t2t_model.py


示例6: testSmallEntropy

 def testSmallEntropy(self):
   with self.test_session(use_gpu=self.use_gpu):
     # A logit value of -10 corresponds to a probability of ~5e-5.
     logits = tf.constant([[-10., 10., -10.], [-10., -10., 10.]])
     num_samples = 1000
     samples = tf.multinomial(logits, num_samples).eval()
     self.assertAllEqual([[1] * num_samples, [2] * num_samples], samples)
开发者ID:Ambier,项目名称:tensorflow,代码行数:7,代码来源:multinomial_op_test.py


示例7: create_dc_actor_critic

    def create_dc_actor_critic(self, h_size, num_layers):
        num_streams = 1
        hidden_streams = self.create_new_obs(num_streams, h_size, num_layers)
        hidden = hidden_streams[0]

        if self.use_recurrent:
            tf.Variable(self.m_size, name="memory_size", trainable=False, dtype=tf.int32)
            self.prev_action = tf.placeholder(shape=[None], dtype=tf.int32, name='prev_action')
            self.prev_action_oh = c_layers.one_hot_encoding(self.prev_action, self.a_size)
            hidden = tf.concat([hidden, self.prev_action_oh], axis=1)

            self.memory_in = tf.placeholder(shape=[None, self.m_size], dtype=tf.float32, name='recurrent_in')
            hidden, self.memory_out = self.create_recurrent_encoder(hidden, self.memory_in)
            self.memory_out = tf.identity(self.memory_out, name='recurrent_out')

        self.policy = tf.layers.dense(hidden, self.a_size, activation=None, use_bias=False,
                                      kernel_initializer=c_layers.variance_scaling_initializer(factor=0.01))

        self.all_probs = tf.nn.softmax(self.policy, name="action_probs")
        self.output = tf.multinomial(self.policy, 1)
        self.output = tf.identity(self.output, name="action")

        self.value = tf.layers.dense(hidden, 1, activation=None)
        self.value = tf.identity(self.value, name="value_estimate")
        self.entropy = -tf.reduce_sum(self.all_probs * tf.log(self.all_probs + 1e-10), axis=1)
        self.action_holder = tf.placeholder(shape=[None], dtype=tf.int32)
        self.selected_actions = c_layers.one_hot_encoding(self.action_holder, self.a_size)

        self.all_old_probs = tf.placeholder(shape=[None, self.a_size], dtype=tf.float32, name='old_probabilities')

        # We reshape these tensors to [batch x 1] in order to be of the same rank as continuous control probabilities.
        self.probs = tf.expand_dims(tf.reduce_sum(self.all_probs * self.selected_actions, axis=1), 1)
        self.old_probs = tf.expand_dims(tf.reduce_sum(self.all_old_probs * self.selected_actions, axis=1), 1)
开发者ID:dhsmf1416,项目名称:lastalpha,代码行数:33,代码来源:models.py


示例8: _sample_single

 def _sample_single(args):
   logits, n_draw = args[0], args[1]  # [K], []
   x = tf.multinomial(logits[tf.newaxis, ...], n_draw,
                      seed)  # [1, n*n_draw]
   x = tf.reshape(x, shape=[n, -1])  # [n, n_draw]
   x = tf.reduce_sum(tf.one_hot(x, depth=k), axis=-2)  # [n, k]
   return x
开发者ID:asudomoeva,项目名称:probability,代码行数:7,代码来源:multinomial.py


示例9: testNegativeMinLogits

 def testNegativeMinLogits(self):
   tf.set_random_seed(78844)
   with self.test_session(use_gpu=self.use_gpu):
     logits = tf.constant([[np.finfo(np.float32).min] * 1023 + [0]])
     num_samples = 1000
     samples = tf.multinomial(logits, num_samples).eval()
     self.assertAllEqual([[1023] * num_samples], samples)
开发者ID:2020zyc,项目名称:tensorflow,代码行数:7,代码来源:multinomial_op_test.py


示例10: __init__

    def __init__(self, q_values, observations, num_actions, stochastic, eps,
                 softmax, softmax_temp):
        if softmax:
            action_dist = Categorical(q_values / softmax_temp)
            self.action = action_dist.sample()
            self.action_prob = action_dist.sampled_action_prob()
            return

        deterministic_actions = tf.argmax(q_values, axis=1)
        batch_size = tf.shape(observations)[0]

        # Special case masked out actions (q_value ~= -inf) so that we don't
        # even consider them for exploration.
        random_valid_action_logits = tf.where(
            tf.equal(q_values, tf.float32.min),
            tf.ones_like(q_values) * tf.float32.min, tf.ones_like(q_values))
        random_actions = tf.squeeze(
            tf.multinomial(random_valid_action_logits, 1), axis=1)

        chose_random = tf.random_uniform(
            tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps
        stochastic_actions = tf.where(chose_random, random_actions,
                                      deterministic_actions)
        self.action = tf.cond(stochastic, lambda: stochastic_actions,
                              lambda: deterministic_actions)
        self.action_prob = None
开发者ID:robertnishihara,项目名称:ray,代码行数:26,代码来源:dqn_policy_graph.py


示例11: testEmpty

 def testEmpty(self):
   classes = 5
   with self.test_session(use_gpu=self.use_gpu):
     for batch in 0, 3:
       for samples in 0, 7:
         x = tf.multinomial(tf.zeros([batch, classes]), samples).eval()
         self.assertEqual(x.shape, (batch, samples))
开发者ID:2020zyc,项目名称:tensorflow,代码行数:7,代码来源:multinomial_op_test.py


示例12: sample

    def sample(self, projected_output):
        """Return integer ID tensor representing the sampled word.
        
        Args:
            projected_output: Tensor [1, 1, state_size], representing a single
                decoder timestep output. 
        """
        # TODO: We really need a tf.control_dependencies check here (for rank).
        with tf.name_scope('decoder_sampler', values=[projected_output]):

            # Protect against extra size-1 dimensions; grab the 1D tensor
            # of size state_size.
            logits = tf.squeeze(projected_output)
            if self.temperature < 0.02:
                return tf.argmax(logits, axis=0)

            # Convert logits to probability distribution.
            probabilities = tf.div(logits, self.temperature)
            projected_output = tf.div(
                tf.exp(probabilities),
                tf.reduce_sum(tf.exp(probabilities), axis=-1))

            # Sample 1 time from the probability distribution.
            sample_ID = tf.squeeze(
                tf.multinomial(tf.expand_dims(probabilities, 0), 1))
        return sample_ID
开发者ID:laurii,项目名称:DeepChatModels,代码行数:26,代码来源:decoders.py


示例13: __init__

    def __init__(self, brain, h_size=128, lr=1e-4, n_layers=2, m_size=128,
                 normalize=False, use_recurrent=False):
        LearningModel.__init__(self, m_size, normalize, use_recurrent, brain)

        num_streams = 1
        hidden_streams = self.create_new_obs(num_streams, h_size, n_layers)
        hidden = hidden_streams[0]
        self.dropout_rate = tf.placeholder(dtype=tf.float32, shape=[], name="dropout_rate")
        hidden_reg = tf.layers.dropout(hidden, self.dropout_rate)
        if self.use_recurrent:
            self.memory_in = tf.placeholder(shape=[None, self.m_size], dtype=tf.float32, name='recurrent_in')
            hidden_reg, self.memory_out = self.create_recurrent_encoder(hidden_reg, self.memory_in)
            self.memory_out = tf.identity(self.memory_out, name='recurrent_out')
        self.policy = tf.layers.dense(hidden_reg, self.a_size, activation=None, use_bias=False,
                                      kernel_initializer=c_layers.variance_scaling_initializer(factor=0.01))

        if brain.vector_action_space_type == "discrete":
            self.action_probs = tf.nn.softmax(self.policy)
            self.sample_action_float = tf.multinomial(self.policy, 1)
            self.sample_action_float = tf.identity(self.sample_action_float, name="action")
            self.sample_action = tf.cast(self.sample_action_float, tf.int32)
            self.true_action = tf.placeholder(shape=[None], dtype=tf.int32, name="teacher_action")
            self.action_oh = tf.one_hot(self.true_action, self.a_size)
            self.loss = tf.reduce_sum(-tf.log(self.action_probs + 1e-10) * self.action_oh)
            self.action_percent = tf.reduce_mean(tf.cast(
                tf.equal(tf.cast(tf.argmax(self.action_probs, axis=1), tf.int32), self.sample_action), tf.float32))
        else:
            self.sample_action = tf.identity(self.policy, name="action")
            self.true_action = tf.placeholder(shape=[None, self.a_size], dtype=tf.float32, name="teacher_action")
            self.loss = tf.reduce_sum(tf.squared_difference(self.true_action, self.sample_action))

        optimizer = tf.train.AdamOptimizer(learning_rate=lr)
        self.update = optimizer.minimize(self.loss)
开发者ID:dhsmf1416,项目名称:lastalpha,代码行数:33,代码来源:models.py


示例14: generate_string

  def generate_string(self, initial_logits, initial_state, sequence_length):
    """Builds sub-graph to generate a string, sampled from the model.

    Args:
      initial_logits: Starting logits to sampling from.
      initial_state: Starting state for the RNN core.
      sequence_length: Number of characters to sample.

    Returns:
      A Tensor of characters, with dimensions `[sequence_length, batch_size,
      output_size]`.
    """

    current_logits = initial_logits
    current_state = initial_state

    generated_letters = []
    for _ in range(sequence_length):
      # Sample a character index from distribution.
      char_index = tf.squeeze(tf.multinomial(current_logits, 1))
      char_one_hot = tf.one_hot(char_index, self._output_size, 1.0, 0.0)
      generated_letters.append(char_one_hot)

      # Feed character back into the deep_lstm.
      gen_out_seq, current_state = self._core(
          tf.nn.relu(self._embed_module(char_one_hot)),
          current_state)
      current_logits = self._output_module(gen_out_seq)

    generated_string = tf.stack(generated_letters)

    return generated_string
开发者ID:bch-runner-1,项目名称:sonnet,代码行数:32,代码来源:rnn_shakespeare.py


示例15: call

  def call(self, inputs):
    """Calculates logits and action.

    Args:
      inputs: Observations from a step in the cart-pole environment, of shape
        `(batch_size, input_size)`

    Returns:
      logits: the logits output by the output layer. This can be viewed as the
        likelihood vales of choosing the left (0) action. Shape:
        `(batch_size, 1)`.
      actions: randomly selected actions ({0, 1}) based on the logits. Shape:
        `(batch_size, 1)`.
    """
    hidden = self._hidden_layer(inputs)
    logits = self._output_layer(hidden)

    left_prob = tf.nn.sigmoid(logits)
    action_probs = tf.concat([left_prob, 1.0 - left_prob], 1)

    self._grad_fn = eager.implicit_gradients(
        self._get_cross_entropy_and_save_actions)

    actions = tf.multinomial(tf.log(action_probs), 1)
    return logits, actions
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:25,代码来源:cartpole_benchmark.py


示例16: _g_recurrence_2

        def _g_recurrence_2(i, x_t, gen_x, h_tm1, h_tm1_manager, last_goal, real_goal):
            # with tf.device('/cpu:0'):
            cur_sen = tf.cond(i > 0, lambda:
            tf.split(tf.concat([tf.transpose(gen_x.stack(), perm=[1, 0]), self.padding_array], 1),
                     [self.sequence_length, i - 1], 1)[0], lambda: self.padding_array)
            with tf.variable_scope(self.scope):
                feature = self.FeatureExtractor_unit(cur_sen, self.drop_out)
            h_t_Worker = self.g_worker_recurrent_unit(x_t, h_tm1)  # hidden_memory_tuple
            o_t_Worker = self.g_worker_output_unit(h_t_Worker)  # batch x vocab , logits not prob

            o_t_Worker = tf.reshape(o_t_Worker, [self.batch_size, self.num_vocabulary, self.goal_size])

            h_t_manager = self.g_manager_recurrent_unit(feature, h_tm1_manager)
            sub_goal = self.g_manager_output_unit(h_t_manager)
            sub_goal = tf.nn.l2_normalize(sub_goal, 1)

            real_sub_goal = tf.add(last_goal, sub_goal)
            w_g = tf.matmul(real_goal, self.g_change)  # batch x goal_size
            w_g = tf.nn.l2_normalize(w_g, 1)
            w_g = tf.expand_dims(w_g, 2)  # batch x goal_size x 1

            x_logits = tf.matmul(o_t_Worker, w_g)
            x_logits = tf.squeeze(x_logits)

            log_prob = tf.log(tf.nn.softmax(x_logits))
            next_token = tf.cast(tf.reshape(tf.multinomial(log_prob, 1), [self.batch_size]), tf.int32)
            x_tp1 = tf.nn.embedding_lookup(self.g_embeddings, next_token)  # batch x emb_dim
            with tf.control_dependencies([cur_sen]):
                gen_x = gen_x.write(i - 1, next_token)  # indices, batch_size
            return i + 1, x_tp1, gen_x, h_t_Worker, h_t_manager, \
                   tf.cond(((i) % self.step_size) > 0, lambda: real_sub_goal,
                           lambda: tf.constant(0.0, shape=[self.batch_size, self.goal_out_size])), \
                   tf.cond(((i) % self.step_size) > 0, lambda: real_goal, lambda: real_sub_goal)
开发者ID:IshJ,项目名称:Texygen,代码行数:33,代码来源:LeakganGenerator.py


示例17: build_generator

    def build_generator(self):
        """
        Generator for generating captions
        Support sample max or sample from distribution
        No Beam search here; beam search is in decoder
        """
        # Variables for the sample setting
        self.sample_max = tf.Variable(True, trainable = False, name = "sample_max")
        self.sample_temperature = tf.Variable(1.0, trainable = False, name = "temperature")

        self.generator = []
        with tf.variable_scope("rnnlm"):
            flattened_ctx = tf.reshape(self.context, [self.batch_size, 196, 512])
            ctx_mean = tf.reduce_mean(flattened_ctx, 1)

            tf.get_variable_scope().reuse_variables()

            initial_state = utils.get_initial_state(ctx_mean, self.cell.state_size)

            #projected context
            # This is used in attention module; do this outside the loop to reduce redundant computations
            # with tf.variable_scope("attention"):
            if self.att_hid_size == 0:
                pctx = slim.fully_connected(flattened_ctx, 1, activation_fn = None, scope = 'ctx_att') # (batch) * 196 * 1
            else:
                pctx = slim.fully_connected(flattened_ctx, self.att_hid_size, activation_fn = None, scope = 'ctx_att') # (batch) * 196 * att_hid_size

            rnn_input = tf.nn.embedding_lookup(self.Wemb, tf.zeros([self.batch_size], tf.int32))

            prev_h = utils.last_hidden_vec(initial_state)

            self.g_alphas = []
            outputs = []
            state = initial_state
            for ind in range(MAX_STEPS):

                with tf.variable_scope("attention"):
                    alpha = self.get_alpha(prev_h, pctx)
                    self.g_alphas.append(alpha)
                    weighted_context = tf.reduce_sum(flattened_ctx * tf.expand_dims(alpha, 2), 1)

                output, state = self.cell(tf.concat(axis=1, values=[weighted_context, rnn_input]), state)
                outputs.append(output)
                prev_h = output

                # Get the input of next timestep
                prev_logit = slim.fully_connected(prev_h, self.vocab_size + 1, activation_fn = None, scope = 'logit')
                prev_symbol = tf.stop_gradient(tf.cond(self.sample_max,
                    lambda: tf.argmax(prev_logit, 1), # pick the word with largest probability as the input of next time step
                    lambda: tf.squeeze(
                        tf.multinomial(tf.nn.log_softmax(prev_logit) / self.sample_temperature, 1), 1))) # Sample from the distribution
                self.generator.append(prev_symbol)
                rnn_input = tf.nn.embedding_lookup(self.Wemb, prev_symbol)
            
            self.g_output = output = tf.reshape(tf.concat(axis=1, values=outputs), [-1, self.rnn_size]) # outputs[1:], because we don't calculate loss on time 0.
            self.g_logits = logits = slim.fully_connected(output, self.vocab_size + 1, activation_fn = None, scope = 'logit')
            self.g_probs = probs = tf.reshape(tf.nn.softmax(logits), [self.batch_size, MAX_STEPS, self.vocab_size + 1])

        self.generator = tf.transpose(tf.reshape(tf.concat(axis=0, values=self.generator), [MAX_STEPS, -1]))
开发者ID:ruotianluo,项目名称:neuraltalk2-tensorflow,代码行数:59,代码来源:ShowAttendTellModel_old.py


示例18: _g_recurrence_2

 def _g_recurrence_2(i, x_t, h_tm1, given_num, gen_x):
     h_t = self.g_recurrent_unit(x_t, h_tm1)  # hidden_memory_tuple
     o_t = self.g_output_unit(h_t)  # batch x vocab , logits not prob
     log_prob = tf.log(tf.nn.softmax(o_t))
     next_token = tf.cast(tf.reshape(tf.multinomial(log_prob, 1), [self.batch_size]), tf.int32)
     x_tp1 = tf.nn.embedding_lookup(self.g_embeddings, next_token)  # batch x emb_dim
     gen_x = gen_x.write(i, next_token)  # indices, batch_size
     return i + 1, x_tp1, h_t, given_num, gen_x
开发者ID:IshJ,项目名称:Texygen,代码行数:8,代码来源:RankganReward.py


示例19: st_sampler

def st_sampler(logits):
    """straight-through stochastic sampler"""
    flat_samples = tf.reshape(tf.multinomial(tf.reshape(logits, [-1, len(charmap)]), 1), [-1])
    onehot = tf.reshape(tf.one_hot(flat_samples, len(charmap)), tf.shape(logits))

    residual = onehot - logits
    onehot = logits + tf.stop_gradient(residual)
    return onehot
开发者ID:igul222,项目名称:nn,代码行数:8,代码来源:rnn_gan_lm.py


示例20: multinomial_sample

def multinomial_sample(x, vocab_size, temperature):
  """Multinomial sampling from a n-dimensional tensor."""
  if temperature > 0:
    samples = tf.multinomial(tf.reshape(x, [-1, vocab_size]) / temperature, 1)
  else:
    samples = tf.argmax(x, axis=-1)
  reshaped_samples = tf.reshape(samples, common_layers.shape_list(x)[:-1])
  return tf.to_int32(reshaped_samples)
开发者ID:kltony,项目名称:tensor2tensor,代码行数:8,代码来源:transformer_vae.py



注:本文中的tensorflow.multinomial函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensorflow.multiply函数代码示例发布时间:2022-05-27
下一篇:
Python tensorflow.mul函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap