• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensorflow.matrix_diag_part函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.matrix_diag_part函数的典型用法代码示例。如果您正苦于以下问题:Python matrix_diag_part函数的具体用法?Python matrix_diag_part怎么用?Python matrix_diag_part使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了matrix_diag_part函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: testSampleWithSameSeed

  def testSampleWithSameSeed(self):
    if tf.executing_eagerly():
      return
    scale = make_pd(1., 2)
    df = 4

    chol_w = tfd.Wishart(
        df, scale_tril=chol(scale), input_output_cholesky=False)

    x = self.evaluate(chol_w.sample(1, seed=42))
    chol_x = [chol(x[0])]

    full_w = tfd.Wishart(df, scale, input_output_cholesky=False)
    self.assertAllClose(x, self.evaluate(full_w.sample(1, seed=42)))

    chol_w_chol = tfd.Wishart(
        df, scale_tril=chol(scale), input_output_cholesky=True)
    self.assertAllClose(chol_x, self.evaluate(chol_w_chol.sample(1, seed=42)))
    eigen_values = tf.matrix_diag_part(chol_w_chol.sample(1000, seed=42))
    np.testing.assert_array_less(0., self.evaluate(eigen_values))

    full_w_chol = tfd.Wishart(df, scale=scale, input_output_cholesky=True)
    self.assertAllClose(chol_x, self.evaluate(full_w_chol.sample(1, seed=42)))
    eigen_values = tf.matrix_diag_part(full_w_chol.sample(1000, seed=42))
    np.testing.assert_array_less(0., self.evaluate(eigen_values))
开发者ID:asudomoeva,项目名称:probability,代码行数:25,代码来源:wishart_test.py


示例2: testInvalidShapeAtEval

 def testInvalidShapeAtEval(self):
   with self.test_session(use_gpu=self._use_gpu):
     v = tf.placeholder(dtype=tf.float32)
     with self.assertRaisesOpError("input must be at least 2-dim"):
       tf.matrix_diag_part(v).eval(feed_dict={v: 0.0})
     with self.assertRaisesOpError("last two dimensions must be equal"):
       tf.matrix_diag_part(v).eval(feed_dict={v: [[0, 1], [1, 0], [0, 0]]})
开发者ID:Nishant23,项目名称:tensorflow,代码行数:7,代码来源:diag_op_test.py


示例3: testRectangular

 def testRectangular(self):
   with self.test_session(use_gpu=self._use_gpu):
     mat = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
     mat_diag = tf.matrix_diag_part(mat)
     self.assertAllEqual(mat_diag.eval(), np.array([1.0, 5.0]))
     mat = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
     mat_diag = tf.matrix_diag_part(mat)
     self.assertAllEqual(mat_diag.eval(), np.array([1.0, 4.0]))
开发者ID:821760408-sp,项目名称:tensorflow,代码行数:8,代码来源:diag_op_test.py


示例4: _variance

 def _variance(self):
   if distribution_util.is_diagonal_scale(self.scale):
     return 2. * tf.square(self.scale.diag_part())
   elif (isinstance(self.scale, tf.linalg.LinearOperatorLowRankUpdate) and
         self.scale.is_self_adjoint):
     return tf.matrix_diag_part(2. * self.scale.matmul(self.scale.to_dense()))
   else:
     return 2. * tf.matrix_diag_part(
         self.scale.matmul(self.scale.to_dense(), adjoint_arg=True))
开发者ID:lewisKit,项目名称:probability,代码行数:9,代码来源:vector_laplace_linear_operator.py


示例5: _maybe_attach_assertion

 def _maybe_attach_assertion(x):
   if not validate_args:
     return x
   if assert_positive:
     return control_flow_ops.with_dependencies([
         tf.assert_positive(
             tf.matrix_diag_part(x), message="diagonal part must be positive"),
     ], x)
   return control_flow_ops.with_dependencies([
       tf.assert_none_equal(
           tf.matrix_diag_part(x),
           tf.zeros([], x.dtype),
           message="diagonal part must be non-zero"),
   ], x)
开发者ID:lewisKit,项目名称:probability,代码行数:14,代码来源:distribution_util.py


示例6: testSample

  def testSample(self):
    with self.test_session():
      scale = make_pd(1., 2)
      df = 4

      chol_w = distributions.WishartCholesky(
          df, chol(scale), cholesky_input_output_matrices=False)

      x = chol_w.sample_n(1, seed=42).eval()
      chol_x = [chol(x[0])]

      full_w = distributions.WishartFull(
          df, scale, cholesky_input_output_matrices=False)
      self.assertAllClose(x, full_w.sample_n(1, seed=42).eval())

      chol_w_chol = distributions.WishartCholesky(
          df, chol(scale), cholesky_input_output_matrices=True)
      self.assertAllClose(chol_x, chol_w_chol.sample_n(1, seed=42).eval())
      eigen_values = tf.matrix_diag_part(chol_w_chol.sample_n(1000, seed=42))
      np.testing.assert_array_less(0., eigen_values.eval())

      full_w_chol = distributions.WishartFull(
          df, scale, cholesky_input_output_matrices=True)
      self.assertAllClose(chol_x, full_w_chol.sample_n(1, seed=42).eval())
      eigen_values = tf.matrix_diag_part(full_w_chol.sample_n(1000, seed=42))
      np.testing.assert_array_less(0., eigen_values.eval())

      # Check first and second moments.
      df = 4.
      chol_w = distributions.WishartCholesky(
          df=df,
          scale=chol(make_pd(1., 3)),
          cholesky_input_output_matrices=False)
      x = chol_w.sample_n(10000, seed=42)
      self.assertAllEqual((10000, 3, 3), x.get_shape())

      moment1_estimate = tf.reduce_mean(x, reduction_indices=[0]).eval()
      self.assertAllClose(chol_w.mean().eval(),
                          moment1_estimate,
                          rtol=0.05)

      # The Variance estimate uses the squares rather than outer-products
      # because Wishart.Variance is the diagonal of the Wishart covariance
      # matrix.
      variance_estimate = (
          tf.reduce_mean(tf.square(x), reduction_indices=[0]) -
          tf.square(moment1_estimate)).eval()
      self.assertAllClose(chol_w.variance().eval(),
                          variance_estimate,
                          rtol=0.05)
开发者ID:821760408-sp,项目名称:tensorflow,代码行数:50,代码来源:wishart_test.py


示例7: _expectation

def _expectation(p, mean, none, kern, feat, nghp=None):
    """
    Compute the expectation:
    expectation[n] = <x_n K_{x_n, Z}>_p(x_n)
        - K_{.,.} :: RBF kernel

    :return: NxDxM
    """
    Xmu, Xcov = p.mu, p.cov

    with tf.control_dependencies([tf.assert_equal(
            tf.shape(Xmu)[1], tf.constant(kern.input_dim, settings.tf_int),
            message="Currently cannot handle slicing in exKxz.")]):
        Xmu = tf.identity(Xmu)

    with params_as_tensors_for(kern), params_as_tensors_for(feat):
        D = tf.shape(Xmu)[1]
        lengthscales = kern.lengthscales if kern.ARD \
            else tf.zeros((D,), dtype=settings.float_type) + kern.lengthscales

        chol_L_plus_Xcov = tf.cholesky(tf.matrix_diag(lengthscales ** 2) + Xcov)  # NxDxD
        all_diffs = tf.transpose(feat.Z) - tf.expand_dims(Xmu, 2)  # NxDxM

        sqrt_det_L = tf.reduce_prod(lengthscales)
        sqrt_det_L_plus_Xcov = tf.exp(tf.reduce_sum(tf.log(tf.matrix_diag_part(chol_L_plus_Xcov)), axis=1))
        determinants = sqrt_det_L / sqrt_det_L_plus_Xcov  # N

        exponent_mahalanobis = tf.cholesky_solve(chol_L_plus_Xcov, all_diffs)  # NxDxM
        non_exponent_term = tf.matmul(Xcov, exponent_mahalanobis, transpose_a=True)
        non_exponent_term = tf.expand_dims(Xmu, 2) + non_exponent_term  # NxDxM

        exponent_mahalanobis = tf.reduce_sum(all_diffs * exponent_mahalanobis, 1)  # NxM
        exponent_mahalanobis = tf.exp(-0.5 * exponent_mahalanobis)  # NxM

        return kern.variance * (determinants[:, None] * exponent_mahalanobis)[:, None, :] * non_exponent_term
开发者ID:vincentadam87,项目名称:GPflow,代码行数:35,代码来源:expectations.py


示例8: _build_likelihood

    def _build_likelihood(self):
        """
        q_alpha, q_lambda are variational parameters, size N x R
        This method computes the variational lower bound on the likelihood,
        which is:
            E_{q(F)} [ \log p(Y|F) ] - KL[ q(F) || p(F)]
        with
            q(f) = N(f | K alpha + mean, [K^-1 + diag(square(lambda))]^-1) .
        """
        K = self.kern.K(self.X)
        K_alpha = tf.matmul(K, self.q_alpha)
        f_mean = K_alpha + self.mean_function(self.X)

        # compute the variance for each of the outputs
        I = tf.tile(tf.expand_dims(tf.eye(self.num_data, dtype=settings.float_type), 0),
                    [self.num_latent, 1, 1])
        A = I + tf.expand_dims(tf.transpose(self.q_lambda), 1) * \
            tf.expand_dims(tf.transpose(self.q_lambda), 2) * K
        L = tf.cholesky(A)
        Li = tf.matrix_triangular_solve(L, I)
        tmp = Li / tf.expand_dims(tf.transpose(self.q_lambda), 1)
        f_var = 1. / tf.square(self.q_lambda) - tf.transpose(tf.reduce_sum(tf.square(tmp), 1))

        # some statistics about A are used in the KL
        A_logdet = 2.0 * tf.reduce_sum(tf.log(tf.matrix_diag_part(L)))
        trAi = tf.reduce_sum(tf.square(Li))

        KL = 0.5 * (A_logdet + trAi - self.num_data * self.num_latent +
                    tf.reduce_sum(K_alpha * self.q_alpha))

        v_exp = self.likelihood.variational_expectations(f_mean, f_var, self.Y)
        return tf.reduce_sum(v_exp) - KL
开发者ID:sanket-kamthe,项目名称:GPflow,代码行数:32,代码来源:vgp.py


示例9: multivariate_normal

def multivariate_normal(x, mu, L):
    """
    Computes the log-density of a multivariate normal.
    :param x  : Dx1 or DxN sample(s) for which we want the density
    :param mu : Dx1 or DxN mean(s) of the normal distribution
    :param L  : DxD Cholesky decomposition of the covariance matrix
    :return p : (1,) or (N,) vector of log densities for each of the N x's and/or mu's

    x and mu are either vectors or matrices. If both are vectors (N,1):
    p[0] = log pdf(x) where x ~ N(mu, LL^T)
    If at least one is a matrix, we assume independence over the *columns*:
    the number of rows must match the size of L. Broadcasting behaviour:
    p[n] = log pdf of:
    x[n] ~ N(mu, LL^T) or x ~ N(mu[n], LL^T) or x[n] ~ N(mu[n], LL^T)
    """
    if x.shape.ndims is None:
        warnings.warn('Shape of x must be 2D at computation.')
    elif x.shape.ndims != 2:
        raise ValueError('Shape of x must be 2D.')
    if mu.shape.ndims is None:
        warnings.warn('Shape of mu may be unknown or not 2D.')
    elif mu.shape.ndims != 2:
        raise ValueError('Shape of mu must be 2D.')

    d = x - mu
    alpha = tf.matrix_triangular_solve(L, d, lower=True)
    num_dims = tf.cast(tf.shape(d)[0], L.dtype)
    p = - 0.5 * tf.reduce_sum(tf.square(alpha), 0)
    p -= 0.5 * num_dims * np.log(2 * np.pi)
    p -= tf.reduce_sum(tf.log(tf.matrix_diag_part(L)))
    return p
开发者ID:vincentadam87,项目名称:GPflow,代码行数:31,代码来源:logdensities.py


示例10: _forward_log_det_jacobian

 def _forward_log_det_jacobian(self, x):
   # We formulate the Jacobian with respect to the flattened matrices
   # `vec(x)` and `vec(y)`. Suppose for notational convenience that
   # the first `n` entries of `vec(x)` are the diagonal of `x`, and
   # the remaining `n**2-n` entries are the off-diagonals in
   # arbitrary order. Then the Jacobian is a block-diagonal matrix,
   # with the Jacobian of the diagonal bijector in the first block,
   # and the identity Jacobian for the remaining entries (since this
   # bijector acts as the identity on non-diagonal entries):
   #
   # J_vec(x) (vec(y)) =
   # -------------------------------
   # | J_diag(x) (diag(y))      0  | n entries
   # |                             |
   # | 0                        I  | n**2-n entries
   # -------------------------------
   #   n                     n**2-n
   #
   # Since the log-det of the second (identity) block is zero, the
   # overall log-det-jacobian is just the log-det of first block,
   # from the diagonal bijector.
   #
   # Note that for elementwise operations (exp, softplus, etc) the
   # first block of the Jacobian will itself be a diagonal matrix,
   # but our implementation does not require this to be true.
   return self._diag_bijector.forward_log_det_jacobian(
       tf.matrix_diag_part(x), event_ndims=1)
开发者ID:asudomoeva,项目名称:probability,代码行数:27,代码来源:transform_diagonal.py


示例11: testMatrix

 def testMatrix(self):
   with self.test_session(use_gpu=self._use_gpu):
     v = np.array([1.0, 2.0, 3.0])
     mat = np.diag(v)
     mat_diag = tf.matrix_diag_part(mat)
     self.assertEqual((3,), mat_diag.get_shape())
     self.assertAllEqual(mat_diag.eval(), v)
开发者ID:Nishant23,项目名称:tensorflow,代码行数:7,代码来源:diag_op_test.py


示例12: gauss_kl

def gauss_kl(q_mu, q_sqrt, K):
    """
    Compute the KL divergence from

          q(x) = N(q_mu, q_sqrt^2)
    to
          p(x) = N(0, K)

    We assume multiple independent distributions, given by the columns of
    q_mu and the last dimension of q_sqrt.

    q_mu is a matrix, each column contains a mean.

    q_sqrt is a 3D tensor, each matrix within is a lower triangular square-root
        matrix of the covariance of q.

    K is a positive definite matrix: the covariance of p.
    """
    L = tf.cholesky(K)
    alpha = tf.matrix_triangular_solve(L, q_mu, lower=True)
    KL = 0.5 * tf.reduce_sum(tf.square(alpha))  # Mahalanobis term.
    num_latent = tf.cast(tf.shape(q_sqrt)[2], float_type)
    KL += num_latent * 0.5 * tf.reduce_sum(tf.log(tf.square(tf.diag_part(L))))  # Prior log-det term.
    KL += -0.5 * tf.cast(tf.reduce_prod(tf.shape(q_sqrt)[1:]), float_type)  # constant term
    Lq = tf.matrix_band_part(tf.transpose(q_sqrt, (2, 0, 1)), -1, 0)  # force lower triangle
    KL += -0.5*tf.reduce_sum(tf.log(tf.square(tf.matrix_diag_part(Lq))))  # logdet
    L_tiled = tf.tile(tf.expand_dims(L, 0), tf.pack([tf.shape(Lq)[0], 1, 1]))
    LiLq = tf.matrix_triangular_solve(L_tiled, Lq, lower=True)
    KL += 0.5 * tf.reduce_sum(tf.square(LiLq))  # Trace term
    return KL
开发者ID:GPflow,项目名称:GPflow,代码行数:30,代码来源:kullback_leiblers.py


示例13: _variance

 def _variance(self):
   # Because df is a scalar, we need to expand dimensions to match
   # scale_operator. We use ellipses notation (...) to select all dimensions
   # and add two dimensions to the end.
   df = self.df[..., tf.newaxis, tf.newaxis]
   x = tf.sqrt(df) * self._square_scale_operator()
   d = tf.expand_dims(tf.matrix_diag_part(x), -1)
   v = tf.square(x) + tf.matmul(d, d, adjoint_b=True)
   return v
开发者ID:asudomoeva,项目名称:probability,代码行数:9,代码来源:wishart.py


示例14: testGrad

 def testGrad(self):
   shapes = ((3, 3), (5, 3, 3))
   with self.test_session(use_gpu=self._use_gpu):
     for shape in shapes:
       x = tf.constant(np.random.rand(*shape), dtype=np.float32)
       y = tf.matrix_diag_part(x)
       error = tf.test.compute_gradient_error(x, x.get_shape().as_list(),
                                              y, y.get_shape().as_list())
       self.assertLess(error, 1e-4)
开发者ID:Nishant23,项目名称:tensorflow,代码行数:9,代码来源:diag_op_test.py


示例15: testRectangularBatch

 def testRectangularBatch(self):
   with self.test_session(use_gpu=self._use_gpu):
     v_batch = np.array([[1.0, 2.0],
                         [4.0, 5.0]])
     mat_batch = np.array(
         [[[1.0, 0.0, 0.0],
           [0.0, 2.0, 0.0]],
          [[4.0, 0.0, 0.0],
           [0.0, 5.0, 0.0]]])
     self.assertEqual(mat_batch.shape, (2, 2, 3))
     mat_batch_diag = tf.matrix_diag_part(mat_batch)
     self.assertEqual((2, 2), mat_batch_diag.get_shape())
     self.assertAllEqual(mat_batch_diag.eval(), v_batch)
开发者ID:821760408-sp,项目名称:tensorflow,代码行数:13,代码来源:diag_op_test.py


示例16: _forward_log_det_jacobian

 def _forward_log_det_jacobian(self, x):
   # CholeskyToInvCholesky.forward(X) is equivalent to
   # 1) M = CholeskyOuterProduct.forward(X)
   # 2) N = invert(M)
   # 3) Y = CholeskyOuterProduct.inverse(N)
   #
   # For step 1,
   #   |Jac(outerprod(X))| = 2^p prod_{j=0}^{p-1} X[j,j]^{p-j}.
   # For step 2,
   #   |Jac(inverse(M))| = |M|^{-(p+1)} (because M is symmetric)
   #                     = |X|^{-2(p+1)} = (prod_{j=0}^{p-1} X[j,j])^{-2(p+1)}
   #   (see http://web.mit.edu/18.325/www/handouts/handout2.pdf sect 3.0.2)
   # For step 3,
   #   |Jac(Cholesky(N))| = -|Jac(outerprod(Y)|
   #                      = 2^p prod_{j=0}^{p-1} Y[j,j]^{p-j}
   n = tf.cast(tf.shape(x)[-1], x.dtype)
   y = self._forward(x)
   return (
       (self._cholesky.forward_log_det_jacobian(x, event_ndims=2) -
        (n + 1.) * tf.reduce_sum(tf.log(tf.matrix_diag_part(x)), axis=-1)) -
       (self._cholesky.forward_log_det_jacobian(y, event_ndims=2) -
        (n + 1.) * tf.reduce_sum(tf.log(tf.matrix_diag_part(y)), axis=-1)))
开发者ID:lewisKit,项目名称:probability,代码行数:22,代码来源:cholesky_to_inv_cholesky.py


示例17: _build_likelihood

    def _build_likelihood(self):
        """
        Construct a tensorflow function to compute the bound on the marginal
        likelihood. For a derivation of the terms in here, see the associated
        SGPR notebook.
        """

        num_inducing = len(self.feature)
        num_data = tf.cast(tf.shape(self.Y)[0], settings.float_type)
        output_dim = tf.cast(tf.shape(self.Y)[1], settings.float_type)

        err = self.Y - self.mean_function(self.X)
        Kdiag = self.kern.Kdiag(self.X)
        Kuf = self.feature.Kuf(self.kern, self.X)
        Kuu = self.feature.Kuu(self.kern, jitter=settings.numerics.jitter_level)
        L = tf.cholesky(Kuu)
        sigma = tf.sqrt(self.likelihood.variance)

        # Compute intermediate matrices
        A = tf.matrix_triangular_solve(L, Kuf, lower=True) / sigma
        AAT = tf.matmul(A, A, transpose_b=True)
        B = AAT + tf.eye(num_inducing, dtype=settings.float_type)
        LB = tf.cholesky(B)
        Aerr = tf.matmul(A, err)
        c = tf.matrix_triangular_solve(LB, Aerr, lower=True) / sigma

        # compute log marginal bound
        bound = -0.5 * num_data * output_dim * np.log(2 * np.pi)
        bound += tf.negative(output_dim) * tf.reduce_sum(tf.log(tf.matrix_diag_part(LB)))
        bound -= 0.5 * num_data * output_dim * tf.log(self.likelihood.variance)
        bound += -0.5 * tf.reduce_sum(tf.square(err)) / self.likelihood.variance
        bound += 0.5 * tf.reduce_sum(tf.square(c))
        bound += -0.5 * output_dim * tf.reduce_sum(Kdiag) / self.likelihood.variance
        bound += 0.5 * output_dim * tf.reduce_sum(tf.matrix_diag_part(AAT))

        return bound
开发者ID:vincentadam87,项目名称:GPflow,代码行数:36,代码来源:sgpr.py


示例18: fit

 def fit(self, x=None, y=None):
   # p(coeffs | x, y) = Normal(coeffs |
   #   mean = (1/noise_variance) (1/noise_variance x^T x + I)^{-1} x^T y,
   #   covariance = (1/noise_variance x^T x + I)^{-1})
   # TODO(trandustin): We newly fit the data at each call. Extend to do
   # Bayesian updating.
   kernel_matrix = tf.matmul(x, x, transpose_a=True) / self.noise_variance
   coeffs_precision = tf.matrix_set_diag(
       kernel_matrix, tf.matrix_diag_part(kernel_matrix) + 1.)
   coeffs_precision_tril = tf.linalg.cholesky(coeffs_precision)
   self.coeffs_precision_tril_op = tf.linalg.LinearOperatorLowerTriangular(
       coeffs_precision_tril)
   self.coeffs_mean = self.coeffs_precision_tril_op.solvevec(
       self.coeffs_precision_tril_op.solvevec(tf.einsum('nm,n->m', x, y)),
       adjoint=True) / self.noise_variance
   # TODO(trandustin): To be fully Keras-compatible, return History object.
   return
开发者ID:qixiuai,项目名称:tensor2tensor,代码行数:17,代码来源:bayes.py


示例19: zero_mean_covariance

def zero_mean_covariance(covariance, stability=0.0):
    '''Output covariance of ReLU for zero-mean Gaussian input.

    f(x) = max(x, 0).

    Args:
        covariance: Input covariance matrix (Size, Size).
        stability: For accurate results this should be zero
            if used in training, use a value like 1e-4 for stability.

    Returns:
        Output covariance of ReLU for zero-mean Gaussian input (Size, Size).
    '''

    S = outer(tf.sqrt(tf.matrix_diag_part(covariance)))
    V = tf.clip_by_value(covariance / S, stability - 1.0, 1.0 - stability)
    Q = tf.acos(-V) * V + tf.sqrt(1.0 - (V**2.0)) - 1.0
    return S * Q * (1.0 / (2.0 * math.pi))
开发者ID:ModarTensai,项目名称:network_moments,代码行数:18,代码来源:relu.py


示例20: _assertions

 def _assertions(self, x):
   if not self.validate_args:
     return []
   x_shape = tf.shape(x)
   is_matrix = tf.assert_rank_at_least(
       x, 2,
       message="Input must have rank at least 2.")
   is_square = tf.assert_equal(
       x_shape[-2], x_shape[-1],
       message="Input must be a square matrix.")
   diag_part_x = tf.matrix_diag_part(x)
   is_lower_triangular = tf.assert_equal(
       tf.matrix_band_part(x, 0, -1),  # Preserves triu, zeros rest.
       tf.matrix_diag(diag_part_x),
       message="Input must be lower triangular.")
   is_positive_diag = tf.assert_positive(
       diag_part_x,
       message="Input must have all positive diagonal entries.")
   return [is_matrix, is_square, is_lower_triangular, is_positive_diag]
开发者ID:lewisKit,项目名称:probability,代码行数:19,代码来源:cholesky_to_inv_cholesky.py



注:本文中的tensorflow.matrix_diag_part函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensorflow.matrix_inverse函数代码示例发布时间:2022-05-27
下一篇:
Python tensorflow.matrix_diag函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap