• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensorflow.logical_or函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.logical_or函数的典型用法代码示例。如果您正苦于以下问题:Python logical_or函数的具体用法?Python logical_or怎么用?Python logical_or使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了logical_or函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: m_body

        def m_body(i, ta_tp, ta_fp, gmatch, n_ignored_det):
            # Jaccard score with groundtruth bboxes.
            rbbox = bboxes[i, :]
#             rbbox = tf.Print(rbbox, [rbbox])
            jaccard = bboxes_jaccard(rbbox, gxs, gys)

            # Best fit, checking it's above threshold.
            idxmax = tf.cast(tf.argmax(jaccard, axis=0), dtype = tf.int32)
            
            jcdmax = jaccard[idxmax]
            match = jcdmax > matching_threshold
            existing_match = gmatch[idxmax]
            not_ignored = tf.logical_not(gignored[idxmax])

            n_ignored_det = n_ignored_det + tf.cast(gignored[idxmax], tf.int32)
            # TP: match & no previous match and FP: previous match | no match.
            # If ignored: no record, i.e FP=False and TP=False.
            tp = tf.logical_and(not_ignored, tf.logical_and(match, tf.logical_not(existing_match)))
            ta_tp = ta_tp.write(i, tp)
            
            fp = tf.logical_and(not_ignored, tf.logical_or(existing_match, tf.logical_not(match)))
            ta_fp = ta_fp.write(i, fp)
            
            # Update grountruth match.
            mask = tf.logical_and(tf.equal(grange, idxmax), tf.logical_and(not_ignored, match))
            gmatch = tf.logical_or(gmatch, mask)
            return [i+1, ta_tp, ta_fp, gmatch,n_ignored_det]
开发者ID:cvtower,项目名称:seglink,代码行数:27,代码来源:bboxes.py


示例2: m_body

        def m_body(i, ta_tp, ta_fp, gmatch):
            # Jaccard score with groundtruth bboxes.
            rbbox = bboxes[i]
            jaccard = bboxes_jaccard(rbbox, gbboxes)
            jaccard = jaccard * tf.cast(tf.equal(glabels, rlabel), dtype=jaccard.dtype)

            # Best fit, checking it's above threshold.
            idxmax = tf.cast(tf.argmax(jaccard, axis=0), tf.int32)
            jcdmax = jaccard[idxmax]
            match = jcdmax > matching_threshold
            existing_match = gmatch[idxmax]
            not_difficult = tf.logical_not(gdifficults[idxmax])

            # TP: match & no previous match and FP: previous match | no match.
            # If difficult: no record, i.e FP=False and TP=False.
            tp = tf.logical_and(not_difficult,
                                tf.logical_and(match, tf.logical_not(existing_match)))
            ta_tp = ta_tp.write(i, tp)
            fp = tf.logical_and(not_difficult,
                                tf.logical_or(existing_match, tf.logical_not(match)))
            ta_fp = ta_fp.write(i, fp)
            # Update grountruth match.
            mask = tf.logical_and(tf.equal(grange, idxmax),
                                  tf.logical_and(not_difficult, match))
            gmatch = tf.logical_or(gmatch, mask)

            return [i+1, ta_tp, ta_fp, gmatch]
开发者ID:bowrian,项目名称:SSD-Tensorflow,代码行数:27,代码来源:bboxes.py


示例3: tf_cheating_contcartpole

def tf_cheating_contcartpole(state, action):
    gravity = 9.8
    masscart = 1.0
    masspole = 0.1
    total_mass = (masspole + masscart)
    length = 0.5 # actually half the pole's length
    polemass_length = (masspole * length)
    force_mag = 10.0
    tau = 0.02  # seconds between state updates

    # Angle at which to fail the episode
    theta_threshold_radians = 12 * 2 * math.pi / 360
    x_threshold = 2.4

    x, x_dot, theta, theta_dot = tf.split(state, 4, axis=-1)
    done =  tf.logical_or(x < -x_threshold,
                          tf.logical_or(x > x_threshold,
                          tf.logical_or(theta < -theta_threshold_radians,
                                        theta > theta_threshold_radians)))

    force = force_mag * action
    costheta = tf.cos(theta)
    sintheta = tf.sin(theta)
    temp = old_div((force + polemass_length * theta_dot * theta_dot * sintheta), total_mass)
    thetaacc = old_div((gravity * sintheta - costheta* temp), (length * (old_div(4.0,3.0) - masspole * costheta * costheta / total_mass)))
    xacc  = temp - polemass_length * thetaacc * costheta / total_mass
    x  = x + tau * x_dot
    x_dot = x_dot + tau * xacc
    theta = theta + tau * theta_dot
    theta_dot = theta_dot + tau * thetaacc
    state = tf.concat([x,x_dot,theta,theta_dot], -1)
    done = tf.squeeze(tf.cast(done, tf.float32), -1)
    reward = 1.0 - done
    done *= 0.
    return state, reward, done
开发者ID:ALISCIFP,项目名称:models,代码行数:35,代码来源:util.py


示例4: accuracy

def accuracy(log, w1, w2, w3):
  with tf.name_scope('accuracy') as scope:
    c1 = tf.equal(tf.argmax(log, 1), tf.argmax(w1, 1))
    c2 = tf.equal(tf.argmax(log, 1), tf.argmax(w2, 1))
    c3 = tf.equal(tf.argmax(log, 1), tf.argmax(w3, 1))
    correct_prediction = tf.logical_or(tf.logical_or(c1,c2),c3)
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    tf.scalar_summary("accuracy", accuracy)
  return accuracy
开发者ID:discoNeko,项目名称:TensorFlow,代码行数:9,代码来源:main.py


示例5: set_zero_on_high_global_norm

 def set_zero_on_high_global_norm(self, grad, grad_norm_threshold, global_norm_tag=None):
   """
   :param tf.Tensor grad:
   :param float grad_norm_threshold:
   :param str|None global_norm_tag:
   :rtype: tf.Tensor
   """
   norm = self.get_global_grad_norm(tag=global_norm_tag)
   # Also check nan/inf. Treat them as if we would have been over grad_norm_threshold.
   zero_cond = tf.logical_or(tf.is_nan(norm), tf.is_inf(norm))
   zero_cond = tf.logical_or(zero_cond, tf.greater(norm, grad_norm_threshold))
   return tf.where(zero_cond, tf.zeros_like(grad), grad)
开发者ID:rwth-i6,项目名称:returnn,代码行数:12,代码来源:TFUpdater.py


示例6: update_op

  def update_op(self, has_nan, amax):
    is_nonfinite = tf.logical_or(has_nan, tf.is_inf(amax))
    x = tf.cond(is_nonfinite,
                lambda: tf.pow(2., self.log_max),
                lambda: tf.log(amax) / tf.log(tf.constant(2.)))

    x_hat_assn = tf.assign(self.x_hat, self.beta1 * self.x_hat +
                           (1 - self.beta1) * x)
    b1_corr_assn = tf.assign(self.b1_correction,
                             self.b1_correction * self.beta1)
    with tf.control_dependencies([x_hat_assn, b1_corr_assn]):
      mu = self.x_hat.read_value() / (1 - self.b1_correction.read_value())

    slow_x_hat_assn = tf.assign(self.slow_x_hat, self.beta2 * self.slow_x_hat +
                                (1 - self.beta2) * x)
    xsquared_hat_assn = tf.assign(self.xsquared_hat, self.beta2 * self.xsquared_hat +
                                  (1 - self.beta2) * (x * x))
    b2_corr_assn = tf.assign(self.b2_correction,
                             self.b2_correction * self.beta2)
    with tf.control_dependencies([slow_x_hat_assn, xsquared_hat_assn, b2_corr_assn]):
      e_xsquared = self.xsquared_hat.read_value() / (1 - self.b2_correction.read_value())
      slow_mu = self.slow_x_hat.read_value() / (1 - self.b2_correction.read_value())

    sigma2 = e_xsquared - (slow_mu * slow_mu)
    sigma = tf.sqrt(tf.maximum(sigma2, tf.constant(0.)))

    log_cutoff = sigma * self.overflow_std_dev + mu
    log_difference = 16 - log_cutoff
    proposed_scale = tf.pow(2., log_difference)
    scale_update = tf.assign(self.scale, tf.clip_by_value(proposed_scale, self.scale_min,
                                                          self.scale_max))
    iter_update = tf.assign_add(self.iteration, 1)

    with tf.control_dependencies([scale_update]):
      return tf.identity(iter_update)
开发者ID:fotwo,项目名称:OpenSeq2Seq,代码行数:35,代码来源:automatic_loss_scaler.py


示例7: apply_gradients

  def apply_gradients(self, grads_and_vars, global_step=None, name=None):

    def apply_ops_wrapper():
      update_op = self._optimizer.apply_gradients(grads_and_vars,
                                                  global_step, name)
      apply_ops = []
      with tf.control_dependencies([update_op]):
        for grad, var in grads_and_vars:
          if var.name in self._fp32_to_fp16:
            dst_var = self._fp32_to_fp16[var.name]
            apply_ops.append(
              tf.assign(dst_var, tf.saturate_cast(var, tf.float16)))
      if apply_ops:
        return tf.group(apply_ops)
      return update_op

    if self._loss_scaler:
      grad_has_nans, grad_amax = AutomaticLossScaler.check_grads(grads_and_vars)
      should_skip_update = tf.logical_or(tf.is_inf(grad_amax), grad_has_nans)
      loss_scale_update_op = self._loss_scaler.update_op(grad_has_nans,
                                                         grad_amax)
      with tf.control_dependencies([loss_scale_update_op]):
        return tf.cond(should_skip_update,
                       tf.no_op,
                       apply_ops_wrapper)
    else:
      return apply_ops_wrapper()
开发者ID:fotwo,项目名称:OpenSeq2Seq,代码行数:27,代码来源:mp_wrapper.py


示例8: add_dyprune

def add_dyprune(weights):
    crate = config.crate[weights.name[:-2]] #hyperpara C rate
    prune_mask = tf.Variable(tf.ones_like(weights),name=weights.name[:-2]+'mask', trainable=False)

    #calculate mask
    mean = tf.divide(tf.reduce_sum(tf.multiply(tf.abs(weights),prune_mask)),tf.reduce_sum(prune_mask))
    var = tf.multiply(weights,prune_mask)
    var = tf.square(var)
    mean_q = tf.square(mean)*tf.reduce_sum(prune_mask)
    var = tf.reduce_sum(var) - mean_q
    var = tf.divide(var,tf.reduce_sum(prune_mask))
    var = tf.sqrt(var)
    t1_lower = (mean+var*crate)*0.25 #hyperpara a
    t1_upper = (mean+var*crate)*0.45 #hyperpara b
    
    indicator_lower1 = tf.greater_equal(tf.abs(weights), tf.ones_like(weights) * t1_lower)    
    indicator_upper1 = tf.greater_equal(tf.abs(weights), tf.ones_like(weights) * t1_upper)
    indicator_matrix1 = tf.greater_equal(prune_mask, tf.zeros_like(weights))
    indicator_matrix1 = tf.logical_and(indicator_matrix1,indicator_lower1)
    indicator_matrix1 = tf.logical_or(indicator_matrix1,indicator_upper1)
    indicator_matrix1 = tf.to_float(indicator_matrix1)
    update = prune_mask.assign(indicator_matrix1)

    prune_fc = tf.multiply(weights, prune_mask)
    return prune_fc
开发者ID:Ewenwan,项目名称:Project,代码行数:25,代码来源:densenetfinalDNS.py


示例9: set_logp_to_neg_inf

def set_logp_to_neg_inf(X, logp, bounds):
    """Set `logp` to negative infinity when `X` is outside the allowed bounds.

    # Arguments
        X: tensorflow.Tensor
            The variable to apply the bounds to
        logp: tensorflow.Tensor
            The log probability corrosponding to `X`
        bounds: list of `Region` objects
            The regions corrosponding to allowed regions of `X`

    # Returns
        logp: tensorflow.Tensor
            The newly bounded log probability
    """
    conditions = []
    for l, u in bounds:
        lower_is_neg_inf = not isinstance(l, tf.Tensor) and np.isneginf(l)
        upper_is_pos_inf = not isinstance(u, tf.Tensor) and np.isposinf(u)

        if not lower_is_neg_inf and upper_is_pos_inf:
            conditions.append(tf.greater(X, l))
        elif lower_is_neg_inf and not upper_is_pos_inf:
            conditions.append(tf.less(X, u))
        elif not (lower_is_neg_inf or upper_is_pos_inf):
            conditions.append(tf.logical_and(tf.greater(X, l), tf.less(X, u)))

    if len(conditions) > 0:
        is_inside_bounds = conditions[0]
        for condition in conditions[1:]:
            is_inside_bounds = tf.logical_or(is_inside_bounds, condition)

        logp = tf.select(is_inside_bounds, logp, tf.fill(tf.shape(X), config.dtype(-np.inf)))

    return logp
开发者ID:tensorprob,项目名称:tensorprob,代码行数:35,代码来源:utilities.py


示例10: body_infer

    def body_infer(time, inputs, caches, outputs_tas, finished,
                   log_probs, lengths, bs_stat_ta, predicted_ids):
        """Internal while_loop body.

        Args:
          time: Scalar int32 Tensor.
          inputs: A list of inputs Tensors.
          caches: A dict of decoder states.
          outputs_tas: A list of TensorArrays.
          finished: A bool tensor (keeping track of what's finished).
          log_probs: The log probability Tensor.
          lengths: The decoding length Tensor.
          bs_stat_ta: structure of TensorArray.
          predicted_ids: A Tensor.

        Returns:
          `(time + 1, next_inputs, next_caches, next_outputs_tas,
          next_finished, next_log_probs, next_lengths, next_infer_status_ta)`.
        """

        # step decoder
        def _decoding(_decoder, _input, _cache, _decoder_output_remover,
                      _outputs_ta, _outputs_to_logits_fn):
            with tf.variable_scope(_decoder.name):
                _output, _next_cache = _decoder.step(_input, _cache)
                _decoder_top_features = _decoder.merge_top_features(_output)
            _ta = nest.map_structure(lambda _ta_ms, _output_ms: _ta_ms.write(time, _output_ms),
                                     _outputs_ta, _decoder_output_remover.apply(_output))
            _logit = _outputs_to_logits_fn(_decoder_top_features)
            return _output, _next_cache, _ta, _logit

        outputs, next_caches, next_outputs_tas, logits = repeat_n_times(
            num_models, _decoding,
            decoders, inputs, caches, decoder_output_removers,
            outputs_tas, outputs_to_logits_fns)

        # sample next symbols
        sample_ids, beam_ids, next_log_probs, next_lengths \
            = helper.sample_symbols(logits, log_probs, finished, lengths, time=time)

        for c in next_caches:
            c["decoding_states"] = gather_states(c["decoding_states"], beam_ids)

        infer_status = BeamSearchStateSpec(
            log_probs=next_log_probs,
            beam_ids=beam_ids)
        bs_stat_ta = nest.map_structure(lambda ta, out: ta.write(time, out),
                                        bs_stat_ta, infer_status)
        predicted_ids = gather_states(tf.reshape(predicted_ids, [-1, time + 1]), beam_ids)
        next_predicted_ids = tf.concat([predicted_ids, tf.expand_dims(sample_ids, axis=1)], axis=1)
        next_predicted_ids = tf.reshape(next_predicted_ids, [-1])
        next_predicted_ids.set_shape([None])
        next_finished, next_input_symbols = helper.next_symbols(time=time, sample_ids=sample_ids)
        next_inputs = repeat_n_times(num_models, target_to_embedding_fns,
                                     next_input_symbols, time + 1)
        next_finished = tf.logical_or(next_finished, finished)

        return time + 1, next_inputs, next_caches, next_outputs_tas, \
               next_finished, next_log_probs, next_lengths, bs_stat_ta, \
               next_predicted_ids
开发者ID:KIngpon,项目名称:NJUNMT-tf,代码行数:60,代码来源:ensemble_model.py


示例11: not_done_step

 def not_done_step(a, _):
   reward, done = self._batch_env.simulate(action)
   with tf.control_dependencies([reward, done]):
     r0 = self._batch_env.observ
     r1 = tf.add(a[1], reward)
     r2 = tf.logical_or(a[2], done)
     return (r0, r1, r2)
开发者ID:kltony,项目名称:tensor2tensor,代码行数:7,代码来源:tf_atari_wrappers.py


示例12: _get_values_from_start_and_end

  def _get_values_from_start_and_end(self, input_tensor, num_start_samples,
                                     num_end_samples, total_num_samples):
    """slices num_start_samples and last num_end_samples from input_tensor.

    Args:
      input_tensor: An int32 tensor of shape [N] to be sliced.
      num_start_samples: Number of examples to be sliced from the beginning
        of the input tensor.
      num_end_samples: Number of examples to be sliced from the end of the
        input tensor.
      total_num_samples: Sum of is num_start_samples and num_end_samples. This
        should be a scalar.

    Returns:
      A tensor containing the first num_start_samples and last num_end_samples
      from input_tensor.

    """
    input_length = tf.shape(input_tensor)[0]
    start_positions = tf.less(tf.range(input_length), num_start_samples)
    end_positions = tf.greater_equal(
        tf.range(input_length), input_length - num_end_samples)
    selected_positions = tf.logical_or(start_positions, end_positions)
    selected_positions = tf.cast(selected_positions, tf.int32)
    indexed_positions = tf.multiply(tf.cumsum(selected_positions),
                                    selected_positions)
    one_hot_selector = tf.one_hot(indexed_positions - 1,
                                  total_num_samples,
                                  dtype=tf.int32)
    return tf.tensordot(input_tensor, one_hot_selector, axes=[0, 0])
开发者ID:ALISCIFP,项目名称:models,代码行数:30,代码来源:balanced_positive_negative_sampler.py


示例13: _inverse_log_det_jacobian

  def _inverse_log_det_jacobian(self, y, use_saved_statistics=False):
    if not self.batchnorm.built:
      # Create variables.
      self.batchnorm.build(y.shape)

    event_dims = self.batchnorm.axis
    reduction_axes = [i for i in range(len(y.shape)) if i not in event_dims]

    # At training-time, ildj is computed from the mean and log-variance across
    # the current minibatch.
    # We use multiplication instead of tf.where() to get easier broadcasting.
    use_saved_statistics = tf.cast(
        tf.logical_or(use_saved_statistics, tf.logical_not(self._training)),
        tf.float32)
    log_variance = tf.log(
        (1 - use_saved_statistics) * tf.nn.moments(y, axes=reduction_axes,
                                                   keep_dims=True)[1]
        + use_saved_statistics * self.batchnorm.moving_variance
        + self.batchnorm.epsilon)

    # `gamma` and `log Var(y)` reductions over event_dims.
    # Log(total change in area from gamma term).
    log_total_gamma = tf.reduce_sum(tf.log(self.batchnorm.gamma))

    # Log(total change in area from log-variance term).
    log_total_variance = tf.reduce_sum(log_variance)
    # The ildj is scalar, as it does not depend on the values of x and are
    # constant across minibatch elements.
    return log_total_gamma - 0.5 * log_total_variance
开发者ID:asudomoeva,项目名称:probability,代码行数:29,代码来源:batch_normalization.py


示例14: termination_condition

 def termination_condition(self, state):
     char_idx = tf.cast(tf.argmax(state.phi, axis=1), tf.int32)
     final_char = char_idx >= self.attention_values_lengths - 1
     past_final_char = char_idx >= self.attention_values_lengths
     output = self.output_function(state)
     es = tf.cast(output[:, 2], tf.int32)
     is_eos = tf.equal(es, np.ones_like(es))
     return tf.logical_or(tf.logical_and(final_char, is_eos), past_final_char)
开发者ID:animebing,项目名称:handwriting-synthesis,代码行数:8,代码来源:rnn_cell.py


示例15: subsample

  def subsample(self, indicator, batch_size, labels, scope=None):
    """Returns subsampled minibatch.

    Args:
      indicator: boolean tensor of shape [N] whose True entries can be sampled.
      batch_size: desired batch size. If None, keeps all positive samples and
        randomly selects negative samples so that the positive sample fraction
        matches self._positive_fraction. It cannot be None is is_static is True.
      labels: boolean tensor of shape [N] denoting positive(=True) and negative
          (=False) examples.
      scope: name scope.

    Returns:
      sampled_idx_indicator: boolean tensor of shape [N], True for entries which
        are sampled.

    Raises:
      ValueError: if labels and indicator are not 1D boolean tensors.
    """
    if len(indicator.get_shape().as_list()) != 1:
      raise ValueError('indicator must be 1 dimensional, got a tensor of '
                       'shape %s' % indicator.get_shape())
    if len(labels.get_shape().as_list()) != 1:
      raise ValueError('labels must be 1 dimensional, got a tensor of '
                       'shape %s' % labels.get_shape())
    if labels.dtype != tf.bool:
      raise ValueError('labels should be of type bool. Received: %s' %
                       labels.dtype)
    if indicator.dtype != tf.bool:
      raise ValueError('indicator should be of type bool. Received: %s' %
                       indicator.dtype)
    with tf.name_scope(scope, 'BalancedPositiveNegativeSampler'):
      if self._is_static:
        return self._static_subsample(indicator, batch_size, labels)

      else:
        # Only sample from indicated samples
        negative_idx = tf.logical_not(labels)
        positive_idx = tf.logical_and(labels, indicator)
        negative_idx = tf.logical_and(negative_idx, indicator)

        # Sample positive and negative samples separately
        if batch_size is None:
          max_num_pos = tf.reduce_sum(tf.to_int32(positive_idx))
        else:
          max_num_pos = int(self._positive_fraction * batch_size)
        sampled_pos_idx = self.subsample_indicator(positive_idx, max_num_pos)
        num_sampled_pos = tf.reduce_sum(tf.cast(sampled_pos_idx, tf.int32))
        if batch_size is None:
          negative_positive_ratio = (
              1 - self._positive_fraction) / self._positive_fraction
          max_num_neg = tf.to_int32(
              negative_positive_ratio * tf.to_float(num_sampled_pos))
        else:
          max_num_neg = batch_size - num_sampled_pos
        sampled_neg_idx = self.subsample_indicator(negative_idx, max_num_neg)

        return tf.logical_or(sampled_pos_idx, sampled_neg_idx)
开发者ID:ALISCIFP,项目名称:models,代码行数:58,代码来源:balanced_positive_negative_sampler.py


示例16: simulate

  def simulate(self, action):
    with tf.name_scope("environment/simulate"):
      reward, done = self._batch_env.simulate(action)
      with tf.control_dependencies([reward, done]):
        new_done = tf.logical_or(done, self._time_elapsed > self.timelimit)
        inc = self._time_elapsed.assign_add(tf.ones_like(self._time_elapsed))

        with tf.control_dependencies([inc]):
          return tf.identity(reward), tf.identity(new_done)
开发者ID:kltony,项目名称:tensor2tensor,代码行数:9,代码来源:tf_atari_wrappers.py


示例17: integral

 def integral(lower, upper):
     return tf.cond(
         tf.logical_or(
             tf.is_inf(tf.cast(lower, config.dtype)),
             tf.is_inf(tf.cast(upper, config.dtype))
         ),
         lambda: tf.constant(1, dtype=config.dtype),
         lambda: tf.cast(upper, config.dtype) - tf.cast(lower, config.dtype),
     )
开发者ID:MaxNoe,项目名称:tensorprob,代码行数:9,代码来源:uniform.py


示例18: _log_prob

 def _log_prob(self, x):
   log_prob = -(0.5 * tf.square((x - self.loc) / self.scale) +
                0.5 * np.log(2. * np.pi)
                + tf.log(self.scale * self._normalizer))
   # p(x) is 0 outside the bounds.
   neg_inf = tf.log(tf.zeros_like(log_prob))
   bounded_log_prob = tf.where(tf.logical_or(tf.greater(x, self._high),
                                             tf.less(x, self._low)),
                               neg_inf, log_prob)
   return bounded_log_prob
开发者ID:lewisKit,项目名称:probability,代码行数:10,代码来源:truncated_normal.py


示例19: detectMinVal

def detectMinVal(input_mat, var, threshold=1e-6, name='', debug=False):
    eigen_min = tf.reduce_min(input_mat)
    eigen_max = tf.reduce_max(input_mat)
    eigen_ratio = eigen_max / eigen_min
    input_mat_clipped = clipoutNeg(input_mat, threshold)

    if debug:
        input_mat_clipped = tf.cond(tf.logical_or(tf.greater(eigen_ratio, 0.), tf.less(eigen_ratio, -500)), lambda: input_mat_clipped, lambda: tf.Print(
            input_mat_clipped, [tf.convert_to_tensor('screwed ratio ' + name + ' eigen values!!!'), tf.convert_to_tensor(var.name), eigen_min, eigen_max, eigen_ratio]))

    return input_mat_clipped
开发者ID:Divyankpandey,项目名称:baselines,代码行数:11,代码来源:kfac_utils.py


示例20: _log_prob_single

 def _log_prob_single(tensor):
     stddev = tf.sqrt(scale_factor / calculate_variance_factor(tensor.shape, mode))
     z = (tensor - mean) / stddev
     log_prob_z = - (z ** 2 + tf.log(2 * pi)) / 2
     log_prob = tf.reduce_sum(log_prob_z)
     if truncated:
         from numpy import inf
         log_prob -= tf.log(TRUNCATED_NORMALIZER)
         invalid = tf.logical_or(tf.less_equal(z, -2), tf.greater_equal(z, 2))
         log_prob = tf.where(invalid, -inf, log_prob)
     # Return negative as this is a regularizer
     return - log_prob
开发者ID:botev,项目名称:tensorflow_utils,代码行数:12,代码来源:priors.py



注:本文中的tensorflow.logical_or函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensorflow.make_template函数代码示例发布时间:2022-05-27
下一篇:
Python tensorflow.logical_not函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap