本文整理汇总了Python中tensorflow.logical_or函数的典型用法代码示例。如果您正苦于以下问题:Python logical_or函数的具体用法?Python logical_or怎么用?Python logical_or使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了logical_or函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: m_body
def m_body(i, ta_tp, ta_fp, gmatch, n_ignored_det):
# Jaccard score with groundtruth bboxes.
rbbox = bboxes[i, :]
# rbbox = tf.Print(rbbox, [rbbox])
jaccard = bboxes_jaccard(rbbox, gxs, gys)
# Best fit, checking it's above threshold.
idxmax = tf.cast(tf.argmax(jaccard, axis=0), dtype = tf.int32)
jcdmax = jaccard[idxmax]
match = jcdmax > matching_threshold
existing_match = gmatch[idxmax]
not_ignored = tf.logical_not(gignored[idxmax])
n_ignored_det = n_ignored_det + tf.cast(gignored[idxmax], tf.int32)
# TP: match & no previous match and FP: previous match | no match.
# If ignored: no record, i.e FP=False and TP=False.
tp = tf.logical_and(not_ignored, tf.logical_and(match, tf.logical_not(existing_match)))
ta_tp = ta_tp.write(i, tp)
fp = tf.logical_and(not_ignored, tf.logical_or(existing_match, tf.logical_not(match)))
ta_fp = ta_fp.write(i, fp)
# Update grountruth match.
mask = tf.logical_and(tf.equal(grange, idxmax), tf.logical_and(not_ignored, match))
gmatch = tf.logical_or(gmatch, mask)
return [i+1, ta_tp, ta_fp, gmatch,n_ignored_det]
开发者ID:cvtower,项目名称:seglink,代码行数:27,代码来源:bboxes.py
示例2: m_body
def m_body(i, ta_tp, ta_fp, gmatch):
# Jaccard score with groundtruth bboxes.
rbbox = bboxes[i]
jaccard = bboxes_jaccard(rbbox, gbboxes)
jaccard = jaccard * tf.cast(tf.equal(glabels, rlabel), dtype=jaccard.dtype)
# Best fit, checking it's above threshold.
idxmax = tf.cast(tf.argmax(jaccard, axis=0), tf.int32)
jcdmax = jaccard[idxmax]
match = jcdmax > matching_threshold
existing_match = gmatch[idxmax]
not_difficult = tf.logical_not(gdifficults[idxmax])
# TP: match & no previous match and FP: previous match | no match.
# If difficult: no record, i.e FP=False and TP=False.
tp = tf.logical_and(not_difficult,
tf.logical_and(match, tf.logical_not(existing_match)))
ta_tp = ta_tp.write(i, tp)
fp = tf.logical_and(not_difficult,
tf.logical_or(existing_match, tf.logical_not(match)))
ta_fp = ta_fp.write(i, fp)
# Update grountruth match.
mask = tf.logical_and(tf.equal(grange, idxmax),
tf.logical_and(not_difficult, match))
gmatch = tf.logical_or(gmatch, mask)
return [i+1, ta_tp, ta_fp, gmatch]
开发者ID:bowrian,项目名称:SSD-Tensorflow,代码行数:27,代码来源:bboxes.py
示例3: tf_cheating_contcartpole
def tf_cheating_contcartpole(state, action):
gravity = 9.8
masscart = 1.0
masspole = 0.1
total_mass = (masspole + masscart)
length = 0.5 # actually half the pole's length
polemass_length = (masspole * length)
force_mag = 10.0
tau = 0.02 # seconds between state updates
# Angle at which to fail the episode
theta_threshold_radians = 12 * 2 * math.pi / 360
x_threshold = 2.4
x, x_dot, theta, theta_dot = tf.split(state, 4, axis=-1)
done = tf.logical_or(x < -x_threshold,
tf.logical_or(x > x_threshold,
tf.logical_or(theta < -theta_threshold_radians,
theta > theta_threshold_radians)))
force = force_mag * action
costheta = tf.cos(theta)
sintheta = tf.sin(theta)
temp = old_div((force + polemass_length * theta_dot * theta_dot * sintheta), total_mass)
thetaacc = old_div((gravity * sintheta - costheta* temp), (length * (old_div(4.0,3.0) - masspole * costheta * costheta / total_mass)))
xacc = temp - polemass_length * thetaacc * costheta / total_mass
x = x + tau * x_dot
x_dot = x_dot + tau * xacc
theta = theta + tau * theta_dot
theta_dot = theta_dot + tau * thetaacc
state = tf.concat([x,x_dot,theta,theta_dot], -1)
done = tf.squeeze(tf.cast(done, tf.float32), -1)
reward = 1.0 - done
done *= 0.
return state, reward, done
开发者ID:ALISCIFP,项目名称:models,代码行数:35,代码来源:util.py
示例4: accuracy
def accuracy(log, w1, w2, w3):
with tf.name_scope('accuracy') as scope:
c1 = tf.equal(tf.argmax(log, 1), tf.argmax(w1, 1))
c2 = tf.equal(tf.argmax(log, 1), tf.argmax(w2, 1))
c3 = tf.equal(tf.argmax(log, 1), tf.argmax(w3, 1))
correct_prediction = tf.logical_or(tf.logical_or(c1,c2),c3)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
tf.scalar_summary("accuracy", accuracy)
return accuracy
开发者ID:discoNeko,项目名称:TensorFlow,代码行数:9,代码来源:main.py
示例5: set_zero_on_high_global_norm
def set_zero_on_high_global_norm(self, grad, grad_norm_threshold, global_norm_tag=None):
"""
:param tf.Tensor grad:
:param float grad_norm_threshold:
:param str|None global_norm_tag:
:rtype: tf.Tensor
"""
norm = self.get_global_grad_norm(tag=global_norm_tag)
# Also check nan/inf. Treat them as if we would have been over grad_norm_threshold.
zero_cond = tf.logical_or(tf.is_nan(norm), tf.is_inf(norm))
zero_cond = tf.logical_or(zero_cond, tf.greater(norm, grad_norm_threshold))
return tf.where(zero_cond, tf.zeros_like(grad), grad)
开发者ID:rwth-i6,项目名称:returnn,代码行数:12,代码来源:TFUpdater.py
示例6: update_op
def update_op(self, has_nan, amax):
is_nonfinite = tf.logical_or(has_nan, tf.is_inf(amax))
x = tf.cond(is_nonfinite,
lambda: tf.pow(2., self.log_max),
lambda: tf.log(amax) / tf.log(tf.constant(2.)))
x_hat_assn = tf.assign(self.x_hat, self.beta1 * self.x_hat +
(1 - self.beta1) * x)
b1_corr_assn = tf.assign(self.b1_correction,
self.b1_correction * self.beta1)
with tf.control_dependencies([x_hat_assn, b1_corr_assn]):
mu = self.x_hat.read_value() / (1 - self.b1_correction.read_value())
slow_x_hat_assn = tf.assign(self.slow_x_hat, self.beta2 * self.slow_x_hat +
(1 - self.beta2) * x)
xsquared_hat_assn = tf.assign(self.xsquared_hat, self.beta2 * self.xsquared_hat +
(1 - self.beta2) * (x * x))
b2_corr_assn = tf.assign(self.b2_correction,
self.b2_correction * self.beta2)
with tf.control_dependencies([slow_x_hat_assn, xsquared_hat_assn, b2_corr_assn]):
e_xsquared = self.xsquared_hat.read_value() / (1 - self.b2_correction.read_value())
slow_mu = self.slow_x_hat.read_value() / (1 - self.b2_correction.read_value())
sigma2 = e_xsquared - (slow_mu * slow_mu)
sigma = tf.sqrt(tf.maximum(sigma2, tf.constant(0.)))
log_cutoff = sigma * self.overflow_std_dev + mu
log_difference = 16 - log_cutoff
proposed_scale = tf.pow(2., log_difference)
scale_update = tf.assign(self.scale, tf.clip_by_value(proposed_scale, self.scale_min,
self.scale_max))
iter_update = tf.assign_add(self.iteration, 1)
with tf.control_dependencies([scale_update]):
return tf.identity(iter_update)
开发者ID:fotwo,项目名称:OpenSeq2Seq,代码行数:35,代码来源:automatic_loss_scaler.py
示例7: apply_gradients
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
def apply_ops_wrapper():
update_op = self._optimizer.apply_gradients(grads_and_vars,
global_step, name)
apply_ops = []
with tf.control_dependencies([update_op]):
for grad, var in grads_and_vars:
if var.name in self._fp32_to_fp16:
dst_var = self._fp32_to_fp16[var.name]
apply_ops.append(
tf.assign(dst_var, tf.saturate_cast(var, tf.float16)))
if apply_ops:
return tf.group(apply_ops)
return update_op
if self._loss_scaler:
grad_has_nans, grad_amax = AutomaticLossScaler.check_grads(grads_and_vars)
should_skip_update = tf.logical_or(tf.is_inf(grad_amax), grad_has_nans)
loss_scale_update_op = self._loss_scaler.update_op(grad_has_nans,
grad_amax)
with tf.control_dependencies([loss_scale_update_op]):
return tf.cond(should_skip_update,
tf.no_op,
apply_ops_wrapper)
else:
return apply_ops_wrapper()
开发者ID:fotwo,项目名称:OpenSeq2Seq,代码行数:27,代码来源:mp_wrapper.py
示例8: add_dyprune
def add_dyprune(weights):
crate = config.crate[weights.name[:-2]] #hyperpara C rate
prune_mask = tf.Variable(tf.ones_like(weights),name=weights.name[:-2]+'mask', trainable=False)
#calculate mask
mean = tf.divide(tf.reduce_sum(tf.multiply(tf.abs(weights),prune_mask)),tf.reduce_sum(prune_mask))
var = tf.multiply(weights,prune_mask)
var = tf.square(var)
mean_q = tf.square(mean)*tf.reduce_sum(prune_mask)
var = tf.reduce_sum(var) - mean_q
var = tf.divide(var,tf.reduce_sum(prune_mask))
var = tf.sqrt(var)
t1_lower = (mean+var*crate)*0.25 #hyperpara a
t1_upper = (mean+var*crate)*0.45 #hyperpara b
indicator_lower1 = tf.greater_equal(tf.abs(weights), tf.ones_like(weights) * t1_lower)
indicator_upper1 = tf.greater_equal(tf.abs(weights), tf.ones_like(weights) * t1_upper)
indicator_matrix1 = tf.greater_equal(prune_mask, tf.zeros_like(weights))
indicator_matrix1 = tf.logical_and(indicator_matrix1,indicator_lower1)
indicator_matrix1 = tf.logical_or(indicator_matrix1,indicator_upper1)
indicator_matrix1 = tf.to_float(indicator_matrix1)
update = prune_mask.assign(indicator_matrix1)
prune_fc = tf.multiply(weights, prune_mask)
return prune_fc
开发者ID:Ewenwan,项目名称:Project,代码行数:25,代码来源:densenetfinalDNS.py
示例9: set_logp_to_neg_inf
def set_logp_to_neg_inf(X, logp, bounds):
"""Set `logp` to negative infinity when `X` is outside the allowed bounds.
# Arguments
X: tensorflow.Tensor
The variable to apply the bounds to
logp: tensorflow.Tensor
The log probability corrosponding to `X`
bounds: list of `Region` objects
The regions corrosponding to allowed regions of `X`
# Returns
logp: tensorflow.Tensor
The newly bounded log probability
"""
conditions = []
for l, u in bounds:
lower_is_neg_inf = not isinstance(l, tf.Tensor) and np.isneginf(l)
upper_is_pos_inf = not isinstance(u, tf.Tensor) and np.isposinf(u)
if not lower_is_neg_inf and upper_is_pos_inf:
conditions.append(tf.greater(X, l))
elif lower_is_neg_inf and not upper_is_pos_inf:
conditions.append(tf.less(X, u))
elif not (lower_is_neg_inf or upper_is_pos_inf):
conditions.append(tf.logical_and(tf.greater(X, l), tf.less(X, u)))
if len(conditions) > 0:
is_inside_bounds = conditions[0]
for condition in conditions[1:]:
is_inside_bounds = tf.logical_or(is_inside_bounds, condition)
logp = tf.select(is_inside_bounds, logp, tf.fill(tf.shape(X), config.dtype(-np.inf)))
return logp
开发者ID:tensorprob,项目名称:tensorprob,代码行数:35,代码来源:utilities.py
示例10: body_infer
def body_infer(time, inputs, caches, outputs_tas, finished,
log_probs, lengths, bs_stat_ta, predicted_ids):
"""Internal while_loop body.
Args:
time: Scalar int32 Tensor.
inputs: A list of inputs Tensors.
caches: A dict of decoder states.
outputs_tas: A list of TensorArrays.
finished: A bool tensor (keeping track of what's finished).
log_probs: The log probability Tensor.
lengths: The decoding length Tensor.
bs_stat_ta: structure of TensorArray.
predicted_ids: A Tensor.
Returns:
`(time + 1, next_inputs, next_caches, next_outputs_tas,
next_finished, next_log_probs, next_lengths, next_infer_status_ta)`.
"""
# step decoder
def _decoding(_decoder, _input, _cache, _decoder_output_remover,
_outputs_ta, _outputs_to_logits_fn):
with tf.variable_scope(_decoder.name):
_output, _next_cache = _decoder.step(_input, _cache)
_decoder_top_features = _decoder.merge_top_features(_output)
_ta = nest.map_structure(lambda _ta_ms, _output_ms: _ta_ms.write(time, _output_ms),
_outputs_ta, _decoder_output_remover.apply(_output))
_logit = _outputs_to_logits_fn(_decoder_top_features)
return _output, _next_cache, _ta, _logit
outputs, next_caches, next_outputs_tas, logits = repeat_n_times(
num_models, _decoding,
decoders, inputs, caches, decoder_output_removers,
outputs_tas, outputs_to_logits_fns)
# sample next symbols
sample_ids, beam_ids, next_log_probs, next_lengths \
= helper.sample_symbols(logits, log_probs, finished, lengths, time=time)
for c in next_caches:
c["decoding_states"] = gather_states(c["decoding_states"], beam_ids)
infer_status = BeamSearchStateSpec(
log_probs=next_log_probs,
beam_ids=beam_ids)
bs_stat_ta = nest.map_structure(lambda ta, out: ta.write(time, out),
bs_stat_ta, infer_status)
predicted_ids = gather_states(tf.reshape(predicted_ids, [-1, time + 1]), beam_ids)
next_predicted_ids = tf.concat([predicted_ids, tf.expand_dims(sample_ids, axis=1)], axis=1)
next_predicted_ids = tf.reshape(next_predicted_ids, [-1])
next_predicted_ids.set_shape([None])
next_finished, next_input_symbols = helper.next_symbols(time=time, sample_ids=sample_ids)
next_inputs = repeat_n_times(num_models, target_to_embedding_fns,
next_input_symbols, time + 1)
next_finished = tf.logical_or(next_finished, finished)
return time + 1, next_inputs, next_caches, next_outputs_tas, \
next_finished, next_log_probs, next_lengths, bs_stat_ta, \
next_predicted_ids
开发者ID:KIngpon,项目名称:NJUNMT-tf,代码行数:60,代码来源:ensemble_model.py
示例11: not_done_step
def not_done_step(a, _):
reward, done = self._batch_env.simulate(action)
with tf.control_dependencies([reward, done]):
r0 = self._batch_env.observ
r1 = tf.add(a[1], reward)
r2 = tf.logical_or(a[2], done)
return (r0, r1, r2)
开发者ID:kltony,项目名称:tensor2tensor,代码行数:7,代码来源:tf_atari_wrappers.py
示例12: _get_values_from_start_and_end
def _get_values_from_start_and_end(self, input_tensor, num_start_samples,
num_end_samples, total_num_samples):
"""slices num_start_samples and last num_end_samples from input_tensor.
Args:
input_tensor: An int32 tensor of shape [N] to be sliced.
num_start_samples: Number of examples to be sliced from the beginning
of the input tensor.
num_end_samples: Number of examples to be sliced from the end of the
input tensor.
total_num_samples: Sum of is num_start_samples and num_end_samples. This
should be a scalar.
Returns:
A tensor containing the first num_start_samples and last num_end_samples
from input_tensor.
"""
input_length = tf.shape(input_tensor)[0]
start_positions = tf.less(tf.range(input_length), num_start_samples)
end_positions = tf.greater_equal(
tf.range(input_length), input_length - num_end_samples)
selected_positions = tf.logical_or(start_positions, end_positions)
selected_positions = tf.cast(selected_positions, tf.int32)
indexed_positions = tf.multiply(tf.cumsum(selected_positions),
selected_positions)
one_hot_selector = tf.one_hot(indexed_positions - 1,
total_num_samples,
dtype=tf.int32)
return tf.tensordot(input_tensor, one_hot_selector, axes=[0, 0])
开发者ID:ALISCIFP,项目名称:models,代码行数:30,代码来源:balanced_positive_negative_sampler.py
示例13: _inverse_log_det_jacobian
def _inverse_log_det_jacobian(self, y, use_saved_statistics=False):
if not self.batchnorm.built:
# Create variables.
self.batchnorm.build(y.shape)
event_dims = self.batchnorm.axis
reduction_axes = [i for i in range(len(y.shape)) if i not in event_dims]
# At training-time, ildj is computed from the mean and log-variance across
# the current minibatch.
# We use multiplication instead of tf.where() to get easier broadcasting.
use_saved_statistics = tf.cast(
tf.logical_or(use_saved_statistics, tf.logical_not(self._training)),
tf.float32)
log_variance = tf.log(
(1 - use_saved_statistics) * tf.nn.moments(y, axes=reduction_axes,
keep_dims=True)[1]
+ use_saved_statistics * self.batchnorm.moving_variance
+ self.batchnorm.epsilon)
# `gamma` and `log Var(y)` reductions over event_dims.
# Log(total change in area from gamma term).
log_total_gamma = tf.reduce_sum(tf.log(self.batchnorm.gamma))
# Log(total change in area from log-variance term).
log_total_variance = tf.reduce_sum(log_variance)
# The ildj is scalar, as it does not depend on the values of x and are
# constant across minibatch elements.
return log_total_gamma - 0.5 * log_total_variance
开发者ID:asudomoeva,项目名称:probability,代码行数:29,代码来源:batch_normalization.py
示例14: termination_condition
def termination_condition(self, state):
char_idx = tf.cast(tf.argmax(state.phi, axis=1), tf.int32)
final_char = char_idx >= self.attention_values_lengths - 1
past_final_char = char_idx >= self.attention_values_lengths
output = self.output_function(state)
es = tf.cast(output[:, 2], tf.int32)
is_eos = tf.equal(es, np.ones_like(es))
return tf.logical_or(tf.logical_and(final_char, is_eos), past_final_char)
开发者ID:animebing,项目名称:handwriting-synthesis,代码行数:8,代码来源:rnn_cell.py
示例15: subsample
def subsample(self, indicator, batch_size, labels, scope=None):
"""Returns subsampled minibatch.
Args:
indicator: boolean tensor of shape [N] whose True entries can be sampled.
batch_size: desired batch size. If None, keeps all positive samples and
randomly selects negative samples so that the positive sample fraction
matches self._positive_fraction. It cannot be None is is_static is True.
labels: boolean tensor of shape [N] denoting positive(=True) and negative
(=False) examples.
scope: name scope.
Returns:
sampled_idx_indicator: boolean tensor of shape [N], True for entries which
are sampled.
Raises:
ValueError: if labels and indicator are not 1D boolean tensors.
"""
if len(indicator.get_shape().as_list()) != 1:
raise ValueError('indicator must be 1 dimensional, got a tensor of '
'shape %s' % indicator.get_shape())
if len(labels.get_shape().as_list()) != 1:
raise ValueError('labels must be 1 dimensional, got a tensor of '
'shape %s' % labels.get_shape())
if labels.dtype != tf.bool:
raise ValueError('labels should be of type bool. Received: %s' %
labels.dtype)
if indicator.dtype != tf.bool:
raise ValueError('indicator should be of type bool. Received: %s' %
indicator.dtype)
with tf.name_scope(scope, 'BalancedPositiveNegativeSampler'):
if self._is_static:
return self._static_subsample(indicator, batch_size, labels)
else:
# Only sample from indicated samples
negative_idx = tf.logical_not(labels)
positive_idx = tf.logical_and(labels, indicator)
negative_idx = tf.logical_and(negative_idx, indicator)
# Sample positive and negative samples separately
if batch_size is None:
max_num_pos = tf.reduce_sum(tf.to_int32(positive_idx))
else:
max_num_pos = int(self._positive_fraction * batch_size)
sampled_pos_idx = self.subsample_indicator(positive_idx, max_num_pos)
num_sampled_pos = tf.reduce_sum(tf.cast(sampled_pos_idx, tf.int32))
if batch_size is None:
negative_positive_ratio = (
1 - self._positive_fraction) / self._positive_fraction
max_num_neg = tf.to_int32(
negative_positive_ratio * tf.to_float(num_sampled_pos))
else:
max_num_neg = batch_size - num_sampled_pos
sampled_neg_idx = self.subsample_indicator(negative_idx, max_num_neg)
return tf.logical_or(sampled_pos_idx, sampled_neg_idx)
开发者ID:ALISCIFP,项目名称:models,代码行数:58,代码来源:balanced_positive_negative_sampler.py
示例16: simulate
def simulate(self, action):
with tf.name_scope("environment/simulate"):
reward, done = self._batch_env.simulate(action)
with tf.control_dependencies([reward, done]):
new_done = tf.logical_or(done, self._time_elapsed > self.timelimit)
inc = self._time_elapsed.assign_add(tf.ones_like(self._time_elapsed))
with tf.control_dependencies([inc]):
return tf.identity(reward), tf.identity(new_done)
开发者ID:kltony,项目名称:tensor2tensor,代码行数:9,代码来源:tf_atari_wrappers.py
示例17: integral
def integral(lower, upper):
return tf.cond(
tf.logical_or(
tf.is_inf(tf.cast(lower, config.dtype)),
tf.is_inf(tf.cast(upper, config.dtype))
),
lambda: tf.constant(1, dtype=config.dtype),
lambda: tf.cast(upper, config.dtype) - tf.cast(lower, config.dtype),
)
开发者ID:MaxNoe,项目名称:tensorprob,代码行数:9,代码来源:uniform.py
示例18: _log_prob
def _log_prob(self, x):
log_prob = -(0.5 * tf.square((x - self.loc) / self.scale) +
0.5 * np.log(2. * np.pi)
+ tf.log(self.scale * self._normalizer))
# p(x) is 0 outside the bounds.
neg_inf = tf.log(tf.zeros_like(log_prob))
bounded_log_prob = tf.where(tf.logical_or(tf.greater(x, self._high),
tf.less(x, self._low)),
neg_inf, log_prob)
return bounded_log_prob
开发者ID:lewisKit,项目名称:probability,代码行数:10,代码来源:truncated_normal.py
示例19: detectMinVal
def detectMinVal(input_mat, var, threshold=1e-6, name='', debug=False):
eigen_min = tf.reduce_min(input_mat)
eigen_max = tf.reduce_max(input_mat)
eigen_ratio = eigen_max / eigen_min
input_mat_clipped = clipoutNeg(input_mat, threshold)
if debug:
input_mat_clipped = tf.cond(tf.logical_or(tf.greater(eigen_ratio, 0.), tf.less(eigen_ratio, -500)), lambda: input_mat_clipped, lambda: tf.Print(
input_mat_clipped, [tf.convert_to_tensor('screwed ratio ' + name + ' eigen values!!!'), tf.convert_to_tensor(var.name), eigen_min, eigen_max, eigen_ratio]))
return input_mat_clipped
开发者ID:Divyankpandey,项目名称:baselines,代码行数:11,代码来源:kfac_utils.py
示例20: _log_prob_single
def _log_prob_single(tensor):
stddev = tf.sqrt(scale_factor / calculate_variance_factor(tensor.shape, mode))
z = (tensor - mean) / stddev
log_prob_z = - (z ** 2 + tf.log(2 * pi)) / 2
log_prob = tf.reduce_sum(log_prob_z)
if truncated:
from numpy import inf
log_prob -= tf.log(TRUNCATED_NORMALIZER)
invalid = tf.logical_or(tf.less_equal(z, -2), tf.greater_equal(z, 2))
log_prob = tf.where(invalid, -inf, log_prob)
# Return negative as this is a regularizer
return - log_prob
开发者ID:botev,项目名称:tensorflow_utils,代码行数:12,代码来源:priors.py
注:本文中的tensorflow.logical_or函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论