• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensorflow.is_nan函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.is_nan函数的典型用法代码示例。如果您正苦于以下问题:Python is_nan函数的具体用法?Python is_nan怎么用?Python is_nan使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了is_nan函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: cut

    def cut(self, hits, start, end):
        """
        Cuts [start:end] diapason from input data
        :param hits: hits timeseries
        :param start: start index
        :param end: end index
        :return: tuple (train_hits, test_hits, dow, lagged_hits)
        """
        # Pad hits to ensure we have enough array length for prediction
        hits = tf.concat([hits, tf.fill([self.predict_window], np.NaN)], axis=0)
        cropped_hit = hits[start:end]

        # cut day of week
        cropped_dow = self.inp.dow[start:end]

        # Cut lagged hits
        # gather() accepts only int32 indexes
        cropped_lags = tf.cast(self.inp.lagged_ix[start:end], tf.int32)
        # Mask for -1 (no data) lag indexes
        lag_mask = cropped_lags < 0
        # Convert -1 to 0 for gather(), it don't accept anything exotic
        cropped_lags = tf.maximum(cropped_lags, 0)
        # Translate lag indexes to hit values
        lagged_hit = tf.gather(hits, cropped_lags)
        # Convert masked (see above) or NaN lagged hits to zeros
        lag_zeros = tf.zeros_like(lagged_hit)
        lagged_hit = tf.where(lag_mask | tf.is_nan(lagged_hit), lag_zeros, lagged_hit)

        # Split for train and test
        x_hits, y_hits = tf.split(cropped_hit, [self.train_window, self.predict_window], axis=0)

        # Convert NaN to zero in for train data
        x_hits = tf.where(tf.is_nan(x_hits), tf.zeros_like(x_hits), x_hits)
        return x_hits, y_hits, cropped_dow, lagged_hit
开发者ID:JXieHao,项目名称:kaggle-web-traffic,代码行数:34,代码来源:input_pipe.py


示例2: make_losses

 def make_losses(self, pred_relevant, targets_preprocessed, objective_indices, objective_coeffs):
     # make a loss function and compute some summary numbers
     
     per_target_loss = my_ops.mse_ignore_nans(pred_relevant, targets_preprocessed, reduction_indices=0)
     loss = tf.reduce_sum(per_target_loss)
     
     # compute objective value, just for logging purposes
     # TODO add multiplication by the objective_coeffs (somehow not trivial)
     obj = tf.reduce_sum(self.postprocess_predictions(targets_preprocessed), 1)
     #obj = tf.sum(self.postprocess_predictions(targets_preprocessed[:,objective_indices]) * objective_coeffs[None,:], axis=1)
     obj_nonan = tf.where(tf.is_nan(obj), tf.zeros_like(obj), obj)
     num_valid_targets = tf.reduce_sum(1-tf.cast(tf.is_nan(obj), tf.float32))
     mean_obj = tf.reduce_sum(obj_nonan) / num_valid_targets
     
     # summaries
     obj_sum = tf.summary.scalar("objective_todo", mean_obj)
     #TODO
     per_target_loss_sums = []
     #per_target_loss_sums = [tf.summary.scalar(name, loss) for name,loss in zip(self.target_names,per_target_loss)]
     loss_sum = tf.summary.scalar("full loss", loss)
     
     #self.per_target_loss = tf.get_variable('avg_targets', [self.target_dim], initializer=tf.constant_initializer(value=0.))
     
     full_loss = loss
     errs_to_print = [loss]
     short_summary = [loss_sum]
     detailed_summary = per_target_loss_sums + [obj_sum]
     
     return full_loss, errs_to_print, short_summary, detailed_summary
开发者ID:johny-c,项目名称:DirectFuturePrediction,代码行数:29,代码来源:future_predictor_agent_advantage.py


示例3: testUniformNans

  def testUniformNans(self):
    a = 10.0
    b = [11.0, 100.0]
    uniform = uniform_lib.Uniform(low=a, high=b)

    no_nans = tf.constant(1.0)
    nans = tf.constant(0.0) / tf.constant(0.0)
    self.assertTrue(self.evaluate(tf.is_nan(nans)))
    with_nans = tf.stack([no_nans, nans])

    pdf = uniform.prob(with_nans)

    is_nan = self.evaluate(tf.is_nan(pdf))
    self.assertFalse(is_nan[0])
    self.assertTrue(is_nan[1])
开发者ID:asudomoeva,项目名称:probability,代码行数:15,代码来源:uniform_test.py


示例4: filter_groundtruth_with_nan_box_coordinates

def filter_groundtruth_with_nan_box_coordinates(tensor_dict):
  """Filters out groundtruth with no bounding boxes.

  Args:
    tensor_dict: a dictionary of following groundtruth tensors -
      fields.InputDataFields.groundtruth_boxes
      fields.InputDataFields.groundtruth_classes
      fields.InputDataFields.groundtruth_confidences
      fields.InputDataFields.groundtruth_keypoints
      fields.InputDataFields.groundtruth_instance_masks
      fields.InputDataFields.groundtruth_is_crowd
      fields.InputDataFields.groundtruth_area
      fields.InputDataFields.groundtruth_label_types

  Returns:
    a dictionary of tensors containing only the groundtruth that have bounding
    boxes.
  """
  groundtruth_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
  nan_indicator_vector = tf.greater(tf.reduce_sum(tf.to_int32(
      tf.is_nan(groundtruth_boxes)), reduction_indices=[1]), 0)
  valid_indicator_vector = tf.logical_not(nan_indicator_vector)
  valid_indices = tf.where(valid_indicator_vector)

  return retain_groundtruth(tensor_dict, valid_indices)
开发者ID:zhangjiulong,项目名称:models,代码行数:25,代码来源:ops.py


示例5: NLL

    def NLL(self, y, lengths, pis, mus, sigmas, rho, es, eps=1e-8):
        sigma_1, sigma_2 = tf.split(sigmas, 2, axis=2)
        y_1, y_2, y_3 = tf.split(y, 3, axis=2)
        mu_1, mu_2 = tf.split(mus, 2, axis=2)

        norm = 1.0 / (2*np.pi*sigma_1*sigma_2 * tf.sqrt(1 - tf.square(rho)))
        Z = tf.square((y_1 - mu_1) / (sigma_1)) + \
            tf.square((y_2 - mu_2) / (sigma_2)) - \
            2*rho*(y_1 - mu_1)*(y_2 - mu_2) / (sigma_1*sigma_2)

        exp = -1.0*Z / (2*(1 - tf.square(rho)))
        gaussian_likelihoods = tf.exp(exp) * norm
        gmm_likelihood = tf.reduce_sum(pis * gaussian_likelihoods, 2)
        gmm_likelihood = tf.clip_by_value(gmm_likelihood, eps, np.inf)

        bernoulli_likelihood = tf.squeeze(tf.where(tf.equal(tf.ones_like(y_3), y_3), es, 1 - es))

        nll = -(tf.log(gmm_likelihood) + tf.log(bernoulli_likelihood))
        sequence_mask = tf.logical_and(
            tf.sequence_mask(lengths, maxlen=tf.shape(y)[1]),
            tf.logical_not(tf.is_nan(nll)),
        )
        nll = tf.where(sequence_mask, nll, tf.zeros_like(nll))
        num_valid = tf.reduce_sum(tf.cast(sequence_mask, tf.float32), axis=1)

        sequence_loss = tf.reduce_sum(nll, axis=1) / tf.maximum(num_valid, 1.0)
        element_loss = tf.reduce_sum(nll) / tf.maximum(tf.reduce_sum(num_valid), 1.0)
        return sequence_loss, element_loss
开发者ID:animebing,项目名称:handwriting-synthesis,代码行数:28,代码来源:rnn.py


示例6: testUniformNans

  def testUniformNans(self):
    with self.test_session():
      a = 10.0
      b = [11.0, 100.0]
      uniform = tf.contrib.distributions.Uniform(a=a, b=b)

      no_nans = tf.constant(1.0)
      nans = tf.constant(0.0) / tf.constant(0.0)
      self.assertTrue(tf.is_nan(nans).eval())
      with_nans = tf.pack([no_nans, nans])

      pdf = uniform.pdf(with_nans)

      is_nan = tf.is_nan(pdf).eval()
      self.assertFalse(is_nan[0])
      self.assertTrue(is_nan[1])
开发者ID:2020zyc,项目名称:tensorflow,代码行数:16,代码来源:uniform_test.py


示例7: __call__

  def __call__(self,
               prediction_tensor,
               target_tensor,
               ignore_nan_targets=False,
               scope=None,
               **params):
    """Call the loss function.

    Args:
      prediction_tensor: an N-d tensor of shape [batch, anchors, ...]
        representing predicted quantities.
      target_tensor: an N-d tensor of shape [batch, anchors, ...] representing
        regression or classification targets.
      ignore_nan_targets: whether to ignore nan targets in the loss computation.
        E.g. can be used if the target tensor is missing groundtruth data that
        shouldn't be factored into the loss.
      scope: Op scope name. Defaults to 'Loss' if None.
      **params: Additional keyword arguments for specific implementations of
              the Loss.

    Returns:
      loss: a tensor representing the value of the loss function.
    """
    with tf.name_scope(scope, 'Loss',
                       [prediction_tensor, target_tensor, params]) as scope:
      if ignore_nan_targets:
        target_tensor = tf.where(tf.is_nan(target_tensor),
                                 prediction_tensor,
                                 target_tensor)
      return self._compute_loss(prediction_tensor, target_tensor, **params)
开发者ID:ALISCIFP,项目名称:models,代码行数:30,代码来源:losses.py


示例8: kl_divergence

def kl_divergence(distribution_a, distribution_b,
                  allow_nan_stats=True, name=None):
  """Get the KL-divergence KL(distribution_a || distribution_b).

  If there is no KL method registered specifically for `type(distribution_a)`
  and `type(distribution_b)`, then the class hierarchies of these types are
  searched.

  If one KL method is registered between any pairs of classes in these two
  parent hierarchies, it is used.

  If more than one such registered method exists, the method whose registered
  classes have the shortest sum MRO paths to the input types is used.

  If more than one such shortest path exists, the first method
  identified in the search is used (favoring a shorter MRO distance to
  `type(distribution_a)`).

  Args:
    distribution_a: The first distribution.
    distribution_b: The second distribution.
    allow_nan_stats: Python `bool`, default `True`. When `True`,
      statistics (e.g., mean, mode, variance) use the value "`NaN`" to
      indicate the result is undefined. When `False`, an exception is raised
      if one or more of the statistic's batch members are undefined.
    name: Python `str` name prefixed to Ops created by this class.

  Returns:
    A Tensor with the batchwise KL-divergence between `distribution_a`
    and `distribution_b`.

  Raises:
    NotImplementedError: If no KL method is defined for distribution types
      of `distribution_a` and `distribution_b`.
  """
  kl_fn = _registered_kl(type(distribution_a), type(distribution_b))
  if kl_fn is None:
    # TODO(b/117098119): For backwards compatibility, we check TF's registry as
    # well. This typically happens when this function is called on a pair of
    # TF's distributions.
    with deprecation.silence():
      return tf.distributions.kl_divergence(distribution_a, distribution_b)

  with tf.name_scope("KullbackLeibler"):
    kl_t = kl_fn(distribution_a, distribution_b, name=name)
    if allow_nan_stats:
      return kl_t

    # Check KL for NaNs
    kl_t = tf.identity(kl_t, name="kl")

    with tf.control_dependencies([
        tf.Assert(
            tf.logical_not(
                tf.reduce_any(tf.is_nan(kl_t))),
            ["KL calculation between %s and %s returned NaN values "
             "(and was called with allow_nan_stats=False). Values:"
             % (distribution_a.name, distribution_b.name), kl_t])]):
      return tf.identity(kl_t, name="checked_kl")
开发者ID:asudomoeva,项目名称:probability,代码行数:59,代码来源:kullback_leibler.py


示例9: scale

 def scale(self, x):
   """Scale x from -0.5 - 0.5 to 0 - 255."""
   x = tf.where(tf.is_nan(x), tf.ones_like(x), x)
   x = tf.where(tf.is_inf(x), tf.ones_like(x), x)
   x = tf.clip_by_value(x, -0.5, 0.5)
   x += 0.5
   x = x * 2**self.hparams.n_bits_x
   return tf.cast(tf.clip_by_value(x, 0, 255), dtype=tf.uint8)
开发者ID:qixiuai,项目名称:tensor2tensor,代码行数:8,代码来源:glow.py


示例10: _build_mu_algorithm

    def _build_mu_algorithm(self):
        """build dataflow graph for Multiplicative algorithm"""

        V, H, W = self.V, self.H, self.W
        rank = self.rank
        shape = V.get_shape()

        graph = tf.get_default_graph()

        #save W for calculating delta with the updated W
        W_old = tf.get_variable(name="W_old", shape=[shape[0], rank])
        save_W = W_old.assign(W)

        #Multiplicative updates
        with graph.control_dependencies([save_W]):
            #update operation for H
            Wt = tf.transpose(W)
            WV = tf.matmul(Wt, V)
            WWH = tf.matmul(tf.matmul(Wt, W), H)
            WV_WWH = WV / WWH
            #select op should be executed in CPU not in GPU
            with tf.device('/cpu:0'):
                #convert nan to zero
                WV_WWH = tf.select(tf.is_nan(WV_WWH),
                                    tf.zeros_like(WV_WWH),
                                    WV_WWH)
            H_new = H * WV_WWH
            update_H = H.assign(H_new)

        with graph.control_dependencies([save_W, update_H]):
            #update operation for W (after updating H)
            Ht = tf.transpose(H)
            VH = tf.matmul(V, Ht)
            WHH = tf.matmul(W, tf.matmul(H, Ht))
            VH_WHH = VH / WHH
            with tf.device('/cpu:0'):
                VH_WHH = tf.select(tf.is_nan(VH_WHH),
                                        tf.zeros_like(VH_WHH),
                                        VH_WHH)
            W_new = W * VH_WHH
            update_W = W.assign(W_new)

        self.delta = tf.reduce_sum(tf.abs(W_old - W))

        self.step = tf.group(save_W, update_H, update_W)
开发者ID:katbailey,项目名称:tffactorization,代码行数:45,代码来源:tfnmf.py


示例11: replace_nan_groundtruth_label_scores_with_ones

def replace_nan_groundtruth_label_scores_with_ones(label_scores):
  """Replaces nan label scores with 1.0.

  Args:
    label_scores: a tensor containing object annoation label scores.

  Returns:
    a tensor where NaN label scores have been replaced by ones.
  """
  return tf.where(
      tf.is_nan(label_scores), tf.ones(tf.shape(label_scores)), label_scores)
开发者ID:NoPointExc,项目名称:models,代码行数:11,代码来源:ops.py


示例12: _compare

 def _compare(self, x, use_gpu):
     np_finite, np_inf, np_nan = np.isfinite(x), np.isinf(x), np.isnan(x)
     with self.test_session(use_gpu=use_gpu) as sess:
         inx = tf.convert_to_tensor(x)
         ofinite, oinf, onan = tf.is_finite(inx), tf.is_inf(inx), tf.is_nan(inx)
         tf_finite, tf_inf, tf_nan = sess.run([ofinite, oinf, onan])
     self.assertAllEqual(np_inf, tf_inf)
     self.assertAllEqual(np_nan, tf_nan)
     self.assertAllEqual(np_finite, tf_finite)
     self.assertShapeEqual(np_inf, oinf)
     self.assertShapeEqual(np_nan, onan)
     self.assertShapeEqual(np_finite, ofinite)
开发者ID:peace195,项目名称:tensorflow,代码行数:12,代码来源:cwise_ops_test.py


示例13: set_zero_on_high_global_norm

 def set_zero_on_high_global_norm(self, grad, grad_norm_threshold, global_norm_tag=None):
   """
   :param tf.Tensor grad:
   :param float grad_norm_threshold:
   :param str|None global_norm_tag:
   :rtype: tf.Tensor
   """
   norm = self.get_global_grad_norm(tag=global_norm_tag)
   # Also check nan/inf. Treat them as if we would have been over grad_norm_threshold.
   zero_cond = tf.logical_or(tf.is_nan(norm), tf.is_inf(norm))
   zero_cond = tf.logical_or(zero_cond, tf.greater(norm, grad_norm_threshold))
   return tf.where(zero_cond, tf.zeros_like(grad), grad)
开发者ID:rwth-i6,项目名称:returnn,代码行数:12,代码来源:TFUpdater.py


示例14: _prob

 def _prob(self, x):
   broadcasted_x = x * tf.ones(
       self.batch_shape_tensor(), dtype=x.dtype)
   return tf.where(
       tf.is_nan(broadcasted_x),
       broadcasted_x,
       tf.where(
           tf.logical_or(broadcasted_x < self.low,
                         # This > is only sound for continuous uniform
                         broadcasted_x > self.high),
           tf.zeros_like(broadcasted_x),
           tf.ones_like(broadcasted_x) / self.range()))
开发者ID:asudomoeva,项目名称:probability,代码行数:12,代码来源:uniform.py


示例15: _get_cubic_root

 def _get_cubic_root(self):
   """Get the cubic root."""
   # We have the equation x^2 D^2 + (1-x)^4 * C / h_min^2
   # where x = sqrt(mu).
   # We substitute x, which is sqrt(mu), with x = y + 1.
   # It gives y^3 + py = q
   # where p = (D^2 h_min^2)/(2*C) and q = -p.
   # We use the Vieta's substitution to compute the root.
   # There is only one real solution y (which is in [0, 1] ).
   # http://mathworld.wolfram.com/VietasSubstitution.html
   assert_array = [
       tf.Assert(
           tf.logical_not(tf.is_nan(self._dist_to_opt_avg)),
           [self._dist_to_opt_avg,]),
       tf.Assert(
           tf.logical_not(tf.is_nan(self._h_min)),
           [self._h_min,]),
       tf.Assert(
           tf.logical_not(tf.is_nan(self._grad_var)),
           [self._grad_var,]),
       tf.Assert(
           tf.logical_not(tf.is_inf(self._dist_to_opt_avg)),
           [self._dist_to_opt_avg,]),
       tf.Assert(
           tf.logical_not(tf.is_inf(self._h_min)),
           [self._h_min,]),
       tf.Assert(
           tf.logical_not(tf.is_inf(self._grad_var)),
           [self._grad_var,])
   ]
   with tf.control_dependencies(assert_array):
     p = self._dist_to_opt_avg**2 * self._h_min**2 / 2 / self._grad_var
     w3 = (-tf.sqrt(p**2 + 4.0 / 27.0 * p**3) - p) / 2.0
     w = tf.sign(w3) * tf.pow(tf.abs(w3), 1.0/3.0)
     y = w - p / 3.0 / w
     x = y + 1
   return x
开发者ID:qixiuai,项目名称:tensor2tensor,代码行数:37,代码来源:yellowfin.py


示例16: __call__

  def __call__(self,
               prediction_tensor,
               target_tensor,
               ignore_nan_targets=False,
               losses_mask=None,
               scope=None,
               **params):
    """Call the loss function.

    Args:
      prediction_tensor: an N-d tensor of shape [batch, anchors, ...]
        representing predicted quantities.
      target_tensor: an N-d tensor of shape [batch, anchors, ...] representing
        regression or classification targets.
      ignore_nan_targets: whether to ignore nan targets in the loss computation.
        E.g. can be used if the target tensor is missing groundtruth data that
        shouldn't be factored into the loss.
      losses_mask: A [batch] boolean tensor that indicates whether losses should
        be applied to individual images in the batch. For elements that
        are True, corresponding prediction, target, and weight tensors will be
        removed prior to loss computation. If None, no filtering will take place
        prior to loss computation.
      scope: Op scope name. Defaults to 'Loss' if None.
      **params: Additional keyword arguments for specific implementations of
              the Loss.

    Returns:
      loss: a tensor representing the value of the loss function.
    """
    with tf.name_scope(scope, 'Loss',
                       [prediction_tensor, target_tensor, params]) as scope:
      if ignore_nan_targets:
        target_tensor = tf.where(tf.is_nan(target_tensor),
                                 prediction_tensor,
                                 target_tensor)
      if losses_mask is not None:
        tensor_multiplier = self._get_loss_multiplier_for_tensor(
            prediction_tensor,
            losses_mask)
        prediction_tensor *= tensor_multiplier
        target_tensor *= tensor_multiplier

        if 'weights' in params:
          params['weights'] = tf.convert_to_tensor(params['weights'])
          weights_multiplier = self._get_loss_multiplier_for_tensor(
              params['weights'],
              losses_mask)
          params['weights'] *= weights_multiplier
      return self._compute_loss(prediction_tensor, target_tensor, **params)
开发者ID:ahmedtalbi,项目名称:models,代码行数:49,代码来源:losses.py


示例17: __init__

    def __init__(self, batch_size, vocab_size, encoding_size, embedding_size,
                    num_glimpses = 8,
                    grad_norm_clip = 5.,
                    l2_reg_coef=1e-4,
                    session=tf.Session(),
                    name='AlternatingAttention'):
        """
        Creates an iterative alternating attention network as described in https://arxiv.org/abs/1606.02245
        """
        self._batch_size = batch_size
        self._vocab_size = vocab_size
        self._encode_size = encoding_size
        self._infer_size = 4 * encoding_size
        self._embedding_size = embedding_size
        self._num_glimpses = num_glimpses
        self._sess = session
        self._name = name

        self._build_placeholders()
        self._build_variables()

        # Regularization
        tf.contrib.layers.apply_regularization(tf.contrib.layers.l2_regularizer(l2_reg_coef), [self._embeddings])


        # Answer probability
        doc_attentions = self._inference(self._docs, self._queries)
        nans =  tf.reduce_sum(tf.to_float(tf.is_nan(doc_attentions)))

        self._doc_attentions = doc_attentions
        ans_mask = tf.to_float(tf.equal(tf.expand_dims(self._answers, -1), self._docs))
        P_a = tf.reduce_sum(ans_mask * doc_attentions, 1)
        loss_op = -tf.reduce_mean(tf.log(P_a + tf.constant(0.00001)))
        self._loss_op = loss_op

        # Optimizer and gradients
        with tf.name_scope("optimizer"):
            self._opt = tf.train.AdamOptimizer(learning_rate=self._learning_rate)
            grads_and_vars = self._opt.compute_gradients(loss_op)
            capped_grads_and_vars = [(tf.clip_by_norm(g, grad_norm_clip), v) for g,v in grads_and_vars]
            self._train_op = self._opt.apply_gradients(capped_grads_and_vars, global_step=self._global_step)

        tf.summary.scalar('loss', self._loss_op)
        tf.summary.scalar('learning_rate', self._learning_rate)
        tf.summary.histogram('answer_probability', P_a)
        self._summary_op = tf.summary.merge_all()

        self._sess.run(tf.global_variables_initializer())
开发者ID:MrCrumpets,项目名称:alternating-reader-tf,代码行数:48,代码来源:AlternatingAttention.py


示例18: check_grads

  def check_grads(grads_and_vars):
    has_nan_ops = []
    amax_ops = []

    for grad, _ in grads_and_vars:
      if grad is not None:
        if isinstance(grad, tf.IndexedSlices):
          x = grad.values
        else:
          x = grad

        has_nan_ops.append(tf.reduce_any(tf.is_nan(x)))
        amax_ops.append(tf.reduce_max(tf.abs(x)))

    has_nan = tf.reduce_any(has_nan_ops)
    amax = tf.reduce_max(amax_ops)
    return has_nan, amax
开发者ID:fotwo,项目名称:OpenSeq2Seq,代码行数:17,代码来源:automatic_loss_scaler.py


示例19: def_preprocessing_fn

  def def_preprocessing_fn(inputs):
    """tf.transform's callback function for preprocessing inputs.

    Args:
      inputs: map from feature keys to raw not-yet-transformed features.

    Returns:
      Map from string feature key to transformed feature operations.
    """
    outputs = {}
    for key in taxi.DENSE_FLOAT_FEATURE_KEYS:
      # Preserve this feature as a dense float, setting nan's to the mean.
      outputs[taxi.transformed_name(key)] = transform.scale_to_z_score(
          _fill_in_missing(inputs[key]))

    for key in taxi.VOCAB_FEATURE_KEYS:
      # Build a vocabulary for this feature.
      outputs[
          taxi.transformed_name(key)] = transform.compute_and_apply_vocabulary(
              _fill_in_missing(inputs[key]),
              top_k=taxi.VOCAB_SIZE,
              num_oov_buckets=taxi.OOV_SIZE)

    for key in taxi.BUCKET_FEATURE_KEYS:
      outputs[taxi.transformed_name(key)] = transform.bucketize(
          _fill_in_missing(inputs[key]), taxi.FEATURE_BUCKET_COUNT)

    for key in taxi.CATEGORICAL_FEATURE_KEYS:
      outputs[taxi.transformed_name(key)] = _fill_in_missing(inputs[key])

    # Was this passenger a big tipper?
    taxi_fare = _fill_in_missing(inputs[taxi.FARE_KEY])
    tips = _fill_in_missing(inputs[taxi.LABEL_KEY])
    outputs[taxi.transformed_name(taxi.LABEL_KEY)] = tf.where(
        tf.is_nan(taxi_fare),
        tf.cast(tf.zeros_like(taxi_fare), tf.int64),
        # Test if the tip was > 20% of the fare.
        tf.cast(
            tf.greater(tips, tf.multiply(taxi_fare, tf.constant(0.2))),
            tf.int64))

    return outputs
开发者ID:devmvrborges,项目名称:code-snippets,代码行数:42,代码来源:taxi_preprocess_bq.py


示例20: _arccosine

 def _arccosine(self, slist1, slist2, tf_embs):
     """
     Uses an arccosine kernel of degree 0 to calculate
     the similarity matrix between two vectors of embeddings. 
     This is just cosine similarity projected into the [0,1] interval.
     """
     dot = self._dot(slist1, slist2, tf_embs)
     # This calculation corresponds to an arc-cosine with 
     # degree 0. It can be interpreted as cosine
     # similarity but projected into a [0,1] interval.
     # TODO: arc-cosine with degree 1.
     tf_pi = tf.constant(np.pi, dtype=tf.float64)
     tf_norms = tf.constant(self.norms, dtype=tf.float64, name='norms')
     normlist1 = tf.gather(tf_norms, slist1, name='normlist1')
     normlist2 = tf.matrix_transpose(tf.gather(tf_norms, slist2, name='normlist2'))
     norms = tf.batch_matmul(normlist1, normlist2)
     cosine = tf.clip_by_value(tf.truediv(dot, norms), -1, 1)
     angle = tf.acos(cosine)
     angle = tf.select(tf.is_nan(angle), tf.ones_like(angle) * tf_pi, angle)
     return 1 - (angle / tf_pi)
开发者ID:beckdaniel,项目名称:flakes,代码行数:20,代码来源:sk_tf_batch.py



注:本文中的tensorflow.is_nan函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensorflow.is_variable_initialized函数代码示例发布时间:2022-05-27
下一篇:
Python tensorflow.initialize_variables函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap