本文整理汇总了Python中tensorflow.initialize_all_tables函数的典型用法代码示例。如果您正苦于以下问题:Python initialize_all_tables函数的具体用法?Python initialize_all_tables怎么用?Python initialize_all_tables使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了initialize_all_tables函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testMultipleHashTables
def testMultipleHashTables(self):
with self.test_session() as sess:
shared_name = ''
default_val = -1
table1 = tf.HashTable(tf.string, tf.int64, default_val, shared_name)
table2 = tf.HashTable(tf.string, tf.int64, default_val, shared_name)
table3 = tf.HashTable(tf.string, tf.int64, default_val, shared_name)
keys = tf.constant(['brain', 'salad', 'surgery'])
values = tf.constant([0, 1, 2], tf.int64)
table1.initialize_from(keys, values)
table2.initialize_from(keys, values)
table3.initialize_from(keys, values)
tf.initialize_all_tables().run()
self.assertAllEqual(3, table1.size().eval())
self.assertAllEqual(3, table2.size().eval())
self.assertAllEqual(3, table3.size().eval())
input_string = tf.constant(['brain', 'salad', 'tank'])
output1 = table1.lookup(input_string)
output2 = table2.lookup(input_string)
output3 = table3.lookup(input_string)
out1, out2, out3 = sess.run([output1, output2, output3])
self.assertAllEqual([0, 1, -1], out1)
self.assertAllEqual([0, 1, -1], out2)
self.assertAllEqual([0, 1, -1], out3)
开发者ID:sumodm,项目名称:tensorflow,代码行数:28,代码来源:lookup_table_op_test.py
示例2: testMultipleHashTables
def testMultipleHashTables(self):
with self.test_session() as sess:
default_val = -1
keys = tf.constant(["brain", "salad", "surgery"])
values = tf.constant([0, 1, 2], tf.int64)
table1 = tf.contrib.lookup.HashTable(
tf.contrib.lookup.KeyValueTensorInitializer(keys, values),
default_val)
table2 = tf.contrib.lookup.HashTable(
tf.contrib.lookup.KeyValueTensorInitializer(keys, values),
default_val)
table3 = tf.contrib.lookup.HashTable(
tf.contrib.lookup.KeyValueTensorInitializer(keys, values),
default_val)
tf.initialize_all_tables().run()
self.assertAllEqual(3, table1.size().eval())
self.assertAllEqual(3, table2.size().eval())
self.assertAllEqual(3, table3.size().eval())
input_string = tf.constant(["brain", "salad", "tank"])
output1 = table1.lookup(input_string)
output2 = table2.lookup(input_string)
output3 = table3.lookup(input_string)
out1, out2, out3 = sess.run([output1, output2, output3])
self.assertAllEqual([0, 1, -1], out1)
self.assertAllEqual([0, 1, -1], out2)
self.assertAllEqual([0, 1, -1], out3)
开发者ID:2020zyc,项目名称:tensorflow,代码行数:30,代码来源:lookup_ops_test.py
示例3: test_duplicate_entries
def test_duplicate_entries(self):
with self.test_session():
mapping_strings = tf.constant(["hello", "hello"])
indices = tf.constant([0, 1, 4], tf.int64)
feats = tf.contrib.lookup.index_to_string(indices, mapping=mapping_strings)
tf.initialize_all_tables().run()
self.assertAllEqual((b"hello", b"hello", b"UNK"), feats.eval())
self.assertRaises(tf.OpError, tf.initialize_all_tables().run)
开发者ID:RuhiSharma,项目名称:tensorflow,代码行数:9,代码来源:lookup_ops_test.py
示例4: test_index_to_string
def test_index_to_string(self):
with self.test_session():
mapping_strings = tf.constant(["brain", "salad", "surgery"])
indices = tf.constant([0, 1, 2, 3], tf.int64)
feats = tf.contrib.lookup.index_to_string(indices, mapping=mapping_strings)
self.assertRaises(tf.OpError, feats.eval)
tf.initialize_all_tables().run()
self.assertAllEqual((b"brain", b"salad", b"surgery", b"UNK"), feats.eval())
开发者ID:RuhiSharma,项目名称:tensorflow,代码行数:10,代码来源:lookup_ops_test.py
示例5: test_string_to_index_with_default_value
def test_string_to_index_with_default_value(self):
default_value = -42
with self.test_session():
mapping_strings = tf.constant(["brain", "salad", "surgery"])
feats = tf.constant(["salad", "surgery", "tarkus"])
indices = tf.contrib.lookup.string_to_index(feats, mapping=mapping_strings, default_value=default_value)
self.assertRaises(tf.OpError, indices.eval)
tf.initialize_all_tables().run()
self.assertAllEqual((1, 2, default_value), indices.eval())
开发者ID:RuhiSharma,项目名称:tensorflow,代码行数:10,代码来源:lookup_ops_test.py
示例6: test_index_to_string_with_default_value
def test_index_to_string_with_default_value(self):
default_value = b"NONE"
with self.test_session():
mapping_strings = tf.constant(["brain", "salad", "surgery"])
indices = tf.constant([1, 2, 4], tf.int64)
feats = tf.contrib.lookup.index_to_string(indices, mapping=mapping_strings, default_value=default_value)
self.assertRaises(tf.OpError, feats.eval)
tf.initialize_all_tables().run()
self.assertAllEqual((b"salad", b"surgery", default_value), feats.eval())
开发者ID:RuhiSharma,项目名称:tensorflow,代码行数:10,代码来源:lookup_ops_test.py
示例7: apply_model
def apply_model(self, x):
x = x.data
tmp = np.zeros((1,1))
with tf.Session(graph=self._graph) as sess:
tf.initialize_all_tables().run()
feed_dict = {self._x: x,
self._W: self._result_W,
self._b: self._result_b}
tmp = sess.run(self._y, feed_dict=feed_dict)
ret = BrewPipeDataFrame('y')
ret.data = tmp
return ret
开发者ID:meyerd,项目名称:brewPipe,代码行数:16,代码来源:tf_leastsquares.py
示例8: testInitializeSameTableWithMultipleNodes
def testInitializeSameTableWithMultipleNodes(self):
vocabulary_file = self._createVocabFile("one_column_5.txt")
with self.test_session() as sess:
shared_name = "shared-one-columm"
default_value = -1
table1 = tf.contrib.lookup.HashTable(
tf.contrib.lookup.TextFileInitializer(
vocabulary_file, tf.string,
tf.contrib.lookup.TextFileIndex.WHOLE_LINE, tf.int64,
tf.contrib.lookup.TextFileIndex.LINE_NUMBER),
default_value,
shared_name=shared_name)
table2 = tf.contrib.lookup.HashTable(
tf.contrib.lookup.TextFileInitializer(
vocabulary_file, tf.string,
tf.contrib.lookup.TextFileIndex.WHOLE_LINE, tf.int64,
tf.contrib.lookup.TextFileIndex.LINE_NUMBER),
default_value,
shared_name=shared_name)
table3 = tf.contrib.lookup.HashTable(
tf.contrib.lookup.TextFileInitializer(
vocabulary_file, tf.string,
tf.contrib.lookup.TextFileIndex.WHOLE_LINE, tf.int64,
tf.contrib.lookup.TextFileIndex.LINE_NUMBER),
default_value,
shared_name=shared_name)
tf.initialize_all_tables().run()
input_string = tf.constant(["brain", "salad", "tank"])
output1 = table1.lookup(input_string)
output2 = table2.lookup(input_string)
output3 = table3.lookup(input_string)
out1, out2, out3 = sess.run([output1, output2, output3])
self.assertAllEqual([0, 1, -1], out1)
self.assertAllEqual([0, 1, -1], out2)
self.assertAllEqual([0, 1, -1], out3)
开发者ID:2020zyc,项目名称:tensorflow,代码行数:40,代码来源:lookup_ops_test.py
示例9: testGetModelInput
def testGetModelInput(self):
initial_state, sequence_input = self._rnn_estimator._get_model_input(
self._columns_to_tensors)
self.assertIsNone(initial_state)
with self.test_session() as sess:
sess.run(tf.initialize_all_variables())
sess.run(tf.initialize_all_tables())
sequence_input_val = sess.run(sequence_input)
expected_shape = np.array([
3, # expected batch size
2, # padded sequence length
3 + 8 + 2 # location keys + embedding dim + measurement dimension
])
self.assertAllEqual(expected_shape, sequence_input_val.shape)
开发者ID:caikehe,项目名称:tensorflow,代码行数:14,代码来源:dynamic_rnn_estimator_test.py
示例10: testBuildSequenceInputInput
def testBuildSequenceInputInput(self):
sequence_input = dynamic_rnn_estimator.build_sequence_input(
self.columns_to_tensors,
self.sequence_feature_columns,
self.context_feature_columns)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.initialize_all_tables())
sequence_input_val = sess.run(sequence_input)
expected_shape = np.array([
3, # expected batch size
2, # padded sequence length
3 + 8 + 2 # location keys + embedding dim + measurement dimension
])
self.assertAllEqual(expected_shape, sequence_input_val.shape)
开发者ID:chinnadhurai,项目名称:block_rnn,代码行数:15,代码来源:dynamic_rnn_estimator_test.py
示例11: testConstructRNN
def testConstructRNN(self):
"""Test `DynamicRNNEstimator._construct_rnn`."""
initial_state, sequence_input = self._rnn_estimator._get_model_input(
self._columns_to_tensors)
activations_t, final_state_t = self._rnn_estimator._construct_rnn(
initial_state, sequence_input)
# Obtain values of activations and final state.
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
sess.run(tf.initialize_all_tables())
activations, final_state = sess.run([activations_t, final_state_t])
expected_activations_shape = np.array([3, 2, self.NUM_LABEL_COLUMNS])
self.assertAllEqual(expected_activations_shape, activations.shape)
expected_state_shape = np.array([3, self.NUM_RNN_CELL_UNITS])
self.assertAllEqual(expected_state_shape, final_state.shape)
开发者ID:caikehe,项目名称:tensorflow,代码行数:17,代码来源:dynamic_rnn_estimator_test.py
示例12: testConstructRNN
def testConstructRNN(self):
initial_state = None
sequence_input = dynamic_rnn_estimator.build_sequence_input(
self.columns_to_tensors,
self.sequence_feature_columns,
self.context_feature_columns)
activations_t, final_state_t = dynamic_rnn_estimator.construct_rnn(
initial_state,
sequence_input,
self.rnn_cell,
self.mock_target_column.num_label_columns)
# Obtain values of activations and final state.
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.initialize_all_tables())
activations, final_state = sess.run([activations_t, final_state_t])
expected_activations_shape = np.array([3, 2, self.NUM_LABEL_COLUMNS])
self.assertAllEqual(expected_activations_shape, activations.shape)
expected_state_shape = np.array([3, self.NUM_RNN_CELL_UNITS])
self.assertAllEqual(expected_state_shape, final_state.shape)
开发者ID:chinnadhurai,项目名称:block_rnn,代码行数:22,代码来源:dynamic_rnn_estimator_test.py
示例13: main
#.........这里部分代码省略.........
exit(1)
logging.info("Export the saved model to {}".format(
FLAGS.saved_model_path))
export_path_base = FLAGS.saved_model_path
export_path = os.path.join(
compat.as_bytes(export_path_base),
compat.as_bytes(str(FLAGS.model_version)))
model_signature = signature_def_utils.build_signature_def(
inputs={
"keys": utils.build_tensor_info(keys_placeholder),
"indexs": utils.build_tensor_info(sparse_index),
"ids": utils.build_tensor_info(sparse_ids),
"values": utils.build_tensor_info(sparse_values),
"shape": utils.build_tensor_info(sparse_shape)
},
outputs={
"keys": utils.build_tensor_info(keys),
"softmax": utils.build_tensor_info(inference_softmax),
"prediction": utils.build_tensor_info(inference_op)
},
method_name=signature_constants.PREDICT_METHOD_NAME)
try:
builder = saved_model_builder.SavedModelBuilder(export_path)
builder.add_meta_graph_and_variables(
sess,
[tag_constants.SERVING],
clear_devices=True,
signature_def_map={
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
model_signature,
},
#legacy_init_op=legacy_init_op)
legacy_init_op=tf.group(tf.initialize_all_tables(),
name="legacy_init_op"))
builder.save()
except Exception as e:
logging.error("Fail to export saved model, exception: {}".format(e))
elif MODE == "inference":
if not restore_session_from_checkpoint(sess, saver, LATEST_CHECKPOINT):
logging.error("No checkpoint found, exit now")
exit(1)
# Load inference test data
inference_result_file_name = "./inference_result.txt"
inference_test_file_name = "./data/a8a_test.libsvm"
labels = []
feature_ids = []
feature_values = []
feature_index = []
ins_num = 0
for line in open(inference_test_file_name, "r"):
tokens = line.split(" ")
labels.append(int(tokens[0]))
feature_num = 0
for feature in tokens[1:]:
feature_id, feature_value = feature.split(":")
feature_ids.append(int(feature_id))
feature_values.append(float(feature_value))
feature_index.append([ins_num, feature_num])
feature_num += 1
ins_num += 1
# Run inference
start_time = datetime.datetime.now()
prediction, prediction_softmax = sess.run(
[inference_op, inference_softmax],
feed_dict={sparse_index: feature_index,
sparse_ids: feature_ids,
sparse_values: feature_values,
sparse_shape: [ins_num, FEATURE_SIZE]})
end_time = datetime.datetime.now()
# Compute accuracy
label_number = len(labels)
correct_label_number = 0
for i in range(label_number):
if labels[i] == prediction[i]:
correct_label_number += 1
accuracy = float(correct_label_number) / label_number
# Compute auc
expected_labels = np.array(labels)
predict_labels = prediction_softmax[:, 0]
fpr, tpr, thresholds = metrics.roc_curve(expected_labels,
predict_labels,
pos_label=0)
auc = metrics.auc(fpr, tpr)
logging.info("[{}] Inference accuracy: {}, auc: {}".format(
end_time - start_time, accuracy, auc))
# Save result into the file
np.savetxt(inference_result_file_name, prediction_softmax, delimiter=",")
logging.info("Save result to file: {}".format(
inference_result_file_name))
开发者ID:zhongkeli,项目名称:deep_recommend_system,代码行数:101,代码来源:sparse_classifier.py
示例14: export
#.........这里部分代码省略.........
with tf.Graph().as_default():
# Build inference model.
# Please refer to Tensorflow inception model for details.
# Input transformation.
serialized_tf_example = tf.placeholder(tf.string, name='tf_example')
feature_configs = {
'image/encoded': tf.FixedLenFeature(
shape=[], dtype=tf.string),
}
tf_example = tf.parse_example(serialized_tf_example, feature_configs)
jpegs = tf_example['image/encoded']
images = tf.map_fn(preprocess_image, jpegs, dtype=tf.float32)
# Run inference.
logits, _ = inception_model.inference(images, NUM_CLASSES + 1)
# Transform output to topK result.
values, indices = tf.nn.top_k(logits, NUM_TOP_CLASSES)
# Create a constant string Tensor where the i'th element is
# the human readable class description for the i'th index.
# Note that the 0th index is an unused background class
# (see inception model definition code).
class_descriptions = ['unused background']
for s in synsets:
class_descriptions.append(texts[s])
class_tensor = tf.constant(class_descriptions)
classes = tf.contrib.lookup.index_to_string(
tf.to_int64(indices), mapping=class_tensor)
# Restore variables from training checkpoint.
variable_averages = tf.train.ExponentialMovingAverage(
inception_model.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
with tf.Session() as sess:
# Restore variables from training checkpoints.
ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
# Assuming model_checkpoint_path looks something like:
# /my-favorite-path/imagenet_train/model.ckpt-0,
# extract global_step from it.
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
print 'Successfully loaded model from %s at step=%s.' % (
ckpt.model_checkpoint_path, global_step)
else:
print 'No checkpoint file found at %s' % FLAGS.checkpoint_dir
return
# Export inference model.
output_path = os.path.join(
compat.as_bytes(FLAGS.output_dir),
compat.as_bytes(str(FLAGS.model_version)))
print 'Exporting trained model to', output_path
builder = saved_model_builder.SavedModelBuilder(output_path)
# Build the signature_def_map.
classify_inputs_tensor_info = utils.build_tensor_info(
serialized_tf_example)
classes_output_tensor_info = utils.build_tensor_info(classes)
scores_output_tensor_info = utils.build_tensor_info(values)
classification_signature = signature_def_utils.build_signature_def(
inputs={
signature_constants.CLASSIFY_INPUTS: classify_inputs_tensor_info
},
outputs={
signature_constants.CLASSIFY_OUTPUT_CLASSES:
classes_output_tensor_info,
signature_constants.CLASSIFY_OUTPUT_SCORES:
scores_output_tensor_info
},
method_name=signature_constants.CLASSIFY_METHOD_NAME)
predict_inputs_tensor_info = utils.build_tensor_info(jpegs)
prediction_signature = signature_def_utils.build_signature_def(
inputs={'images': predict_inputs_tensor_info},
outputs={
'classes': classes_output_tensor_info,
'scores': scores_output_tensor_info
},
method_name=signature_constants.PREDICT_METHOD_NAME)
legacy_init_op = tf.group(
tf.initialize_all_tables(), name='legacy_init_op')
builder.add_meta_graph_and_variables(
sess, [tag_constants.SERVING],
signature_def_map={
'predict_images':
prediction_signature,
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
classification_signature,
},
legacy_init_op=legacy_init_op)
builder.save()
print 'Successfully exported model to %s' % FLAGS.output_dir
开发者ID:kchodorow,项目名称:serving,代码行数:101,代码来源:inception_saved_model.py
示例15: operation
Args:
logits: A `Tensor`. Must be one of the following types: `float32`, `float64`.
2-D with shape `[batch_size, num_classes]`.
name: A name for the operation (optional).
Returns:
A `Tensor`. Has the same type as `logits`. Same shape as `logits`.
'''
# To implement cross-entropy
# placeholder to input the correct answers
y_ = tf.placeholder(tf.float32, [None, mnist.train.labels.shape[1]])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# training setup
# learning rate = 0.5
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
# initialize the variables we created
init = tf.initialize_all_tables()
# launch the model in a Session
sess = tf.Session()
sess.run(init)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
开发者ID:autodrive,项目名称:tensor_flow_practice,代码行数:29,代码来源:download_mnist.py
示例16: export
def export():
# Create index->synset mapping
synsets = []
with open(SYNSET_FILE) as f:
synsets = f.read().splitlines()
# Create synset->metadata mapping
texts = {}
with open(METADATA_FILE) as f:
for line in f.read().splitlines():
parts = line.split('\t')
assert len(parts) == 2
texts[parts[0]] = parts[1]
with tf.Graph().as_default():
# Build inference model.
# Please refer to Tensorflow inception model for details.
# Input transformation.
# TODO(b/27776734): Add batching support.
jpegs = tf.placeholder(tf.string, shape=(1))
image_buffer = tf.squeeze(jpegs, [0])
# Decode the string as an RGB JPEG.
# Note that the resulting image contains an unknown height and width
# that is set dynamically by decode_jpeg. In other words, the height
# and width of image is unknown at compile-time.
image = tf.image.decode_jpeg(image_buffer, channels=3)
# After this point, all image pixels reside in [0,1)
# until the very end, when they're rescaled to (-1, 1). The various
# adjust_* ops all require this range for dtype float.
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
# Crop the central region of the image with an area containing 87.5% of
# the original image.
image = tf.image.central_crop(image, central_fraction=0.875)
# Resize the image to the original height and width.
image = tf.expand_dims(image, 0)
image = tf.image.resize_bilinear(image,
[FLAGS.image_size, FLAGS.image_size],
align_corners=False)
image = tf.squeeze(image, [0])
# Finally, rescale to [-1,1] instead of [0, 1)
image = tf.sub(image, 0.5)
image = tf.mul(image, 2.0)
images = tf.expand_dims(image, 0)
# Run inference.
logits, _ = inception_model.inference(images, NUM_CLASSES + 1)
# Transform output to topK result.
values, indices = tf.nn.top_k(logits, NUM_TOP_CLASSES)
# Create a constant string Tensor where the i'th element is
# the human readable class description for the i'th index.
class_tensor = tf.constant([texts[s] for s in synsets])
classes = tf.contrib.lookup.index_to_string(tf.to_int64(indices),
mapping=class_tensor)
# Restore variables from training checkpoint.
variable_averages = tf.train.ExponentialMovingAverage(
inception_model.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
with tf.Session() as sess:
# Restore variables from training checkpoints.
ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
# Assuming model_checkpoint_path looks something like:
# /my-favorite-path/imagenet_train/model.ckpt-0,
# extract global_step from it.
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
print('Successfully loaded model from %s at step=%s.' %
(ckpt.model_checkpoint_path, global_step))
else:
print('No checkpoint file found at %s' % FLAGS.checkpoint_dir)
return
# Export inference model.
init_op = tf.group(tf.initialize_all_tables(), name='init_op')
model_exporter = exporter.Exporter(saver)
signature = exporter.classification_signature(
input_tensor=jpegs, classes_tensor=classes, scores_tensor=values)
model_exporter.init(default_graph_signature=signature, init_op=init_op)
model_exporter.export(FLAGS.export_dir, tf.constant(global_step), sess)
print('Successfully exported model to %s' % FLAGS.export_dir)
开发者ID:Jamesleons,项目名称:serving,代码行数:85,代码来源:inception_export.py
示例17: export
def export():
# Create index->synset mapping
synsets = []
with open(SYNSET_FILE) as f:
synsets = f.read().splitlines()
# Create synset->metadata mapping
texts = {}
with open(METADATA_FILE) as f:
for line in f.read().splitlines():
parts = line.split('\t')
assert len(parts) == 2
texts[parts[0]] = parts[1]
with tf.Graph().as_default():
# Build inference model.
# Please refer to Tensorflow inception model for details.
# Input transformation.
jpegs = tf.placeholder(tf.string)
images = tf.map_fn(preprocess_image, jpegs, dtype=tf.float32)
# Run inference.
logits, _ = inception_model.inference(images, NUM_CLASSES + 1)
# Transform output to topK result.
values, indices = tf.nn.top_k(logits, NUM_TOP_CLASSES)
# Create a constant string Tensor where the i'th element is
# the human readable class description for the i'th index.
# Note that the 0th index is an unused background class
# (see inception model definition code).
class_descriptions = ['unused background']
for s in synsets:
class_descriptions.append(texts[s])
class_tensor = tf.constant(class_descriptions)
classes = tf.contrib.lookup.index_to_string(tf.to_int64(indices),
mapping=class_tensor)
# Restore variables from training checkpoint.
variable_averages = tf.train.ExponentialMovingAverage(
inception_model.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
with tf.Session() as sess:
# Restore variables from training checkpoints.
ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
# Assuming model_checkpoint_path looks something like:
# /my-favorite-path/imagenet_train/model.ckpt-0,
# extract global_step from it.
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
print('Successfully loaded model from %s at step=%s.' %
(ckpt.model_checkpoint_path, global_step))
else:
print('No checkpoint file found at %s' % FLAGS.checkpoint_dir)
return
# Export inference model.
init_op = tf.group(tf.initialize_all_tables(), name='init_op')
model_exporter = exporter.Exporter(saver)
model_exporter.init(init_op=init_op, named_graph_signatures={
'inputs': exporter.generic_signature({'images': jpegs}),
'outputs': exporter.generic_signature({'classes': classes,
'scores': values})})
model_exporter.export(FLAGS.export_dir, tf.constant(global_step), sess)
print('Successfully exported model to %s' % FLAGS.export_dir)
开发者ID:damienmg,项目名称:serving,代码行数:68,代码来源:inception_export.py
示例18: main
def main(_):
if len(sys.argv) < 2 or sys.argv[-1].startswith('-'):
print('Usage: mnist_export.py [--training_iteration=x] '
'[--model_version=y] export_dir')
sys.exit(-1)
if FLAGS.training_iteration <= 0:
print 'Please specify a positive value for training iteration.'
sys.exit(-1)
if FLAGS.model_version <= 0:
print 'Please specify a positive value for version number.'
sys.exit(-1)
# Train model
print 'Training model...'
mnist = mnist_input_data.read_data_sets(FLAGS.work_dir, one_hot=True)
sess = tf.InteractiveSession()
serialized_tf_example = tf.placeholder(tf.string, name='tf_example')
feature_configs = {'x': tf.FixedLenFeature(shape=[784], dtype=tf.float32),}
tf_example = tf.parse_example(serialized_tf_example, feature_configs)
x = tf.identity(tf_example['x'], name='x') # use tf.identity() to assign name
y_ = tf.placeholder('float', shape=[None, 10])
w = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
sess.run(tf.initialize_all_variables())
y = tf.nn.softmax(tf.matmul(x, w) + b, name='y')
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
values, indices = tf.nn.top_k(y, 10)
prediction_classes = tf.contrib.lookup.index_to_string(
tf.to_int64(indices), mapping=tf.constant([str(i) for i in xrange(10)]))
for _ in range(FLAGS.training_iteration):
batch = mnist.train.next_batch(50)
train_step.run(feed_dict={x: batch[0], y_: batch[1]})
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
print 'training accuracy %g' % sess.run(
accuracy, feed_dict={x: mnist.test.images,
y_: mnist.test.labels})
print 'Done training!'
# Export model
# WARNING(break-tutorial-inline-code): The following code snippet is
# in-lined in tutorials, please update tutorial documents accordingly
# whenever code changes.
export_path_base = sys.argv[-1]
export_path = os.path.join(
compat.as_bytes(export_path_base),
compat.as_bytes(str(FLAGS.model_version)))
print 'Exporting trained model to', export_path
builder = saved_model_builder.SavedModelBuilder(export_path)
# Build the signature_def_map.
classification_inputs = utils.build_tensor_info(serialized_tf_example)
classification_outputs_classes = utils.build_tensor_info(prediction_classes)
classification_outputs_scores = utils.build_tensor_info(values)
classification_signature = signature_def_utils.build_signature_def(
inputs={signature_constants.CLASSIFY_INPUTS: classification_inputs},
outputs={
signature_constants.CLASSIFY_OUTPUT_CLASSES:
classification_outputs_classes,
signature_constants.CLASSIFY_OUTPUT_SCORES:
classification_outputs_scores
},
method_name=signature_constants.CLASSIFY_METHOD_NAME)
tensor_info_x = utils.build_tensor_info(x)
tensor_info_y = utils.build_tensor_info(y)
prediction_signature = signature_def_utils.build_signature_def(
inputs={'images': tensor_info_x},
outputs={'scores': tensor_info_y},
method_name=signature_constants.PREDICT_METHOD_NAME)
legacy_init_op = tf.group(tf.initialize_all_tables(), name='legacy_init_op')
builder.add_meta_graph_and_variables(
sess, [tag_constants.SERVING],
signature_def_map={
'predict_images':
prediction_signature,
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
classification_signature,
},
legacy_init_op=legacy_init_op)
builder.save()
print 'Done exporting!'
开发者ID:kchodorow,项目名称:serving,代码行数:88,代码来源:mnist_saved_model.py
示例19:
#!/usr/bin/env python
import tensorflow as tf
# Create a Constant op
# The op is added as a node to the default graph.
#
# The value returned by the constructor represents the output
# of the Constant op.
hello = tf.constant('Hello, TensorFlow!')
x = tf.placeholder("float", 3)
a = tf.placeholder("float", shape=[None, 3])
y = x*2
b = a*2
# Start tf session
sess = tf.Session()
sess.run(tf.initialize_all_tables())
print sess.run(hello)
print sess.run(y, feed_dict={x:[1,2,3]})
print sess.run(b, feed_dict={a:[[1,2,3], [4,5,6]]})
sess.close()
开发者ID:feiskyer,项目名称:feiskyer.github.io,代码行数:24,代码来源:helloworld.py
示例20: save_model
def save_model():
with tf.Graph().as_default():
# definimos placeholders
_images = tf.placeholder(tf.float32, shape=[None, FLAGS.image_height, FLAGS.image_width, 3])
# Inference.
logits = reconobook_modelo.inference(_images)
# clase = tf.argmax(logits, 1)
values, indices = tf.nn.top_k(logits, 10)
prediction_classes = tf.contrib.lookup.index_to_string(
tf.to_int64(indices), mapping=tf.constant([str(i) for i in range(10)]))
with tf.Session() as sess:
# Cargar modelo
ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
variable_averages = tf.train.ExponentialMovingAverage(FLAGS.moving_average_decay)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
saver.restore(sess, ckpt.model_checkpoint_path)
# Definimos la ruta donde se guardará el modelo
export_path = os.path.join(
compat.as_bytes(FLAGS.export_model_dir),
compat.as_bytes(str(FLAGS.model_version)))
# creamos el directorio de export si no existe, y si existe lo borramos y creamos de nuevo
if os.path.exists(export_path):
shutil.rmtree(export_path)
print('Exportando modelo a %s' % export_path)
# Creamos el "builder"
builder = saved_model_builder.SavedModelBuilder(export_path)
# Build the signature_def_map.
classification_inputs = utils.build_tensor_info(_images)
classification_outputs_classes = utils.build_tensor_info(prediction_classes)
classification_outputs_scores = utils.build_tensor_info(values)
classification_signature = signature_def_utils.build_signature_def(
inputs={signature_constants.CLASSIFY_INPUTS: classification_inputs},
outputs={
signature_constants.CLASSIFY_OUTPUT_CLASSES:
classification_outputs_classes,
signature_constants.CLASSIFY_OUTPUT_SCORES:
classification_outputs_scores
},
method_name=signature_constants.CLASSIFY_METHOD_NAME)
tensor_info_x = utils.build_tensor_info(_images)
tensor_info_y = utils.build_tensor_info(logits)
prediction_signature = signature_def_utils.build_signature_def(
inputs={'images': tensor_info_x},
outputs={'scores': tensor_info_y},
method_name=signature_constants.PREDICT_METHOD_NAME)
legacy_init_op = tf.group(tf.initialize_all_tables(), name='legacy_init_op')
builder.add_meta_graph_and_variables(
sess, [tag_constants.SERVING],
signature_def_map={
'predict_images':
prediction_signature,
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
classification_signature,
},
legacy_init_op=legacy_init_op)
builder.save()
print('Modelo exportado')
开发者ID:NicolasPresta,项目名称:ReconoBook,代码行数:73,代码来源:reconobook_save_model.py
注:本文中的tensorflow.initialize_all_tables函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论