• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensorflow.global_variables_initializer函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.global_variables_initializer函数的典型用法代码示例。如果您正苦于以下问题:Python global_variables_initializer函数的具体用法?Python global_variables_initializer怎么用?Python global_variables_initializer使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了global_variables_initializer函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: testAdagradDAWithL1

  def testAdagradDAWithL1(self):
    for dtype in [tf.float64, tf.float32]:
      with self.test_session() as sess:
        global_step = tf.Variable(0, dtype=tf.int64)
        var0 = tf.Variable([1.0, 2.0], dtype=dtype)
        var1 = tf.Variable([4.0, 3.0], dtype=dtype)
        grads0 = tf.constant([0.1, 0.2], dtype=dtype)
        grads1 = tf.constant([0.01, 0.02], dtype=dtype)

        opt = tf.train.AdagradDAOptimizer(
            3.0,
            global_step,
            initial_gradient_squared_accumulator_value=0.1,
            l1_regularization_strength=0.001,
            l2_regularization_strength=0.0)
        update = opt.apply_gradients(
            zip([grads0, grads1], [var0, var1]), global_step=global_step)
        tf.global_variables_initializer().run()

        v0_val, v1_val = sess.run([var0, var1])
        self.assertAllCloseAccordingToType([1.0, 2.0], v0_val)
        self.assertAllCloseAccordingToType([4.0, 3.0], v1_val)

        # Run a step of AdagradDA
        update.run()

        v0_val, v1_val = sess.run([var0, var1])
        self.assertAllCloseAccordingToType(
            np.array([-0.895489, -1.59555]), v0_val)
        self.assertAllCloseAccordingToType(
            np.array([-0.085339, -0.17989]), v1_val)
开发者ID:ComeOnGetMe,项目名称:tensorflow,代码行数:31,代码来源:adagrad_da_test.py


示例2: testYesShuffle

 def testYesShuffle(self):
   id_source = rs.ReaderSource(reader_cls=tf.IdentityReader,
                               work_units=self.work_units,
                               batch_size=1,
                               shuffle=True,
                               num_threads=10,
                               seed=1234)
   index_column, value_column = id_source()
   cache = {}
   index_tensor = index_column.build(cache)
   value_tensor = value_column.build(cache)
   self.assertEqual([1], index_tensor.get_shape().as_list())
   self.assertEqual([1], value_tensor.get_shape().as_list())
   seen = set([])
   with self.test_session() as sess:
     tf.global_variables_initializer().run()
     coord = tf.train.Coordinator()
     threads = tf.train.start_queue_runners(sess=sess, coord=coord)
     for _ in range(500):
       index, value = sess.run([index_tensor, value_tensor])
       self.assertEqual(index, value)
       self.assertNotIn(int(value[0]), seen)
       seen.add(int(value[0]))
     coord.request_stop()
     coord.join(threads)
开发者ID:ComeOnGetMe,项目名称:tensorflow,代码行数:25,代码来源:reader_source_test.py


示例3: init_training_graph

    def init_training_graph(self):

        with tf.name_scope('Evaluation'):
            # self.logits = self.conv_layer_f(self.last, self.logits_weight, strides=[1,1,1,1], scope_name="logits/")
            with tf.name_scope("logits/"):
                self.logits2 = tf.nn.conv2d(self.last, self.logits_weight, strides=[1,1,1,1], padding="VALID")
                self.logits = tf.nn.bias_add(self.logits2, self.logits_biases)
            self.predictions = self.logits
            #self.predictions = tf.squeeze(self.logits, [3])
            #softmax = tf.nn.softmax(self.logits)
            #print softmax.get_shape()
            #self.predictions = tf.slice(softmax, [0, 0, 0, 0], [-1, -1, -1, 1])
            with tf.name_scope('Loss'):

                self.loss = tf.reduce_mean(tf.losses.mean_squared_error(self.logits, self.train_labels_node))
                #self.loss = tf.reduce_mean(tf.losses.mean_squared_error(self.predictions, self.train_labels_node))
                tf.summary.scalar("mean_squared_error", self.loss)
            self.predictions = tf.squeeze(self.predictions, [3])
            self.train_prediction = self.predictions

            self.test_prediction = self.predictions

        tf.global_variables_initializer().run()

        print('Computational graph initialised')
开发者ID:PeterJackNaylor,项目名称:PhD_Fabien,代码行数:25,代码来源:UNet_Normalized.py


示例4: testRasterScanKernel

  def testRasterScanKernel(self):
    kernel_size = 5
    input_depth = 1
    output_depth = 1
    kernel_shape = [kernel_size, kernel_size, input_depth, output_depth]

    # pylint: disable=bad-whitespace
    kernel_feed = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
                   [ 6.0,  7.0,  8.0,  9.0, 10.0],
                   [11.0, 12.0, 13.0, 14.0, 15.0],
                   [16.0, 17.0, 18.0, 19.0, 20.0],
                   [21.0, 22.0, 23.0, 24.0, 25.0]]
    kernel_feed = np.reshape(kernel_feed, kernel_shape)
    kernel_expected = [[ 1.0,  2.0, 3.0, 4.0,  5.0],
                       [ 6.0,  7.0, 8.0, 9.0, 10.0],
                       [11.0, 12.0, 0.0, 0.0,  0.0],
                       [ 0.0,  0.0, 0.0, 0.0,  0.0],
                       [ 0.0,  0.0, 0.0, 0.0,  0.0]]
    kernel_expected = np.reshape(kernel_expected, kernel_shape)
    # pylint: enable=bad-whitespace

    init_kernel = lambda s, t: tf.constant(kernel_feed, dtype=t, shape=s)
    masked_conv2d = blocks_masked_conv2d.RasterScanConv2D(
        output_depth, [kernel_size] * 2, [1] * 2, 'SAME',
        initializer=init_kernel)
    x = tf.placeholder(dtype=tf.float32, shape=[10] * 3 + [input_depth])
    _ = masked_conv2d(x)

    with self.test_session():
      tf.global_variables_initializer().run()
      kernel_value = masked_conv2d._kernel.eval()

    self.assertAllEqual(kernel_expected, kernel_value)
开发者ID:Hukongtao,项目名称:models,代码行数:33,代码来源:blocks_masked_conv2d_test.py


示例5: basic_operation

def basic_operation():
    v1 = tf.Variable(10)
    v2 = tf.Variable(5)
    addv = v1 + v2
    print(addv)
    print(type(addv))
    print(type(v1))

    c1 = tf.constant(10)
    c2 = tf.constant(5)
    addc = c1 + c2
    print(addc)
    print(type(addc))
    print(type(c1))

    # 用来运行计算图谱的对象/实例?
    # session is a runtime
    sess = tf.Session()

    # Variable -> 初始化 -> 有值的Tensor
    tf.global_variables_initializer().run(session=sess)

    print('变量是需要初始化的')
    print('加法(v1, v2) = ', addv.eval(session=sess))
    print('加法(v1, v2) = ', sess.run(addv))
    print('加法(c1, c2) = ', addc.eval(session=sess))
开发者ID:benjaminhuanghuang,项目名称:ml_playground,代码行数:26,代码来源:basic.py


示例6: testMultipleDequeue

    def testMultipleDequeue(self):
        with self.test_session() as sess:
            batch_size = 10
            image_size = 32
            num_batches = 4

            zero64 = tf.constant(0, dtype=tf.int64)

            examples = tf.Variable(zero64)
            counter = examples.count_up_to(num_batches * batch_size)
            image = tf.random_normal([image_size, image_size, 3], dtype=tf.float32, name="images")
            label = tf.random_uniform([1], 0, 10, dtype=tf.int32, name="labels")

            batches = tf.train.batch([counter, image, label], batch_size=batch_size, num_threads=4)

            batcher = slim.prefetch_queue.prefetch_queue(batches)
            batches_list = [batcher.dequeue() for _ in range(2)]

            tf.global_variables_initializer().run()
            threads = tf.train.start_queue_runners()

            value_counter = []
            for _ in range(int(num_batches / 2)):
                for batches in batches_list:
                    results = sess.run(batches)
                    value_counter.append(results[0])
                    self.assertEquals(results[1].shape, (batch_size, image_size, image_size, 3))
                    self.assertEquals(results[2].shape, (batch_size, 1))

            self.assertAllEqual(np.sort(np.concatenate(value_counter)), np.arange(0, num_batches * batch_size))
            # Reached the limit.
            with self.assertRaises(tf.errors.OutOfRangeError):
                sess.run(batches)
            for thread in threads:
                thread.join()
开发者ID:brchiu,项目名称:tensorflow,代码行数:35,代码来源:prefetch_queue_test.py


示例7: train

def train(data_dir, checkpoint_path, config):
    """Trains the model with the given data

    Args:
        data_dir: path to the data for the model (see data_utils for data
            format)
        checkpoint_path: the path to save the trained model checkpoints
        config: one of the above configs that specify the model and how it
            should be run and trained
    Returns:
        None
    """
    # Prepare Name data.
    print("Reading Name data in %s" % data_dir)
    names, counts = data_utils.read_names(data_dir)

    with tf.Graph().as_default(), tf.Session() as session:
        initializer = tf.random_uniform_initializer(-config.init_scale,
                                                    config.init_scale)
        with tf.variable_scope("model", reuse=None, initializer=initializer):
            m = NamignizerModel(is_training=True, config=config)

        tf.global_variables_initializer().run()

        for i in range(config.max_max_epoch):
            lr_decay = config.lr_decay ** max(i - config.max_epoch, 0.0)
            m.assign_lr(session, config.learning_rate * lr_decay)

            print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
            train_perplexity = run_epoch(session, m, names, counts, config.epoch_size, m.train_op,
                                         verbose=True)
            print("Epoch: %d Train Perplexity: %.3f" %
                  (i + 1, train_perplexity))

            m.saver.save(session, checkpoint_path, global_step=i)
开发者ID:ALISCIFP,项目名称:models,代码行数:35,代码来源:names.py


示例8: testDenseFeaturesSeparableWithinMargins

  def testDenseFeaturesSeparableWithinMargins(self):
    with self._single_threaded_test_session():
      examples, variables = make_dense_examples_and_variables_dicts(
          dense_features_values=[[[1.0, 0.5], [1.0, -0.5]]],
          weights=[1.0, 1.0],
          labels=[1.0, 0.0])
      options = dict(symmetric_l2_regularization=1.0,
                     symmetric_l1_regularization=0,
                     loss_type='hinge_loss')
      model = SdcaModel(examples, variables, options)
      tf.global_variables_initializer().run()
      predictions = model.predictions(examples)
      binary_predictions = get_binary_predictions_for_hinge(predictions)

      train_op = model.minimize()
      for _ in range(_MAX_ITERATIONS):
        train_op.run()
      model.update_weights(train_op).run()

      # (1.0, 0.5) and (1.0, -0.5) are separable by x-axis but the datapoints
      # are within the margins so there is unregularized loss (1/2 per example).
      # For these datapoints, optimal weights are w_1~=0.0 and w_2~=1.0 which
      # gives an L2 loss of ~0.25.
      self.assertAllClose([0.5, -0.5], predictions.eval(), rtol=0.05)
      self.assertAllEqual([1, 0], binary_predictions.eval())
      unregularized_loss = model.unregularized_loss(examples)
      regularized_loss = model.regularized_loss(examples)
      self.assertAllClose(0.5, unregularized_loss.eval(), atol=0.02)
      self.assertAllClose(0.75, regularized_loss.eval(), atol=0.02)
开发者ID:curtiszimmerman,项目名称:tensorflow,代码行数:29,代码来源:sdca_ops_test.py


示例9: testDenseFeaturesWeightedExamples

  def testDenseFeaturesWeightedExamples(self):
    with self._single_threaded_test_session():
      examples, variables = make_dense_examples_and_variables_dicts(
          dense_features_values=[[[1.0], [1.0]], [[0.5], [-0.5]]],
          weights=[3.0, 1.0],
          labels=[1.0, 0.0])
      options = dict(symmetric_l2_regularization=1.0,
                     symmetric_l1_regularization=0,
                     loss_type='hinge_loss')
      model = SdcaModel(examples, variables, options)
      tf.global_variables_initializer().run()
      predictions = model.predictions(examples)
      binary_predictions = get_binary_predictions_for_hinge(predictions)
      train_op = model.minimize()
      for _ in range(_MAX_ITERATIONS):
        train_op.run()
      model.update_weights(train_op).run()

      # Point (1.0, 0.5) has higher weight than (1.0, -0.5) so the model will
      # try to increase the margin from (1.0, 0.5). Due to regularization,
      # (1.0, -0.5) will be within the margin. For these points and example
      # weights, the optimal weights are w_1~=0.4 and w_2~=1.2 which give an L2
      # loss of 0.5 * 0.25 * 0.25 * 1.6 = 0.2. The binary predictions will be
      # correct, but the boundary will be much closer to the 2nd point than the
      # first one.
      self.assertAllClose([1.0, -0.2], predictions.eval(), atol=0.05)
      self.assertAllEqual([1, 0], binary_predictions.eval())
      unregularized_loss = model.unregularized_loss(examples)
      regularized_loss = model.regularized_loss(examples)
      self.assertAllClose(0.2, unregularized_loss.eval(), atol=0.02)
      self.assertAllClose(0.4, regularized_loss.eval(), atol=0.02)
开发者ID:curtiszimmerman,项目名称:tensorflow,代码行数:31,代码来源:sdca_ops_test.py


示例10: testDenseFeaturesWithArbitraryWeights

  def testDenseFeaturesWithArbitraryWeights(self):
    with self._single_threaded_test_session():
      examples, variables = make_dense_examples_and_variables_dicts(
          dense_features_values=[[[1.0, 0.0], [0.0, 1.0]]],
          weights=[20.0, 10.0],
          labels=[10.0, -5.0])
      options = dict(symmetric_l2_regularization=5.0,
                     symmetric_l1_regularization=0,
                     loss_type='squared_loss')
      lr = SdcaModel(examples, variables, options)
      tf.global_variables_initializer().run()
      predictions = lr.predictions(examples)

      train_op = lr.minimize()
      for _ in range(_MAX_ITERATIONS):
        train_op.run()
      lr.update_weights(train_op).run()

      # The loss function for these particular features is given by:
      # 1/2 s_1 (label_1-w_1)^2 + 1/2 s_2(label_2-w_2)^2 +
      # \lambda/2 (w_1^2 + w_2^2) where s_1, s_2 are the *example weights. It
      # turns out that the optimal (variable) weights are given by:
      # w_1* = label_1 \cdot s_1/(\lambda + s_1)= 8.0 and
      # w_2* =label_2 \cdot s_2/(\lambda + s_2)= -10/3.
      # In this case the (unnormalized regularized) loss will be:
      # s_1/2(8-10)^2 + s_2/2(5-10/3)^2 + 5.0/2(8^2 + (10/3)^2) = 2175.0/9. The
      # actual loss should be further normalized by the sum of example weights.
      self.assertAllClose([8.0, -10.0/3],
                          predictions.eval(),
                          rtol=0.01)
      loss = lr.regularized_loss(examples)
      self.assertAllClose(2175.0 / 270.0, loss.eval(), atol=0.01)
开发者ID:curtiszimmerman,项目名称:tensorflow,代码行数:32,代码来源:sdca_ops_test.py


示例11: testDenseFeaturesPerfectlySeparable

  def testDenseFeaturesPerfectlySeparable(self):
    with self._single_threaded_test_session():
      examples, variables = make_dense_examples_and_variables_dicts(
          dense_features_values=[[1.0, 1.0], [1.0, -1.0]],
          weights=[1.0, 1.0],
          labels=[1.0, 0.0])
      options = dict(
          symmetric_l2_regularization=1.0,
          symmetric_l1_regularization=0,
          loss_type='hinge_loss')
      model = SdcaModel(examples, variables, options)
      tf.global_variables_initializer().run()
      predictions = model.predictions(examples)
      binary_predictions = get_binary_predictions_for_hinge(predictions)

      train_op = model.minimize()
      for _ in range(_MAX_ITERATIONS):
        train_op.run()
      model.update_weights(train_op).run()

      self.assertAllClose([1.0, -1.0], predictions.eval(), atol=0.05)
      self.assertAllEqual([1, 0], binary_predictions.eval())

      # (1.0, 1.0) and (1.0, -1.0) are perfectly separable by x-axis (that is,
      # the SVM's functional margin >=1), so the unregularized loss is ~0.0.
      # There is only loss due to l2-regularization. For these datapoints, it
      # turns out that w_1~=0.0 and w_2~=1.0 which means that l2 loss is ~0.25.
      unregularized_loss = model.unregularized_loss(examples)
      regularized_loss = model.regularized_loss(examples)
      self.assertAllClose(0.0, unregularized_loss.eval(), atol=0.02)
      self.assertAllClose(0.25, regularized_loss.eval(), atol=0.02)
开发者ID:curtiszimmerman,项目名称:tensorflow,代码行数:31,代码来源:sdca_ops_test.py


示例12: testDenseFeaturesWithDefaultWeights

  def testDenseFeaturesWithDefaultWeights(self):
    with self._single_threaded_test_session():
      examples, variables = make_dense_examples_and_variables_dicts(
          dense_features_values=[[[1.0], [0.0]], [0.0, 1.0]],
          weights=[1.0, 1.0],
          labels=[10.0, -5.0])
      options = dict(symmetric_l2_regularization=1.0,
                     symmetric_l1_regularization=0,
                     loss_type='squared_loss')
      lr = SdcaModel(examples, variables, options)
      tf.global_variables_initializer().run()
      predictions = lr.predictions(examples)

      train_op = lr.minimize()
      for _ in range(_MAX_ITERATIONS):
        train_op.run()
      lr.update_weights(train_op).run()

      # The loss function for these particular features is given by:
      # 1/2(label_1-w_1)^2 + 1/2(label_2-w_2)^2 + \lambda/2 (w_1^2 + w_2^2). So,
      # differentiating wrt to w_1, w_2 yields the following optimal values:
      # w_1* = label_1/(\lambda + 1)= 10/2, w_2* =label_2/(\lambda + 1)= -5/2.
      # In this case the (unnormalized regularized) loss will be:
      # 1/2(10-5)^2 + 1/2(5-5/2)^2 + 1/2(5^2 + (5/2)^2) = 125.0/4. The actual
      # loss should be further normalized by the sum of example weights.
      self.assertAllClose([5.0, -2.5],
                          predictions.eval(),
                          rtol=0.01)
      loss = lr.regularized_loss(examples)
      self.assertAllClose(125.0 / 8.0, loss.eval(), atol=0.01)
开发者ID:curtiszimmerman,项目名称:tensorflow,代码行数:30,代码来源:sdca_ops_test.py


示例13: testL1Regularization

  def testL1Regularization(self):
    # Setup test data
    example_protos = [
        make_example_proto(
            {'age': [0],
             'gender': [0]}, -10.0),
        make_example_proto(
            {'age': [1],
             'gender': [1]}, 14.0),
    ]
    example_weights = [1.0, 1.0]
    with self._single_threaded_test_session():
      examples = make_example_dict(example_protos, example_weights)
      variables = make_variable_dict(1, 1)
      options = dict(symmetric_l2_regularization=1.0,
                     symmetric_l1_regularization=4.0,
                     loss_type='squared_loss')
      lr = SdcaModel(examples, variables, options)
      tf.global_variables_initializer().run()
      prediction = lr.predictions(examples)
      loss = lr.regularized_loss(examples)

      train_op = lr.minimize()
      for _ in range(_MAX_ITERATIONS):
        train_op.run()
      lr.update_weights(train_op).run()

      # Predictions should be -4.0, 48/5 due to minimizing regularized loss:
      #   (label - 2 * weight)^2 / 2 + L2 * 2 * weight^2 + L1 * 4 * weight
      self.assertAllClose([-4.0, 20.0 / 3.0], prediction.eval(), rtol=0.08)

      # Loss should be the sum of the regularized loss value from above per
      # example after plugging in the optimal weights.
      self.assertAllClose(308.0 / 6.0, loss.eval(), atol=0.01)
开发者ID:curtiszimmerman,项目名称:tensorflow,代码行数:34,代码来源:sdca_ops_test.py


示例14: testFractionalExampleLabel

  def testFractionalExampleLabel(self):
    # Setup test data with 1 positive, and 1 mostly-negative example.
    example_protos = [
        make_example_proto(
            {'age': [0],
             'gender': [0]}, 0.1),
        make_example_proto(
            {'age': [1],
             'gender': [1]}, 1),
    ]
    example_weights = [1.0, 1.0]
    for num_shards in _SHARD_NUMBERS:
      with self._single_threaded_test_session():
        examples = make_example_dict(example_protos, example_weights)
        variables = make_variable_dict(1, 1)
        options = dict(symmetric_l2_regularization=1,
                       symmetric_l1_regularization=0,
                       num_table_shards=num_shards,
                       loss_type='logistic_loss')

        lr = SdcaModel(examples, variables, options)
        tf.global_variables_initializer().run()
        with self.assertRaisesOpError(
            'Only labels of 0.0 or 1.0 are supported right now.'):
          lr.minimize().run()
开发者ID:curtiszimmerman,项目名称:tensorflow,代码行数:25,代码来源:sdca_ops_test.py


示例15: testMultiLabelWithCenteredBias

 def testMultiLabelWithCenteredBias(self):
   n_classes = 3
   head = head_lib._multi_label_head(
       n_classes=n_classes, enable_centered_bias=True,
       metric_class_ids=range(n_classes))
   with tf.Graph().as_default(), tf.Session():
     logits = tf.constant([[1., 0., 0.]])
     labels = tf.constant([[0, 0, 1]])
     model_fn_ops = head.head_ops({}, labels,
                                  tf.contrib.learn.ModeKeys.TRAIN,
                                  _noop_train_op, logits=logits)
     _assert_variables(self, expected_global=(
         "centered_bias_weight:0",
         "centered_bias_weight/Adagrad:0",
     ), expected_trainable=(
         "centered_bias_weight:0",
     ))
     tf.global_variables_initializer().run()
     _assert_summary_tags(self, ["loss",
                                 "centered_bias/bias_0",
                                 "centered_bias/bias_1",
                                 "centered_bias/bias_2"])
     expected_loss = .89985204
     _assert_metrics(
         self, expected_loss, self._expected_eval_metrics(expected_loss),
         model_fn_ops)
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:26,代码来源:head_test.py


示例16: testGradientsAsVariables

  def testGradientsAsVariables(self):
    for dtype in [tf.half, tf.float32, tf.float64]:
      with self.test_session() as sess:
        var0 = tf.Variable([1.0, 2.0], dtype=dtype)
        var1 = tf.Variable([3.0, 4.0], dtype=dtype)
        cost = 5 * var0 + 3 * var1
        global_step = tf.Variable(tf.zeros([], tf.int64), name='global_step')
        sgd_op = tf.train.GradientDescentOptimizer(3.0)
        grads_and_vars = sgd_op.compute_gradients(cost, [var0, var1])
        # Convert gradients to tf.Variables
        converted_grads = [
            tf.Variable(tf.zeros([2], dtype)) for i in grads_and_vars
        ]
        convert_ops = [
            tf.assign(converted_grads[i], gv[0])
            for i, gv in enumerate(grads_and_vars)
        ]

        converted_grads_and_vars = list(zip(converted_grads, [var0, var1]))
        opt_op = sgd_op.apply_gradients(converted_grads_and_vars, global_step)

        tf.global_variables_initializer().run()
        # Run convert_ops to achieve the gradietns converting
        sess.run(convert_ops)
        # Fetch params to validate initial values
        self.assertAllClose([1.0, 2.0], var0.eval())
        self.assertAllClose([3.0, 4.0], var1.eval())
        # Run 1 step of sgd through optimizer
        opt_op.run()
        # Validate updated params
        self.assertAllClose([-14., -13.], var0.eval())
        self.assertAllClose([-6., -5.], var1.eval())
开发者ID:curtiszimmerman,项目名称:tensorflow,代码行数:32,代码来源:optimizer_test.py


示例17: testOneThread

    def testOneThread(self):
        with self.test_session() as sess:
            batch_size = 10
            image_size = 32
            num_batches = 5

            zero64 = tf.constant(0, dtype=tf.int64)

            examples = tf.Variable(zero64)
            counter = examples.count_up_to(num_batches * batch_size)
            image = tf.random_normal([image_size, image_size, 3], dtype=tf.float32, name="images")
            label = tf.random_uniform([1], 0, 10, dtype=tf.int32, name="labels")

            batches = tf.train.batch([counter, image, label], batch_size=batch_size, num_threads=1)

            batches = slim.prefetch_queue.prefetch_queue(batches).dequeue()

            tf.global_variables_initializer().run()
            threads = tf.train.start_queue_runners()

            for i in range(num_batches):
                results = sess.run(batches)
                self.assertAllEqual(results[0], np.arange(i * batch_size, (i + 1) * batch_size))
                self.assertEquals(results[1].shape, (batch_size, image_size, image_size, 3))
                self.assertEquals(results[2].shape, (batch_size, 1))

            # Reached the limit.
            with self.assertRaises(tf.errors.OutOfRangeError):
                sess.run(batches)
            for thread in threads:
                thread.join()
开发者ID:brchiu,项目名称:tensorflow,代码行数:31,代码来源:prefetch_queue_test.py


示例18: testBasicLSTMCell

 def testBasicLSTMCell(self):
   with self.test_session() as sess:
     with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
       x = tf.zeros([1, 2])
       m = tf.zeros([1, 8])
       g, out_m = tf.nn.rnn_cell.MultiRNNCell(
           [tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=False)] * 2,
           state_is_tuple=False)(x, m)
       sess.run([tf.global_variables_initializer()])
       res = sess.run([g, out_m], {x.name: np.array([[1., 1.]]),
                                   m.name: 0.1 * np.ones([1, 8])})
       self.assertEqual(len(res), 2)
       # The numbers in results were not calculated, this is just a smoke test.
       self.assertAllClose(res[0], [[0.24024698, 0.24024698]])
       expected_mem = np.array([[0.68967271, 0.68967271,
                                 0.44848421, 0.44848421,
                                 0.39897051, 0.39897051,
                                 0.24024698, 0.24024698]])
       self.assertAllClose(res[1], expected_mem)
     with tf.variable_scope("other", initializer=tf.constant_initializer(0.5)):
       x = tf.zeros([1, 3])  # Test BasicLSTMCell with input_size != num_units.
       m = tf.zeros([1, 4])
       g, out_m = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=False)(x, m)
       sess.run([tf.global_variables_initializer()])
       res = sess.run([g, out_m], {x.name: np.array([[1., 1., 1.]]),
                                   m.name: 0.1 * np.ones([1, 4])})
       self.assertEqual(len(res), 2)
开发者ID:brchiu,项目名称:tensorflow,代码行数:27,代码来源:rnn_cell_test.py


示例19: benchmark_create_1000_partitions_with_100_parameter_servers

  def benchmark_create_1000_partitions_with_100_parameter_servers(self):
    workers, _ = create_local_cluster(num_workers=1, num_ps=100)
    worker_sessions = [tf.Session(w.target) for w in workers]
    worker = worker_sessions[0]
    partition_sizes = (1, 512, 1024*32, 1024*128)

    partitioned = []

    for partition_size in partition_sizes:
      # max_shard_bytes is 4, shape is 1000*partition_size float32s which should
      # partition into 1000 shards, each containing partition_size float32s.
      print("Building partitioned variable with %d floats per partition"
            % partition_size)
      with tf.device(tf.train.replica_device_setter(ps_tasks=100)):
        partitioned_ix = tf.get_variable(
            "partitioned_%d" % partition_size,
            shape=[1000 * partition_size],
            dtype=tf.float32,
            # Each partition to have exactly N float32s
            partitioner=tf.variable_axis_size_partitioner(
                max_shard_bytes=4 * partition_size))
        # Concatenates along axis 0
        partitioned.append(tf.convert_to_tensor(partitioned_ix))

    tf.global_variables_initializer().run(session=worker)

    for ix, partition_size in enumerate(partition_sizes):
      print("Running benchmark having partitions with %d floats"
            % partition_size)
      self.run_op_benchmark(
          worker,
          partitioned[ix],
          name=("read_concat_1000_partitions_from_"
                "100_parameter_servers_partsize_%d_floats" % partition_size))
开发者ID:ComeOnGetMe,项目名称:tensorflow,代码行数:34,代码来源:localhost_cluster_performance_test.py


示例20: testVariableCopy

  def testVariableCopy(self):

    with graph1.as_default():
      #Define a Variable in graph1
      some_var = tf.Variable(2)
      #Initialize session
      sess1 = tf.Session()
      #Initialize the Variable
      tf.global_variables_initializer().run(session=sess1)

    #Make a copy of some_var in the defsult scope in graph2
    copy1 = tf.contrib.copy_graph.copy_variable_to_graph(
        some_var, graph2)

    #Make another copy with different scope
    copy2 = tf.contrib.copy_graph.copy_variable_to_graph(
        some_var, graph2, "test_scope")

    #Initialize both the copies
    with graph2.as_default():
      #Initialize Session
      sess2 = tf.Session()
      #Initialize the Variables
      tf.global_variables_initializer().run(session=sess2)

    #Ensure values in all three variables are the same
    v1 = some_var.eval(session=sess1)
    v2 = copy1.eval(session=sess2)
    v3 = copy2.eval(session=sess2)

    assert isinstance(copy1, tf.Variable)
    assert isinstance(copy2, tf.Variable)
    assert v1 == v2 == v3 == 2
开发者ID:moolighty,项目名称:tensorflow,代码行数:33,代码来源:copy_test.py



注:本文中的tensorflow.global_variables_initializer函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensorflow.gradients函数代码示例发布时间:2022-05-27
下一篇:
Python tensorflow.global_variables函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap