• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensorflow.depth_to_space函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.depth_to_space函数的典型用法代码示例。如果您正苦于以下问题:Python depth_to_space函数的具体用法?Python depth_to_space怎么用?Python depth_to_space使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了depth_to_space函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: testDepthInterleavedDepth3

 def testDepthInterleavedDepth3(self):
   x_np = [[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]]
   block_size = 2
   with self.test_session(use_gpu=False):
     x_tf = tf.depth_to_space(x_np, block_size)
     self.assertAllEqual(x_tf.eval(), [[[[1, 2, 3], [4, 5, 6]],
                                        [[7, 8, 9], [10, 11, 12]]]])
开发者ID:13331151,项目名称:tensorflow,代码行数:7,代码来源:depthtospace_op_test.py


示例2: SubpixelConv2D

def SubpixelConv2D(*args, **kwargs):
    kwargs['output_dim'] = 4*kwargs['output_dim']
    output = lib.ops.conv2d.Conv2D(*args, **kwargs)
    output = tf.transpose(output, [0,2,3,1])
    output = tf.depth_to_space(output, 2)
    output = tf.transpose(output, [0,3,1,2])
    return output
开发者ID:uotter,项目名称:improved_wgan_training,代码行数:7,代码来源:gan_64x64.py


示例3: testBlockSize0

 def testBlockSize0(self):
   x_np = [[[[1], [2]],
            [[3], [4]]]]
   block_size = 0
   with self.assertRaises(ValueError):
     out_tf = tf.depth_to_space(x_np, block_size)
     out_tf.eval()
开发者ID:AdamPalmar,项目名称:tensorflow,代码行数:7,代码来源:depthtospace_op_test.py


示例4: depth_to_space

def depth_to_space(input, scale, data_format=None):
    ''' Uses phase shift algorithm to convert channels/depth for spatial resolution '''
    data_format = 'NHWC'

    data_format = data_format.lower()
    out = tf.depth_to_space(input, scale, data_format=data_format)
    return out
开发者ID:AlexBlack2202,项目名称:ImageAI,代码行数:7,代码来源:tensorflow_backend.py


示例5: testDepthInterleaved

 def testDepthInterleaved(self):
   x_np = [[[[1, 10, 2, 20, 3, 30, 4, 40]]]]
   block_size = 2
   with self.test_session(use_gpu=False):
     x_tf = tf.depth_to_space(x_np, block_size)
     self.assertAllEqual(x_tf.eval(), [[[[1, 10], [2, 20]],
                                        [[3, 30], [4, 40]]]])
开发者ID:13331151,项目名称:tensorflow,代码行数:7,代码来源:depthtospace_op_test.py


示例6: deconv2d

 def deconv2d(cur, i):
   thicker = conv(
       cur,
       output_filters * 4, (1, 1),
       padding="SAME",
       activation=tf.nn.relu,
       name="deconv2d" + str(i))
   return tf.depth_to_space(thicker, 2)
开发者ID:TrunksLegendary,项目名称:tensor2tensor,代码行数:8,代码来源:common_layers.py


示例7: UpsampleConv

def UpsampleConv(name, input_dim, output_dim, filter_size, inputs, he_init=True, biases=True):
    output = inputs
    output = tf.concat([output, output, output, output], axis=1)
    output = tf.transpose(output, [0,2,3,1])
    output = tf.depth_to_space(output, 2)
    output = tf.transpose(output, [0,3,1,2])
    output = lib.ops.conv2d.Conv2D(name, input_dim, output_dim, filter_size, output, he_init=he_init, biases=biases)
    return output
开发者ID:uotter,项目名称:improved_wgan_training,代码行数:8,代码来源:gan_64x64.py


示例8: testBlockSizeOne

 def testBlockSizeOne(self):
   x_np = [[[[1, 1, 1, 1],
             [2, 2, 2, 2]],
            [[3, 3, 3, 3],
             [4, 4, 4, 4]]]]
   block_size = 1
   with self.assertRaises(ValueError):
     out_tf = tf.depth_to_space(x_np, block_size)
     out_tf.eval()
开发者ID:AdamPalmar,项目名称:tensorflow,代码行数:9,代码来源:depthtospace_op_test.py


示例9: testBlockSize4FlatInput

 def testBlockSize4FlatInput(self):
   x_np = [[[[1, 2, 5, 6, 3, 4, 7, 8, 9, 10, 13, 14, 11, 12, 15, 16]]]]
   block_size = 4
   with self.test_session(use_gpu=False):
     x_tf = tf.depth_to_space(x_np, block_size)
     self.assertAllEqual(x_tf.eval(), [[[[1], [2], [5], [6]],
                                        [[3], [4], [7], [8]],
                                        [[9], [10], [13], [14]],
                                        [[11], [12], [15], [16]]]])
开发者ID:13331151,项目名称:tensorflow,代码行数:9,代码来源:depthtospace_op_test.py


示例10: depth_to_space

 def depth_to_space(cls, ipt, scale, data_format=None):
     """ Uses phase shift algorithm to convert channels/depth
         for spatial resolution """
     if data_format is None:
         data_format = K.image_data_format()
     data_format = data_format.lower()
     ipt = cls._preprocess_conv2d_input(ipt, data_format)
     out = tf.depth_to_space(ipt, scale)
     out = cls._postprocess_conv2d_output(out, data_format)
     return out
开发者ID:stonezuohui,项目名称:faceswap,代码行数:10,代码来源:layers.py


示例11: phase_shift

def phase_shift(x, upsampling_factor=2, data_format="NCHW", name="PhaseShift"):

    if data_format == "NCHW":
        x = tf.transpose(x, [0,2,3,1])

    x = tf.depth_to_space(x, upsampling_factor, name=name)

    if data_format == "NCHW":
        x = tf.transpose(x, [0,3,1,2])

    return x
开发者ID:MiG-Kharkov,项目名称:DeepLearningImplementations,代码行数:11,代码来源:layers.py


示例12: testDepthToSpaceTranspose

 def testDepthToSpaceTranspose(self):
   x = np.arange(20 * 5 * 8 * 7, dtype=np.float32).reshape([20, 5, 8, 7])
   block_size = 2
   crops = np.zeros((2, 2), dtype=np.int32)
   y1 = tf.batch_to_space(x, crops, block_size=block_size)
   y2 = tf.transpose(
       tf.depth_to_space(
           tf.transpose(x, [3, 1, 2, 0]), block_size=block_size),
       [3, 1, 2, 0])
   with self.test_session():
     self.assertAllEqual(y1.eval(), y2.eval())
开发者ID:0ruben,项目名称:tensorflow,代码行数:11,代码来源:batchtospace_op_test.py


示例13: testBlockSizeTooLarge

 def testBlockSizeTooLarge(self):
   x_np = [[[[1, 2, 3, 4],
             [5, 6, 7, 8]],
            [[9, 10, 11, 12],
             [13, 14, 15, 16]]]]
   block_size = 4
   # Raise an exception, since th depth is only 4 and needs to be
   # divisible by 16.
   with self.assertRaises(IndexError):
     out_tf = tf.depth_to_space(x_np, block_size)
     out_tf.eval()
开发者ID:AdamPalmar,项目名称:tensorflow,代码行数:11,代码来源:depthtospace_op_test.py


示例14: decompress_step

def decompress_step(source, hparams, first_relu, is_2d, name):
  """Decompression function."""
  with tf.variable_scope(name):
    shape = common_layers.shape_list(source)
    multiplier = 4 if is_2d else 2
    kernel = (1, 1) if is_2d else (1, 1)
    thicker = common_layers.conv_block(
        source, hparams.hidden_size * multiplier, [((1, 1), kernel)],
        first_relu=first_relu, name="decompress_conv")
    if is_2d:
      return tf.depth_to_space(thicker, 2)
    return tf.reshape(thicker, [shape[0], shape[1] * 2, 1, hparams.hidden_size])
开发者ID:kltony,项目名称:tensor2tensor,代码行数:12,代码来源:transformer_vae.py


示例15: testDepthInterleavedLarger

 def testDepthInterleavedLarger(self):
   x_np = [[[[1, 10, 2, 20, 3, 30, 4, 40],
             [5, 50, 6, 60, 7, 70, 8, 80]],
            [[9, 90, 10, 100, 11, 110, 12, 120],
             [13, 130, 14, 140, 15, 150, 16, 160]]]]
   block_size = 2
   with self.test_session(use_gpu=False):
     x_tf = tf.depth_to_space(x_np, block_size)
     self.assertAllEqual(x_tf.eval(),
                         [[[[1, 10], [2, 20], [5, 50], [6, 60]],
                           [[3, 30], [4, 40], [7, 70], [8, 80]],
                           [[9, 90], [10, 100], [13, 130], [14, 140]],
                           [[11, 110], [12, 120], [15, 150], [16, 160]]]])
开发者ID:13331151,项目名称:tensorflow,代码行数:13,代码来源:depthtospace_op_test.py


示例16: testNonSquare

 def testNonSquare(self):
   x_np = [[[[1, 10, 2, 20, 3, 30, 4, 40]],
            [[5, 50, 6, 60, 7, 70, 8, 80]],
            [[9, 90, 10, 100, 11, 110, 12, 120]]]]
   block_size = 2
   with self.test_session(use_gpu=False):
     x_tf = tf.depth_to_space(x_np, block_size)
     self.assertAllEqual(x_tf.eval(), [[[[1, 10], [2, 20]],
                                        [[3, 30], [4, 40]],
                                        [[5, 50], [6, 60]],
                                        [[7, 70], [8, 80]],
                                        [[9, 90], [10, 100]],
                                        [[11, 110], [12, 120]]]])
开发者ID:13331151,项目名称:tensorflow,代码行数:13,代码来源:depthtospace_op_test.py


示例17: _PS

    def _PS(X, r, n_out_channels):
        if n_out_channels >= 1:
            assert int(X.get_shape()[-1]) == (r**2) * n_out_channels, _err_log

            # bsize, a, b, c = X.get_shape().as_list()
            # bsize = tf.shape(X)[0] # Handling Dimension(None) type for undefined batch dim
            # Xs=tf.split(X,r,3) #b*h*w*r*r
            # Xr=tf.concat(Xs,2) #b*h*(r*w)*r
            # X=tf.reshape(Xr,(bsize,r*a,r*b,n_out_channel)) # b*(r*h)*(r*w)*c

            X = tf.depth_to_space(X, r)
        else:
            logging.info(_err_log)
        return X
开发者ID:dccforever,项目名称:tensorlayer,代码行数:14,代码来源:super_resolution.py


示例18: _checkGrad

  def _checkGrad(self, x, block_size):
    assert 4 == x.ndim
    with self.test_session():
      tf_x = tf.convert_to_tensor(x)
      tf_y = tf.depth_to_space(tf_x, block_size)
      epsilon = 1e-2
      ((x_jacob_t, x_jacob_n)) = tf.test.compute_gradient(
          tf_x,
          x.shape,
          tf_y,
          tf_y.get_shape().as_list(),
          x_init_value=x,
          delta=epsilon)

    self.assertAllClose(x_jacob_t, x_jacob_n, rtol=1e-2, atol=epsilon)
开发者ID:AdamPalmar,项目名称:tensorflow,代码行数:15,代码来源:depthtospace_op_test.py


示例19: layer_conv_dts

    def layer_conv_dts(self, net, args, options):
        options = hc.Config(options)
        config = self.config
        ops = self.ops

        self.ops.activation_name = options.activation_name
        activation_s = options.activation or self.ops.config_option("activation")
        activation = self.ops.lookup(activation_s)

        stride = options.stride or self.ops.config_option("stride", [1,1])[0]
        stride = int(stride)
        fltr = options.filter or self.ops.config_option("filter", [3,3])
        if type(fltr) == type(""):
            fltr=[int(fltr), int(fltr)]
        depth = int(args[0])

        initializer = None # default to global

        trainable = True
        if options.trainable == 'false':
            trainable = False
        bias = True
        if options.bias == 'false':
            bias=False
        net = ops.conv2d(net, fltr[0], fltr[1], stride, stride, depth*4, initializer=initializer, trainable=trainable, bias=bias)
        s = ops.shape(net)
        net = tf.depth_to_space(net, 2)
        if activation:
            #net = self.layer_regularizer(net)
            net = activation(net)

        avg_pool = options.avg_pool or self.ops.config_option("avg_pool")
        if type(avg_pool) == type(""):
            avg_pool = [int(avg_pool), int(avg_pool)]
        if avg_pool:
            ksize = [1,avg_pool[0], avg_pool[1],1]
            stride = ksize
            net = tf.nn.avg_pool(net, ksize=ksize, strides=stride, padding='SAME')

        return net
开发者ID:255BITS,项目名称:hyperchamber-gan,代码行数:40,代码来源:configurable_component.py


示例20: network

def network(input):  # Unet
    conv1 = slim.conv2d(input, 32, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv1_1')
    conv1 = slim.conv2d(conv1, 32, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv1_2')
    pool1 = slim.max_pool2d(conv1, [2, 2], padding='SAME')

    conv2 = slim.conv2d(pool1, 64, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv2_1')
    conv2 = slim.conv2d(conv2, 64, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv2_2')
    pool2 = slim.max_pool2d(conv2, [2, 2], padding='SAME')

    conv3 = slim.conv2d(pool2, 128, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv3_1')
    conv3 = slim.conv2d(conv3, 128, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv3_2')
    pool3 = slim.max_pool2d(conv3, [2, 2], padding='SAME')

    conv4 = slim.conv2d(pool3, 256, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv4_1')
    conv4 = slim.conv2d(conv4, 256, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv4_2')
    pool4 = slim.max_pool2d(conv4, [2, 2], padding='SAME')

    conv5 = slim.conv2d(pool4, 512, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv5_1')
    conv5 = slim.conv2d(conv5, 512, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv5_2')

    up6 = upsample_and_concat(conv5, conv4, 256, 512)
    conv6 = slim.conv2d(up6, 256, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv6_1')
    conv6 = slim.conv2d(conv6, 256, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv6_2')

    up7 = upsample_and_concat(conv6, conv3, 128, 256)
    conv7 = slim.conv2d(up7, 128, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv7_1')
    conv7 = slim.conv2d(conv7, 128, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv7_2')

    up8 = upsample_and_concat(conv7, conv2, 64, 128)
    conv8 = slim.conv2d(up8, 64, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv8_1')
    conv8 = slim.conv2d(conv8, 64, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv8_2')

    up9 = upsample_and_concat(conv8, conv1, 32, 64)
    conv9 = slim.conv2d(up9, 32, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv9_1')
    conv9 = slim.conv2d(conv9, 32, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv9_2')

    conv10 = slim.conv2d(conv9, 27, [1, 1], rate=1, activation_fn=None, scope='g_conv10')
    out = tf.depth_to_space(conv10, 3)
    return out
开发者ID:HACKERSHUBH,项目名称:Learning-to-See-in-the-Dark,代码行数:39,代码来源:train_Fuji.py



注:本文中的tensorflow.depth_to_space函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensorflow.device函数代码示例发布时间:2022-05-27
下一篇:
Python tensorflow.decode_raw函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap