本文整理汇总了Python中tensorflow.depth_to_space函数的典型用法代码示例。如果您正苦于以下问题:Python depth_to_space函数的具体用法?Python depth_to_space怎么用?Python depth_to_space使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了depth_to_space函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testDepthInterleavedDepth3
def testDepthInterleavedDepth3(self):
x_np = [[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]]
block_size = 2
with self.test_session(use_gpu=False):
x_tf = tf.depth_to_space(x_np, block_size)
self.assertAllEqual(x_tf.eval(), [[[[1, 2, 3], [4, 5, 6]],
[[7, 8, 9], [10, 11, 12]]]])
开发者ID:13331151,项目名称:tensorflow,代码行数:7,代码来源:depthtospace_op_test.py
示例2: SubpixelConv2D
def SubpixelConv2D(*args, **kwargs):
kwargs['output_dim'] = 4*kwargs['output_dim']
output = lib.ops.conv2d.Conv2D(*args, **kwargs)
output = tf.transpose(output, [0,2,3,1])
output = tf.depth_to_space(output, 2)
output = tf.transpose(output, [0,3,1,2])
return output
开发者ID:uotter,项目名称:improved_wgan_training,代码行数:7,代码来源:gan_64x64.py
示例3: testBlockSize0
def testBlockSize0(self):
x_np = [[[[1], [2]],
[[3], [4]]]]
block_size = 0
with self.assertRaises(ValueError):
out_tf = tf.depth_to_space(x_np, block_size)
out_tf.eval()
开发者ID:AdamPalmar,项目名称:tensorflow,代码行数:7,代码来源:depthtospace_op_test.py
示例4: depth_to_space
def depth_to_space(input, scale, data_format=None):
''' Uses phase shift algorithm to convert channels/depth for spatial resolution '''
data_format = 'NHWC'
data_format = data_format.lower()
out = tf.depth_to_space(input, scale, data_format=data_format)
return out
开发者ID:AlexBlack2202,项目名称:ImageAI,代码行数:7,代码来源:tensorflow_backend.py
示例5: testDepthInterleaved
def testDepthInterleaved(self):
x_np = [[[[1, 10, 2, 20, 3, 30, 4, 40]]]]
block_size = 2
with self.test_session(use_gpu=False):
x_tf = tf.depth_to_space(x_np, block_size)
self.assertAllEqual(x_tf.eval(), [[[[1, 10], [2, 20]],
[[3, 30], [4, 40]]]])
开发者ID:13331151,项目名称:tensorflow,代码行数:7,代码来源:depthtospace_op_test.py
示例6: deconv2d
def deconv2d(cur, i):
thicker = conv(
cur,
output_filters * 4, (1, 1),
padding="SAME",
activation=tf.nn.relu,
name="deconv2d" + str(i))
return tf.depth_to_space(thicker, 2)
开发者ID:TrunksLegendary,项目名称:tensor2tensor,代码行数:8,代码来源:common_layers.py
示例7: UpsampleConv
def UpsampleConv(name, input_dim, output_dim, filter_size, inputs, he_init=True, biases=True):
output = inputs
output = tf.concat([output, output, output, output], axis=1)
output = tf.transpose(output, [0,2,3,1])
output = tf.depth_to_space(output, 2)
output = tf.transpose(output, [0,3,1,2])
output = lib.ops.conv2d.Conv2D(name, input_dim, output_dim, filter_size, output, he_init=he_init, biases=biases)
return output
开发者ID:uotter,项目名称:improved_wgan_training,代码行数:8,代码来源:gan_64x64.py
示例8: testBlockSizeOne
def testBlockSizeOne(self):
x_np = [[[[1, 1, 1, 1],
[2, 2, 2, 2]],
[[3, 3, 3, 3],
[4, 4, 4, 4]]]]
block_size = 1
with self.assertRaises(ValueError):
out_tf = tf.depth_to_space(x_np, block_size)
out_tf.eval()
开发者ID:AdamPalmar,项目名称:tensorflow,代码行数:9,代码来源:depthtospace_op_test.py
示例9: testBlockSize4FlatInput
def testBlockSize4FlatInput(self):
x_np = [[[[1, 2, 5, 6, 3, 4, 7, 8, 9, 10, 13, 14, 11, 12, 15, 16]]]]
block_size = 4
with self.test_session(use_gpu=False):
x_tf = tf.depth_to_space(x_np, block_size)
self.assertAllEqual(x_tf.eval(), [[[[1], [2], [5], [6]],
[[3], [4], [7], [8]],
[[9], [10], [13], [14]],
[[11], [12], [15], [16]]]])
开发者ID:13331151,项目名称:tensorflow,代码行数:9,代码来源:depthtospace_op_test.py
示例10: depth_to_space
def depth_to_space(cls, ipt, scale, data_format=None):
""" Uses phase shift algorithm to convert channels/depth
for spatial resolution """
if data_format is None:
data_format = K.image_data_format()
data_format = data_format.lower()
ipt = cls._preprocess_conv2d_input(ipt, data_format)
out = tf.depth_to_space(ipt, scale)
out = cls._postprocess_conv2d_output(out, data_format)
return out
开发者ID:stonezuohui,项目名称:faceswap,代码行数:10,代码来源:layers.py
示例11: phase_shift
def phase_shift(x, upsampling_factor=2, data_format="NCHW", name="PhaseShift"):
if data_format == "NCHW":
x = tf.transpose(x, [0,2,3,1])
x = tf.depth_to_space(x, upsampling_factor, name=name)
if data_format == "NCHW":
x = tf.transpose(x, [0,3,1,2])
return x
开发者ID:MiG-Kharkov,项目名称:DeepLearningImplementations,代码行数:11,代码来源:layers.py
示例12: testDepthToSpaceTranspose
def testDepthToSpaceTranspose(self):
x = np.arange(20 * 5 * 8 * 7, dtype=np.float32).reshape([20, 5, 8, 7])
block_size = 2
crops = np.zeros((2, 2), dtype=np.int32)
y1 = tf.batch_to_space(x, crops, block_size=block_size)
y2 = tf.transpose(
tf.depth_to_space(
tf.transpose(x, [3, 1, 2, 0]), block_size=block_size),
[3, 1, 2, 0])
with self.test_session():
self.assertAllEqual(y1.eval(), y2.eval())
开发者ID:0ruben,项目名称:tensorflow,代码行数:11,代码来源:batchtospace_op_test.py
示例13: testBlockSizeTooLarge
def testBlockSizeTooLarge(self):
x_np = [[[[1, 2, 3, 4],
[5, 6, 7, 8]],
[[9, 10, 11, 12],
[13, 14, 15, 16]]]]
block_size = 4
# Raise an exception, since th depth is only 4 and needs to be
# divisible by 16.
with self.assertRaises(IndexError):
out_tf = tf.depth_to_space(x_np, block_size)
out_tf.eval()
开发者ID:AdamPalmar,项目名称:tensorflow,代码行数:11,代码来源:depthtospace_op_test.py
示例14: decompress_step
def decompress_step(source, hparams, first_relu, is_2d, name):
"""Decompression function."""
with tf.variable_scope(name):
shape = common_layers.shape_list(source)
multiplier = 4 if is_2d else 2
kernel = (1, 1) if is_2d else (1, 1)
thicker = common_layers.conv_block(
source, hparams.hidden_size * multiplier, [((1, 1), kernel)],
first_relu=first_relu, name="decompress_conv")
if is_2d:
return tf.depth_to_space(thicker, 2)
return tf.reshape(thicker, [shape[0], shape[1] * 2, 1, hparams.hidden_size])
开发者ID:kltony,项目名称:tensor2tensor,代码行数:12,代码来源:transformer_vae.py
示例15: testDepthInterleavedLarger
def testDepthInterleavedLarger(self):
x_np = [[[[1, 10, 2, 20, 3, 30, 4, 40],
[5, 50, 6, 60, 7, 70, 8, 80]],
[[9, 90, 10, 100, 11, 110, 12, 120],
[13, 130, 14, 140, 15, 150, 16, 160]]]]
block_size = 2
with self.test_session(use_gpu=False):
x_tf = tf.depth_to_space(x_np, block_size)
self.assertAllEqual(x_tf.eval(),
[[[[1, 10], [2, 20], [5, 50], [6, 60]],
[[3, 30], [4, 40], [7, 70], [8, 80]],
[[9, 90], [10, 100], [13, 130], [14, 140]],
[[11, 110], [12, 120], [15, 150], [16, 160]]]])
开发者ID:13331151,项目名称:tensorflow,代码行数:13,代码来源:depthtospace_op_test.py
示例16: testNonSquare
def testNonSquare(self):
x_np = [[[[1, 10, 2, 20, 3, 30, 4, 40]],
[[5, 50, 6, 60, 7, 70, 8, 80]],
[[9, 90, 10, 100, 11, 110, 12, 120]]]]
block_size = 2
with self.test_session(use_gpu=False):
x_tf = tf.depth_to_space(x_np, block_size)
self.assertAllEqual(x_tf.eval(), [[[[1, 10], [2, 20]],
[[3, 30], [4, 40]],
[[5, 50], [6, 60]],
[[7, 70], [8, 80]],
[[9, 90], [10, 100]],
[[11, 110], [12, 120]]]])
开发者ID:13331151,项目名称:tensorflow,代码行数:13,代码来源:depthtospace_op_test.py
示例17: _PS
def _PS(X, r, n_out_channels):
if n_out_channels >= 1:
assert int(X.get_shape()[-1]) == (r**2) * n_out_channels, _err_log
# bsize, a, b, c = X.get_shape().as_list()
# bsize = tf.shape(X)[0] # Handling Dimension(None) type for undefined batch dim
# Xs=tf.split(X,r,3) #b*h*w*r*r
# Xr=tf.concat(Xs,2) #b*h*(r*w)*r
# X=tf.reshape(Xr,(bsize,r*a,r*b,n_out_channel)) # b*(r*h)*(r*w)*c
X = tf.depth_to_space(X, r)
else:
logging.info(_err_log)
return X
开发者ID:dccforever,项目名称:tensorlayer,代码行数:14,代码来源:super_resolution.py
示例18: _checkGrad
def _checkGrad(self, x, block_size):
assert 4 == x.ndim
with self.test_session():
tf_x = tf.convert_to_tensor(x)
tf_y = tf.depth_to_space(tf_x, block_size)
epsilon = 1e-2
((x_jacob_t, x_jacob_n)) = tf.test.compute_gradient(
tf_x,
x.shape,
tf_y,
tf_y.get_shape().as_list(),
x_init_value=x,
delta=epsilon)
self.assertAllClose(x_jacob_t, x_jacob_n, rtol=1e-2, atol=epsilon)
开发者ID:AdamPalmar,项目名称:tensorflow,代码行数:15,代码来源:depthtospace_op_test.py
示例19: layer_conv_dts
def layer_conv_dts(self, net, args, options):
options = hc.Config(options)
config = self.config
ops = self.ops
self.ops.activation_name = options.activation_name
activation_s = options.activation or self.ops.config_option("activation")
activation = self.ops.lookup(activation_s)
stride = options.stride or self.ops.config_option("stride", [1,1])[0]
stride = int(stride)
fltr = options.filter or self.ops.config_option("filter", [3,3])
if type(fltr) == type(""):
fltr=[int(fltr), int(fltr)]
depth = int(args[0])
initializer = None # default to global
trainable = True
if options.trainable == 'false':
trainable = False
bias = True
if options.bias == 'false':
bias=False
net = ops.conv2d(net, fltr[0], fltr[1], stride, stride, depth*4, initializer=initializer, trainable=trainable, bias=bias)
s = ops.shape(net)
net = tf.depth_to_space(net, 2)
if activation:
#net = self.layer_regularizer(net)
net = activation(net)
avg_pool = options.avg_pool or self.ops.config_option("avg_pool")
if type(avg_pool) == type(""):
avg_pool = [int(avg_pool), int(avg_pool)]
if avg_pool:
ksize = [1,avg_pool[0], avg_pool[1],1]
stride = ksize
net = tf.nn.avg_pool(net, ksize=ksize, strides=stride, padding='SAME')
return net
开发者ID:255BITS,项目名称:hyperchamber-gan,代码行数:40,代码来源:configurable_component.py
示例20: network
def network(input): # Unet
conv1 = slim.conv2d(input, 32, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv1_1')
conv1 = slim.conv2d(conv1, 32, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv1_2')
pool1 = slim.max_pool2d(conv1, [2, 2], padding='SAME')
conv2 = slim.conv2d(pool1, 64, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv2_1')
conv2 = slim.conv2d(conv2, 64, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv2_2')
pool2 = slim.max_pool2d(conv2, [2, 2], padding='SAME')
conv3 = slim.conv2d(pool2, 128, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv3_1')
conv3 = slim.conv2d(conv3, 128, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv3_2')
pool3 = slim.max_pool2d(conv3, [2, 2], padding='SAME')
conv4 = slim.conv2d(pool3, 256, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv4_1')
conv4 = slim.conv2d(conv4, 256, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv4_2')
pool4 = slim.max_pool2d(conv4, [2, 2], padding='SAME')
conv5 = slim.conv2d(pool4, 512, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv5_1')
conv5 = slim.conv2d(conv5, 512, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv5_2')
up6 = upsample_and_concat(conv5, conv4, 256, 512)
conv6 = slim.conv2d(up6, 256, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv6_1')
conv6 = slim.conv2d(conv6, 256, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv6_2')
up7 = upsample_and_concat(conv6, conv3, 128, 256)
conv7 = slim.conv2d(up7, 128, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv7_1')
conv7 = slim.conv2d(conv7, 128, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv7_2')
up8 = upsample_and_concat(conv7, conv2, 64, 128)
conv8 = slim.conv2d(up8, 64, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv8_1')
conv8 = slim.conv2d(conv8, 64, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv8_2')
up9 = upsample_and_concat(conv8, conv1, 32, 64)
conv9 = slim.conv2d(up9, 32, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv9_1')
conv9 = slim.conv2d(conv9, 32, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv9_2')
conv10 = slim.conv2d(conv9, 27, [1, 1], rate=1, activation_fn=None, scope='g_conv10')
out = tf.depth_to_space(conv10, 3)
return out
开发者ID:HACKERSHUBH,项目名称:Learning-to-See-in-the-Dark,代码行数:39,代码来源:train_Fuji.py
注:本文中的tensorflow.depth_to_space函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论