本文整理汇总了Python中tensorflow.decode_csv函数的典型用法代码示例。如果您正苦于以下问题:Python decode_csv函数的具体用法?Python decode_csv怎么用?Python decode_csv使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了decode_csv函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: read_csv_examples
def read_csv_examples(image_dir, label_dir, batch_size=100, num_epochs=None, task_index=None, num_workers=None):
print_log(worker_num, "num_epochs: {0}".format(num_epochs))
# Setup queue of csv image filenames
tf_record_pattern = os.path.join(image_dir, 'part-*')
images = tf.gfile.Glob(tf_record_pattern)
print_log(worker_num, "images: {0}".format(images))
image_queue = tf.train.string_input_producer(images, shuffle=False, capacity=1000, num_epochs=num_epochs, name="image_queue")
# Setup queue of csv label filenames
tf_record_pattern = os.path.join(label_dir, 'part-*')
labels = tf.gfile.Glob(tf_record_pattern)
print_log(worker_num, "labels: {0}".format(labels))
label_queue = tf.train.string_input_producer(labels, shuffle=False, capacity=1000, num_epochs=num_epochs, name="label_queue")
# Setup reader for image queue
img_reader = tf.TextLineReader(name="img_reader")
_, img_csv = img_reader.read(image_queue)
image_defaults = [ [1.0] for col in range(784) ]
img = tf.pack(tf.decode_csv(img_csv, image_defaults))
# Normalize values to [0,1]
norm = tf.constant(255, dtype=tf.float32, shape=(784,))
image = tf.div(img, norm)
print_log(worker_num, "image: {0}".format(image))
# Setup reader for label queue
label_reader = tf.TextLineReader(name="label_reader")
_, label_csv = label_reader.read(label_queue)
label_defaults = [ [1.0] for col in range(10) ]
label = tf.pack(tf.decode_csv(label_csv, label_defaults))
print_log(worker_num, "label: {0}".format(label))
# Return a batch of examples
return tf.train.batch([image,label], batch_size, num_threads=args.readers, name="batch_csv")
开发者ID:Aravindreddy986,项目名称:TensorFlowOnSpark,代码行数:33,代码来源:mnist_dist.py
示例2: read_fer2013
def read_fer2013(eval_data):
"""
Read and parse the examples from the FER2013 data file
Args:
eval_data: boolean indicating whether we are using training or evaluation data
Returns:
A single example contained in an object with fields:
height: number of rows
width: number of columns
depth: number of colour channels
key: filename and record number for the example
label: an int32 Tensor with the label in the range 0..6
image: a [height, width, depth] int32 Tensor with the image data
"""
class FER2013Record(object):
pass
result = FER2013Record()
# Dataset dimensions
result.height = 48
result.width = 48
result.depth = 1
# Set up the reader
filename = tf.train.string_input_producer(["FER2013 data/fer2013/fer2013.csv"])
# read from the data file
# training data starts on line 2 (single header line)
# test data starts after the training data
skip_lines = 1
if eval_data:
skip_lines = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
reader = tf.TextLineReader(skip_header_lines=skip_lines)
# Read a line corresponding to an example
result.key, value = reader.read(filename)
# Decode the line according to its formatting
def1 = [[0],["Empty"],["Empty"]]
result.label, image, result.testOrTrain = tf.decode_csv(value, def1)
# The middle column corresponds to the image data of 48x48 = 2304
# The data is space separated hence field_delim=' '
def2 = [[0]]*(result.height*result.width)
image = tf.decode_csv(image, def2, field_delim=' ')
image = tf.reshape(image, [result.height, result.width, -1])
result.image = tf.cast(image, tf.uint8)
return result
开发者ID:sjagter,项目名称:Python,代码行数:52,代码来源:FER2013_input.py
示例3: parse_csv
def parse_csv(csv_row, is_serving=False):
"""Takes the string input tensor (csv) and returns a dict of rank-2 tensors.
Takes a rank-1 tensor and converts it into rank-2 tensor, with respect to
its data type (inferred from the metadata).
Args:
csv_row: rank-2 tensor of type string (csv).
is_serving: boolean to indicate whether this function is called during
serving or training, since the csv_row serving input is different than
the training input (i.e., no target column).
Returns:
rank-2 tensor of the correct data type.
"""
if is_serving:
column_names = metadata.SERVING_COLUMN_NAMES
defaults = []
# create the defaults for the serving columns.
for serving_feature in metadata.SERVING_COLUMN_NAMES:
feature_index = metadata.COLUMN_NAMES.index(serving_feature)
defaults.append(metadata.DEFAULTS[feature_index])
else:
column_names = metadata.COLUMN_NAMES
defaults = metadata.DEFAULTS
columns = tf.decode_csv(csv_row, record_defaults=defaults)
features = dict(zip(column_names, columns))
return features
开发者ID:zhang01GA,项目名称:cloudml-samples,代码行数:29,代码来源:inputs.py
示例4: _decode
def _decode(example_batch):
"""Decode a batch of CSV lines into a feature map."""
if FLAGS.is_predicting:
record_defaults = [[0.0], [""], [0.0], [""], [0.0], [""], [""], [""],
[""], [""], [0.0], [0.0], [0.0], [""]]
else:
record_defaults = [[0.0], [""], [0.0], [""], [0.0], [""], [""], [""],
[""], [""], [0.0], [0.0], [0.0], [""], [""]]
fields = tf.decode_csv(example_batch, record_defaults, field_delim=',')
if FLAGS.is_predicting:
data = {LABEL: tf.constant("")}
else:
data = {LABEL: fields[14]}
data["age"] = fields[0]
data["workclass"] = fields[1]
data["fnlwgt"] = fields[2]
data["education"] = fields[3]
data["education-num"] = fields[4]
data["marital-status"] = fields[5]
data["occupation"] = fields[6]
data["relationship"] = fields[7]
data["race"] = fields[8]
data["sex"] = fields[9]
data["capital-gain"] = fields[10]
data["capital-loss"] = fields[11]
data["hours-per-week"] = fields[12]
data["native-country"] = fields[13]
return data
开发者ID:ckml,项目名称:tf_learn,代码行数:32,代码来源:inputs.py
示例5: _decode_csv
def _decode_csv(line):
"""Takes the string input tensor and parses it to feature dict and target.
All the columns except the first one are treated as feature column. The
first column is expected to be the target.
Only returns target for if with_target is True.
Args:
line: csv rows in tensor format.
Returns:
features: A dictionary of features with key as "column_names" from
self._column_header.
target: tensor of target values which is the first column of the file.
This will only be returned if with_target==True.
"""
column_header = column_names if with_target else column_names[:4]
record_defaults = [[0.] for _ in xrange(len(column_names) - 1)]
# Pass label as integer.
if with_target:
record_defaults.append([0])
columns = tf.decode_csv(line, record_defaults=record_defaults)
features = dict(zip(column_header, columns))
target = features.pop(column_names[4]) if with_target else None
return features, target
开发者ID:zhang01GA,项目名称:cloudml-samples,代码行数:25,代码来源:model.py
示例6: parse_csv
def parse_csv(value):
tf.logging.info('Parsing {}'.format(data_file))
columns = tf.decode_csv(value, record_defaults=_CSV_COLUMN_DEFAULTS)
features = dict(zip(_CSV_COLUMNS, columns))
labels = features.pop('income_bracket')
classes = tf.equal(labels, '>50K') # binary classification
return features, classes
开发者ID:812864539,项目名称:models,代码行数:7,代码来源:census_dataset.py
示例7: test_inputs
def test_inputs(self, csv, batch_size):
print("input csv file path: %s, batch size: %d" % (csv, batch_size))
filename_queue = tf.train.string_input_producer([csv], shuffle=False)
reader = tf.TextLineReader()
_, serialized_example = reader.read(filename_queue)
filename, label = tf.decode_csv(serialized_example, [["path"], [0]])
label = tf.cast(label, tf.int32)
jpg = tf.read_file(filename)
image = tf.image.decode_jpeg(jpg, channels=3)
image = tf.cast(image, tf.float32)
print "original image shape:"
print image.get_shape()
# resize to distort
dist = tf.image.resize_images(image, FLAGS.scale_h, FLAGS.scale_w)
# random crop
dist = tf.image.resize_image_with_crop_or_pad(dist, FLAGS.input_h, FLAGS.input_w)
min_fraction_of_examples_in_queue = 0.4
min_queue_examples = int(FLAGS.num_examples_per_epoch_for_train * min_fraction_of_examples_in_queue)
print (
'filling queue with %d train images before starting to train. This will take a few minutes.' % min_queue_examples)
return self._generate_image_and_label_batch(dist, label, min_queue_examples, batch_size, shuffle=False)
开发者ID:qiuzhangcheng,项目名称:InceptionV3_TensorFlow,代码行数:25,代码来源:datasets.py
示例8: read
def read(filename_queue):
class Record(object):
pass
result = Record()
reader = tf.TextLineReader()
result.key, line = reader.read(filename_queue)
#sess = tf.Session()
#print(line[0].eval(session=sess), line[1].eval(session=sess))
#sess.close()
#print(line.get_shape())
record_defaults = [[0] for _ in xrange(2305)]
columns = tf.decode_csv(line, record_defaults=record_defaults)
#print("PRINT: " , len(columns))
x = tf.pack(columns[1:])
cls = columns[0]
result.height = 48
result.width = 48
result.label = tf.cast(cls, tf.int32)
depth_major = tf.reshape(x, [result.height, result.width, 1])
three_chann = tf.concat(2, [depth_major, depth_major, depth_major])
print(three_chann.get_shape())
result.image = three_chann
return result
开发者ID:vye16,项目名称:6867-project,代码行数:26,代码来源:input.py
示例9: _input_fn
def _input_fn():
num_epochs = 100 if mode == tf.contrib.learn.ModeKeys.TRAIN else 1
# could be a path to one file or a file pattern.
input_file_names = tf.train.match_filenames_once(filename)
filename_queue = tf.train.string_input_producer(
input_file_names, num_epochs=num_epochs, shuffle=True)
reader = tf.TextLineReader()
_, value = reader.read_up_to(filename_queue, num_records=BATCH_SIZE)
value_column = tf.expand_dims(value, -1)
print 'readcsv={}'.format(value_column)
# all_data is a list of tensors
all_data = tf.decode_csv(value_column, record_defaults=DEFAULTS)
inputs = all_data[:len(all_data)-N_OUTPUTS] # first few values
label = all_data[len(all_data)-N_OUTPUTS : ] # last few values
# from list of tensors to tensor with one more dimension
inputs = tf.concat(inputs, axis=1)
label = tf.concat(label, axis=1)
print 'inputs={}'.format(inputs)
return {TIMESERIES_COL: inputs}, label # dict of features, label
开发者ID:GoogleCloudPlatform,项目名称:training-data-analyst,代码行数:25,代码来源:model.py
示例10: multi_reader_multi_example
def multi_reader_multi_example():
# create a FIFO queue
filenames = ['a.csv', 'b.csv', 'c.csv']
filename_queue = tf.train.string_input_producer(filenames, shuffle=False)
# create reader
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
record_defaults = [['null'], ['null']]
example_list = [tf.decode_csv(value, record_defaults=record_defaults) for _ in range(2)]
example_batch, label_batch = tf.train.batch_join(example_list, batch_size=5)
# run graph
with tf.Session() as sess:
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
try:
while not coord.should_stop():
print(example_batch.eval())
except tf.errors.OutOfRangeError:
print('epoches completed!')
finally:
coord.request_stop()
coord.join(threads)
开发者ID:Zumbalamambo,项目名称:deepcv,代码行数:28,代码来源:readfile.py
示例11: read_image_unlabeled
def read_image_unlabeled(filename_queue, raw_img):
class StatefarmRecord(object):
pass
result = StatefarmRecord()
# Read a record, getting filenames from the filename_queue.
result.key, _ = tf.decode_csv(filename_queue.dequeue(), [[""], [""]], " ")
# Extract raw JPG data as a string
# raw_contents = tf.read_file(result.key)
# raw_contents = raw_img
# Decode raw data as a PNG. Defaults to uint8 encoding.
# result.uint8image = tf.image.decode_png(raw_contents)
result.uint8image = raw_img.astype('uint8')
# TENSORFLOW BUG: image shape not statically determined, so force
# it to have correct CIFAR100 dimensions
# result.uint8image.set_shape((32, 32, 3))
# Kind of hacky, but set a label so we can use the same structure
# THIS SHOULD ALWAYS BE IGNORED DURING COMPUTATION, since we are
# dealing with unlabaled data
result.label = tf.cast(tf.string_to_number("0"), tf.int32)
return result
开发者ID:gleichnitz,项目名称:duplicate_image_detection,代码行数:26,代码来源:dup_input.py
示例12: raw_training_input_fn
def raw_training_input_fn():
"""Training input function that reads raw data and applies transforms."""
if isinstance(raw_data_file_pattern, six.string_types):
filepath_list = [raw_data_file_pattern]
else:
filepath_list = raw_data_file_pattern
files = []
for path in filepath_list:
files.extend(file_io.get_matching_files(path))
filename_queue = tf.train.string_input_producer(
files, num_epochs=num_epochs, shuffle=randomize_input)
csv_id, csv_lines = tf.TextLineReader().read_up_to(filename_queue, training_batch_size)
queue_capacity = (reader_num_threads + 3) * training_batch_size + min_after_dequeue
if randomize_input:
_, batch_csv_lines = tf.train.shuffle_batch(
tensors=[csv_id, csv_lines],
batch_size=training_batch_size,
capacity=queue_capacity,
min_after_dequeue=min_after_dequeue,
enqueue_many=True,
num_threads=reader_num_threads,
allow_smaller_final_batch=allow_smaller_final_batch)
else:
_, batch_csv_lines = tf.train.batch(
tensors=[csv_id, csv_lines],
batch_size=training_batch_size,
capacity=queue_capacity,
enqueue_many=True,
num_threads=reader_num_threads,
allow_smaller_final_batch=allow_smaller_final_batch)
csv_header, record_defaults = csv_header_and_defaults(features, schema, stats, keep_target=True)
parsed_tensors = tf.decode_csv(batch_csv_lines, record_defaults, name='csv_to_tensors')
raw_features = dict(zip(csv_header, parsed_tensors))
transform_fn = make_preprocessing_fn(analysis_output_dir, features, keep_target=True)
transformed_tensors = transform_fn(raw_features)
# Expand the dims of non-sparse tensors. This is needed by tf.learn.
transformed_features = {}
for k, v in six.iteritems(transformed_tensors):
if isinstance(v, tf.Tensor) and v.get_shape().ndims == 1:
transformed_features[k] = tf.expand_dims(v, -1)
else:
transformed_features[k] = v
# Remove the target tensor, and return it directly
target_name = get_target_name(features)
if not target_name or target_name not in transformed_features:
raise ValueError('Cannot find target transform in features')
transformed_target = transformed_features.pop(target_name)
return transformed_features, transformed_target
开发者ID:parthea,项目名称:pydatalab,代码行数:60,代码来源:feature_transforms.py
示例13: parse_example_tensor
def parse_example_tensor(examples, train_config, keep_target):
"""Read the csv files.
Args:
examples: string tensor
train_config: training config
keep_target: if true, the target column is expected to exist and it is
returned in the features dict.
Returns:
Dict of feature_name to tensor. Target feature is in the dict.
"""
csv_header = []
if keep_target:
csv_header = train_config['csv_header']
else:
csv_header = [name for name in train_config['csv_header']
if name != train_config['target_column']]
# record_defaults are used by tf.decode_csv to insert defaults, and to infer
# the datatype.
record_defaults = [[train_config['csv_defaults'][name]]
for name in csv_header]
tensors = tf.decode_csv(examples, record_defaults, name='csv_to_tensors')
# I'm not really sure why expand_dims needs to be called. If using regression
# models, it errors without it.
tensors = [tf.expand_dims(x, axis=1) for x in tensors]
tensor_dict = dict(zip(csv_header, tensors))
return tensor_dict
开发者ID:googledatalab,项目名称:pydatalab,代码行数:32,代码来源:util.py
示例14: decode_csv
def decode_csv(line):
parsed_line = tf.decode_csv(line, [[0.], [0.], [0.], [0.], [0]])
label = parsed_line[-1:] # Last element is the label
del parsed_line[-1] # Delete last element
features = parsed_line # Everything but last elements are the features
d = dict(zip(feature_names, features)), label
return d
开发者ID:danabo,项目名称:models,代码行数:7,代码来源:blog_estimators_dataset.py
示例15: filequeue_to_batch_data
def filequeue_to_batch_data(filename_queue, line_reader, batch_size = BATCH_SIZE):
# The text file format should be Query Image, Trieve Image, Query label,
# Trieve Label, Triplet loss Label( 0/1 )
key, next_line = line_reader.read(filename_queue)
query_image_name, retrieve_image_name, label_1, label_2, label_3 = tf.decode_csv(
next_line, [tf.constant([], dtype=tf.string),tf.constant([], dtype=tf.string),
tf.constant([], dtype = tf.int32), tf.constant([], dtype = tf.int32), tf.constant([], dtype = tf.int32)], field_delim=" ")
# batch_query_image, batch_label = tf.train.batch(
# [query_image_name, label], batch_size=batch_size)
reverse_channel = True # for pre-trained purpose
query_tensor = image_io.read_image(query_image_name, reverse_channel,
FEATURE_ROW, FEATURE_COL)
retrieve_tensor = image_io.read_image(retrieve_image_name, reverse_channel,
FEATURE_ROW, FEATURE_COL)
if SHUFFLE_DATA:
min_after_dequeue = 100
capacity = min_after_dequeue + 3 * batch_size
batch_query_tensor, batch_retrieve_tensor, batch_label_1, batch_label_2, batch_label_3 = tf.train.shuffle_batch(
[query_tensor, retrieve_tensor, label_1, label_2, label_3], batch_size = batch_size, capacity=capacity,
min_after_dequeue=min_after_dequeue)
else:
batch_query_tensor,batch_retrieve_tensor, batch_label_1, batch_label_2, batch_label_3 = tf.train.batch(
[query_tensor, retrieve_tensor, label_1, label_2, label_3], batch_size=batch_size)
batch_tensor = tf.concat(0, [batch_query_tensor, batch_retrieve_tensor])
batch_label = tf.concat(0, [batch_label_1, batch_label_2])
return batch_tensor, batch_label, batch_label_3
开发者ID:polltooh,项目名称:FineGrainedAction,代码行数:32,代码来源:fine_tune_nn_v3.py
示例16: parse_csv
def parse_csv(line):
print("Parsing", data_file)
# tf.decode_csv会把csv文件转换成很a list of Tensor,一列一个。record_defaults用于指明每一列的缺失值用什么填充
columns = tf.decode_csv(line, record_defaults=_CSV_COLUMN_DEFAULTS)
features = dict(zip(_CSV_COLUMNS, columns))
labels = features.pop('income_bracket')
return features, tf.equal(labels, '>50K') # tf.equal(x, y) 返回一个bool类型Tensor, 表示x == y, element-wise
开发者ID:chenxingqiang,项目名称:ML_CIA,代码行数:7,代码来源:wide_component.py
示例17: filequeue_to_batch_data
def filequeue_to_batch_data(filename_queue, line_reader, batch_size = BATCH_SIZE):
key, next_line = line_reader.read(filename_queue)
query_image_name, label = tf.decode_csv(
next_line, [tf.constant([], dtype=tf.string),
tf.constant([], dtype = tf.int32)], field_delim=" ")
# batch_query_image, batch_label = tf.train.batch(
# [query_image_name, label], batch_size=batch_size)
reverse_channel = True # for pre-trained purpose
query_tensor = image_io.read_image(query_image_name, reverse_channel,
FEATURE_ROW, FEATURE_COL)
if SHUFFLE_DATA:
min_after_dequeue = 100
capacity = min_after_dequeue + 3 * batch_size
batch_query_image, batch_label = tf.train.shuffle_batch(
[query_tensor, label], batch_size = batch_size, capacity=capacity,
min_after_dequeue=min_after_dequeue)
else:
batch_query_image, batch_label = tf.train.batch(
[query_tensor, label], batch_size=batch_size)
return batch_query_image, batch_label
开发者ID:polltooh,项目名称:FineGrainedAction,代码行数:26,代码来源:fine_tune_nn.py
示例18: record_to_labeled_log_mel_examples
def record_to_labeled_log_mel_examples(csv_record, clip_dir=None, hparams=None,
label_class_index_table=None, num_classes=None):
"""Creates a batch of log mel spectrum examples from a training record.
Args:
csv_record: a line from the train.csv file downloaded from Kaggle.
clip_dir: path to a directory containing clips referenced by csv_record.
hparams: tf.contrib.training.HParams object containing model hyperparameters.
label_class_index_table: a lookup table that represents the class map.
num_classes: number of classes in the class map.
Returns:
features: Tensor containing a batch of log mel spectrum examples.
labels: Tensor containing corresponding labels in 1-hot format.
"""
[clip, label, _] = tf.decode_csv(csv_record, record_defaults=[[''],[''],[0]])
features = clip_to_log_mel_examples(clip, clip_dir=clip_dir, hparams=hparams)
class_index = label_class_index_table.lookup(label)
label_onehot = tf.one_hot(class_index, num_classes)
num_examples = tf.shape(features)[0]
labels = tf.tile([label_onehot], [num_examples, 1])
return features, labels
开发者ID:ssgalitsky,项目名称:Research-Audio-classification-using-Audioset-Freesound-Databases,代码行数:25,代码来源:inputs.py
示例19: read_pascifar
def read_pascifar(pascifar_path, queue):
""" Reads and parses files from the queue.
Args:
pascifar_path: a constant string tensor representing the path of the PASCIFAR dataset
queue: A queue of strings in the format: file, label
Returns:
image_path: a tf.string tensor. The absolute path of the image in the dataset
label: a int64 tensor with the label
"""
# Reader for text lines
reader = tf.TextLineReader(skip_header_lines=1)
# read a record from the queue
_, row = reader.read(queue)
# file,width,height,label
record_defaults = [[""], [0]]
image_path, label = tf.decode_csv(row, record_defaults, field_delim=",")
image_path = pascifar_path + tf.constant("/") + image_path
label = tf.cast(label, tf.int64)
return image_path, label
开发者ID:galeone,项目名称:pgnet,代码行数:25,代码来源:pascifar.py
示例20: read_tensors_from_csv
def read_tensors_from_csv(file_name, defaults=None, num_columns=None, batch_size=1, num_epochs=None,
delimiter=',', randomize_input=True, num_threads=4):
if file_name is None:
raise ValueError(
"Invalid file_name. file_name cannot be empty.")
if defaults is None and num_columns is None:
raise ValueError(
"At least one of defaults and num_columns should not be None.")
if defaults is None:
defaults = [0.0 for _ in range(num_columns)]
record_defaults = [[item] for item in defaults]
examples = tf.contrib.learn.read_batch_examples(
file_pattern=file_name,
batch_size=batch_size,
reader=tf.TextLineReader,
randomize_input=randomize_input,
num_threads=num_threads,
num_epochs=num_epochs)
columns = tf.decode_csv(
examples, record_defaults=record_defaults, field_delim=delimiter)
return columns
开发者ID:ckml,项目名称:tf_learn,代码行数:27,代码来源:util.py
注:本文中的tensorflow.decode_csv函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论