本文整理汇总了Python中tensorflow.convert_to_tensor函数的典型用法代码示例。如果您正苦于以下问题:Python convert_to_tensor函数的具体用法?Python convert_to_tensor怎么用?Python convert_to_tensor使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了convert_to_tensor函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: forward_prop_nodes
def forward_prop_nodes(i_start, size, acts, offset):
# Note: In the corpus that we've seen, parse trees are always ordered such that
# iteration forward through the list will be in bottom-up order.
# Conversely, iteration in reverse is always top-down.
# This enables a simple iterative algorithm. If this were not the case,
# putting the nodes in order by a postorder traversal would fix it.
def fwd_continue(*parms):
(_, sz, cur, _) = parms
return tf.less(cur, sz, name='cur_le_size')
def forward_prop(*parms):
(i0, sz, cur, act) = parms
with tf.device('/gpu:0'):
gact = act
gcur = cur
next_idx = i0 + gcur
node_out = tf.reshape(forward_node(next_idx, act, offset), [1, FLAGS.wvs, 1], name='node_out')
tf.scatter_add(gact, tf.pack([gcur]), node_out, name='act_update')
act = gact
return [i0, sz, cur + iONE, act]
with tf.device('/cpu:0'):
i_start = tf.convert_to_tensor(i_start, dtype=tf.int32, name='i_start')
size = tf.convert_to_tensor(size, dtype=tf.int32, name='size')
iZ = tf.convert_to_tensor(0, dtype=tf.int32, name='ZERO')
while_parms = [i_start, size, iZ, acts]
wresult = tf.while_loop(fwd_continue, forward_prop, while_parms, parallel_iterations=1,
name='forward_prop_while')
(_, _, _, result) = wresult
return tf.slice(result, [0, 0, 0], tf.pack([size, -1, -1]), name='fwd_prop_nodes')
开发者ID:rgobbel,项目名称:rntn,代码行数:31,代码来源:tf_rntn.py
示例2: testLSTMBasicToBlockPeeping
def testLSTMBasicToBlockPeeping(self):
with self.test_session(use_gpu=self._use_gpu) as sess:
batch_size = 2
input_size = 3
cell_size = 4
sequence_length = 5
inputs = []
for _ in range(sequence_length):
inp = tf.convert_to_tensor(
np.random.randn(batch_size, input_size),
dtype=tf.float32)
inputs.append(inp)
initializer = tf.random_uniform_initializer(-0.01, 0.01, seed=19890212)
with tf.variable_scope("basic", initializer=initializer):
cell = tf.nn.rnn_cell.LSTMCell(cell_size,
use_peepholes=True,
state_is_tuple=True)
outputs, _ = tf.nn.rnn(cell, inputs, dtype=tf.float32)
sess.run([tf.initialize_all_variables()])
basic_outputs = sess.run(outputs)
basic_grads = sess.run(tf.gradients(outputs, inputs))
basic_wgrads = sess.run(tf.gradients(outputs, tf.trainable_variables()))
with tf.variable_scope("block", initializer=initializer):
w = tf.get_variable("w",
shape=[input_size + cell_size, cell_size * 4],
dtype=tf.float32)
b = tf.get_variable("b",
shape=[cell_size * 4],
dtype=tf.float32,
initializer=tf.zeros_initializer)
wci = tf.get_variable("wci", shape=[cell_size], dtype=tf.float32)
wcf = tf.get_variable("wcf", shape=[cell_size], dtype=tf.float32)
wco = tf.get_variable("wco", shape=[cell_size], dtype=tf.float32)
_, _, _, _, _, _, outputs = fused_lstm(
tf.convert_to_tensor(sequence_length,
dtype=tf.int64),
inputs,
w,
b,
wci=wci,
wcf=wcf,
wco=wco,
cell_clip=0,
use_peephole=True)
sess.run([tf.initialize_all_variables()])
block_outputs = sess.run(outputs)
block_grads = sess.run(tf.gradients(outputs, inputs))
block_wgrads = sess.run(tf.gradients(outputs, [w, b, wci, wcf, wco]))
self.assertAllClose(basic_outputs, block_outputs)
self.assertAllClose(basic_grads, block_grads)
for basic, block in zip(basic_wgrads, block_wgrads):
self.assertAllClose(basic, block, rtol=1e-2, atol=1e-2)
开发者ID:10imaging,项目名称:tensorflow,代码行数:60,代码来源:lstm_ops_test.py
示例3: one_minus_pseudo_unitcell_transfer_op
def one_minus_pseudo_unitcell_transfer_op(direction, mps, left_dominant,
right_dominant, vector):
"""
calculates action of 11-Transfer-Operator +|r)(l|
Parameters:
---------------------------
direction: int or str
if (1,'l','left'): do left multiplication
if (-1,'r','right'): do right multiplication
mps: InfiniteMPSCentralGauge object
an infinite mps
left_dominant: tf.tensor of shape (mps.D[0],mps.D[0])
left dominant eigenvector of the unit-cell transfer operator of mps
right_dominant: tf.tensor of shape (mps.D[-1],mps.D[-1])
right dominant eigenvector of the unit-cell transfer operator of mps
vector: tf.tensor of shape (mps.D[0]*mps.D[0]) or (mps.D[-1]*mps.D[-1])
the input vector
Returns
---------------------------
np.ndarray of shape (mps.D[0]*mps.D[0]) or (mps.D[-1]*mps.D[-1])
"""
if direction in (1, 'l', 'left'):
x = tf.reshape(tf.convert_to_tensor(vector), (mps.D[0], mps.D[0]))
temp = x - mps.unitcell_transfer_op('left', x) + ncon(
[x, right_dominant], [[1, 2], [1, 2]]) * left_dominant
return tf.reshape(temp, [mps.D[-1] * mps.D[-1]]).numpy()
if direction in (-1, 'r', 'right'):
x = tf.reshape(tf.convert_to_tensor(vector), [mps.D[-1], mps.D[-1]])
temp = x - mps.unitcell_transfer_op('right', x) + ncon(
[left_dominant, x], [[1, 2], [1, 2]]) * right_dominant
return tf.reshape(temp, [mps.D[0] * mps.D[0]]).numpy()
开发者ID:zoltanegyed,项目名称:TensorNetwork,代码行数:34,代码来源:misc_mps.py
示例4: testOneOpCond
def testOneOpCond(self):
with self.test_session():
v = tf.Variable(0)
c = tf.convert_to_tensor(0)
one = tf.convert_to_tensor(1)
two = tf.convert_to_tensor(2)
p = tf.greater_equal(c, 1)
def a():
return tf.assign(v, one)
def b():
return tf.assign(v, two)
i = tf.cond(p, a, b)
self.assertTrue(isinstance(i, tf.Tensor))
tf.initialize_all_variables().run()
self.assertEqual(0, v.eval())
# True case: c = 2 is >= 1, v is set to 1.
self.assertEqual(1, i.eval(feed_dict={c.name: 2}))
self.assertEqual(1, v.eval())
# False case: c = 0 is not >= 1, v is set to 2.
self.assertEqual(2, i.eval(feed_dict={c.name: 0}))
self.assertEqual(2, v.eval())
开发者ID:hypatiad,项目名称:tensorflow,代码行数:27,代码来源:control_flow_ops_py_test.py
示例5: _prepare_args_with_initial_simplex
def _prepare_args_with_initial_simplex(objective_function,
initial_simplex,
objective_at_initial_simplex,
batch_evaluate_objective):
"""Evaluates the objective function at the specified initial simplex."""
initial_simplex = tf.convert_to_tensor(initial_simplex)
# If d is the dimension of the problem, the number of vertices in the
# simplex should be d+1. From this, we can infer the number of dimensions
# as n - 1 where n is the number of vertices specified.
num_vertices = tf.shape(initial_simplex)[0]
dim = num_vertices - 1
num_evaluations = 0
if objective_at_initial_simplex is None:
objective_at_initial_simplex, n_evals = _evaluate_objective_multiple(
objective_function, initial_simplex, batch_evaluate_objective)
num_evaluations += n_evals
objective_at_initial_simplex = tf.convert_to_tensor(
objective_at_initial_simplex)
return (dim,
num_vertices,
initial_simplex,
objective_at_initial_simplex,
num_evaluations)
开发者ID:lewisKit,项目名称:probability,代码行数:25,代码来源:nelder_mead.py
示例6: test_CE_loss
def test_CE_loss(sess, CE_arrays):
y, y_hat = CE_arrays
y = tf.convert_to_tensor(y, dtype=tf.float64)
y_hat = tf.convert_to_tensor(y_hat, dtype=tf.float64)
sess.run(cross_entropy_loss(y,y_hat))
assert 1
print("CE_loss ran to completion")
开发者ID:kingtaurus,项目名称:cs224d,代码行数:7,代码来源:test_softmax.py
示例7: testSumGradArgs
def testSumGradArgs(self):
with self.test_session(use_gpu=False):
indices = [tf.convert_to_tensor([0, 1, 2, 3]),
tf.convert_to_tensor([2, 3])]
values = [tf.convert_to_tensor([2, 3, 5, 7]), tf.convert_to_tensor([1, 1])]
self.assertAllEqual(
tf.dynamic_stitch(indices, values).eval(), [2, 3, 1, 1])
开发者ID:CdricGmd,项目名称:tensorflow,代码行数:7,代码来源:embedding_ops_test.py
示例8: file_to_dataset
def file_to_dataset(filepath, N, vectorizer):
#convert file to dataset, returns X and Y tensors of integer indexes describing the N words (X) leading up to (Y)
f = open(filepath)
lines = f.readlines()
X = []
Y = []
line_index = 0
for line in lines:
if line_index % 1000 == 0:
print(str(line_index) +'/' len(lines) + ' lines read...')
line_index +=1
words = line.split()
padding = (N-1)*['<pre>']
#remove /n at the end, add padding to front
words = padding + words[:-1]
for i in range(0, len(words) - N):
x = []
y = vectorizer.transform(words[i+N]).toarray()
x_words = words[i:i+N]
for word in x_words:
x.append(vectorizer.transform(word).toarray())
X.append(x)
Y.append(y)
return tf.convert_to_tensor(X), tf.convert_to_tensor(Y)
开发者ID:skaasj,项目名称:QMemNet,代码行数:26,代码来源:ptb_parser.py
示例9: _compare
def _compare(self, func, x, y, dtype):
with self.test_session(use_gpu=False):
out = func(
tf.convert_to_tensor(np.array([x]).astype(dtype)), tf.convert_to_tensor(np.array([y]).astype(dtype))
)
ret = out.eval()
return ret[0]
开发者ID:peace195,项目名称:tensorflow,代码行数:7,代码来源:cwise_ops_test.py
示例10: log_prob
def log_prob(self, xs, zs):
"""
Parameters
----------
xs : dict of str to tf.Tensor
Data dictionary. Each key is a data structure used in the
model (Theano shared variable), and its value is the
corresponding realization (tf.Tensor).
zs : dict of str to tf.Tensor
Latent variable dictionary. Each key names a latent variable
used in the model (str), and its value is the corresponding
realization (tf.Tensor).
Returns
-------
tf.Tensor
Scalar, the log joint density log p(xs, zs).
Notes
-----
It wraps around a Python function. The Python function takes
inputs of type np.ndarray and outputs a np.ndarray.
"""
# Store keys so that ``_py_log_prob_args`` knows how each
# value corresponds to a key.
self.xs_keys = list(six.iterkeys(xs))
self.zs_keys = list(six.iterkeys(zs))
# Pass in all tensors as a flattened list for tf.py_func().
inputs = [tf.convert_to_tensor(x) for x in six.itervalues(xs)]
inputs += [tf.convert_to_tensor(z) for z in six.itervalues(zs)]
return tf.py_func(self._py_log_prob_args, inputs, [tf.float32])[0]
开发者ID:taku-y,项目名称:pymc3,代码行数:33,代码来源:edward.py
示例11: __init__
def __init__(self, data_dir, data_list, input_size,
random_scale, random_mirror, ignore_label, img_mean, coord):
'''Initialise an ImageReader.
Args:
data_dir: path to the directory with images and masks.
data_list: path to the file with lines of the form '/path/to/image /path/to/mask'.
input_size: a tuple with (height, width) values, to which all the images will be resized.
random_scale: whether to randomly scale the images prior to random crop.
random_mirror: whether to randomly mirror the images prior to random crop.
ignore_label: index of label to ignore during the training.
img_mean: vector of mean colour values.
coord: TensorFlow queue coordinator.
'''
self.data_dir = data_dir
self.data_list = data_list
self.input_size = input_size
self.coord = coord
self.image_list, self.label_list = read_labeled_image_list(self.data_dir, self.data_list)
self.images = tf.convert_to_tensor(self.image_list, dtype=tf.string)
self.labels = tf.convert_to_tensor(self.label_list, dtype=tf.string)
self.queue = tf.train.slice_input_producer([self.images, self.labels],
shuffle=input_size is not None) # not shuffling if it is val
self.image, self.label = read_images_from_disk(self.queue, self.input_size, random_scale, random_mirror, ignore_label, img_mean)
开发者ID:YCYchunyan,项目名称:Deeplab-v2--ResNet-101--Tensorflow,代码行数:25,代码来源:image_reader.py
示例12: testPlaceholder
def testPlaceholder(self):
with self.test_session(use_gpu=True):
# Test using placeholder with a defined shape.
ph_0 = tf.placeholder(tf.int32, shape=[])
result_0 = tf.convert_to_tensor([[0, 0, 0],
[0, ph_0, 0],
[0, 0, 0]])
self.assertAllEqual([[0, 0, 0],
[0, 1, 0],
[0, 0, 0]],
result_0.eval(feed_dict={ph_0: 1}))
self.assertAllEqual([[0, 0, 0],
[0, 2, 0],
[0, 0, 0]],
result_0.eval(feed_dict={ph_0: 2}))
# Test using placeholder with an undefined shape.
ph_1 = tf.placeholder(tf.int32)
result_1 = tf.convert_to_tensor([[0, 0, 0],
[0, ph_1, 0],
[0, 0, 0]])
self.assertAllEqual([[0, 0, 0], [0, 1, 0], [0, 0, 0]],
result_1.eval(feed_dict={ph_1: 1}))
self.assertAllEqual([[0, 0, 0], [0, 2, 0], [0, 0, 0]],
result_1.eval(feed_dict={ph_1: 2}))
开发者ID:ComeOnGetMe,项目名称:tensorflow,代码行数:25,代码来源:pack_op_test.py
示例13: test_regression_metrics
def test_regression_metrics(self):
with self.test_session():
y_a = tf.convert_to_tensor(np.random.random((6, 7)))
y_b = tf.convert_to_tensor(np.random.random((6, 7)))
for metric in all_regression_metrics:
output = metric(y_a, y_b)
assert output.eval().shape == ()
开发者ID:TalkingData,项目名称:edward,代码行数:7,代码来源:test_metrics.py
示例14: testLoop_1
def testLoop_1(self):
with self.test_session():
zero = tf.convert_to_tensor(0)
one = tf.convert_to_tensor(1)
n = tf.constant(10)
enter_zero = control_flow_ops.enter(zero, "foo_1", False)
enter_one = control_flow_ops.enter(one, "foo_1", False)
enter_n = control_flow_ops.enter(n, "foo_1", False)
merge_zero = control_flow_ops.merge([enter_zero, enter_zero], name="merge_zero")[0]
merge_one = control_flow_ops.merge([enter_one, enter_one], name="merge_one")[0]
merge_n = control_flow_ops.merge([enter_n, enter_n], name="merge_n")[0]
less_op = tf.less(merge_n, merge_n)
cond_op = control_flow_ops.loop_cond(less_op)
switch_zero = control_flow_ops.switch(merge_zero, cond_op)
switch_one = control_flow_ops.switch(merge_one, cond_op)
switch_n = control_flow_ops.switch(merge_n, cond_op)
next_zero = control_flow_ops.next_iteration(switch_zero[1])
next_one = control_flow_ops.next_iteration(switch_one[1])
next_n = control_flow_ops.next_iteration(switch_n[1])
merge_zero.op._update_input(1, next_zero)
merge_one.op._update_input(1, next_one)
merge_n.op._update_input(1, next_n)
exit_n = control_flow_ops.exit(switch_n[0])
result = exit_n.eval()
self.assertAllEqual(10, result)
开发者ID:peace195,项目名称:tensorflow,代码行数:27,代码来源:control_flow_ops_py_test.py
示例15: batched_index
def batched_index(values, indices):
"""Equivalent to `values[:, indices]`.
Performs indexing on batches and sequence-batches by reducing over
zero-masked values. Compared to indexing with `tf.gather` this approach is
more general and TPU-friendly, but may be less efficient if `num_values`
is large. It works with tensors whose shapes are unspecified or
partially-specified, but this op will only do shape checking on shape
information available at graph construction time. When complete shape
information is absent, certain shape incompatibilities may not be detected at
runtime! See `indexing_ops_test` for detailed examples.
Args:
values: tensor of shape `[B, num_values]` or `[T, B, num_values]`
indices: tensor of shape `[B]` or `[T, B]` containing indices.
Returns:
Tensor of shape `[B]` or `[T, B]` containing values for the given indices.
Raises: ValueError if values and indices have sizes that are known
statically (i.e. during graph construction), and those sizes are not
compatible (see shape descriptions in Args list above).
"""
with tf.name_scope("batch_indexing", values=[values, indices]):
values = tf.convert_to_tensor(values)
indices = tf.convert_to_tensor(indices)
assert_compatible_shapes(values.shape, indices.shape)
one_hot_indices = tf.one_hot(
indices, tf.shape(values)[-1], dtype=values.dtype)
return tf.reduce_sum(values * one_hot_indices, axis=-1)
开发者ID:wmiao1769,项目名称:trfl,代码行数:31,代码来源:indexing_ops.py
示例16: __init__
def __init__(self,
loc=0.,
scale=1.,
validate_args=False,
name="gumbel"):
"""Instantiates the `Gumbel` bijector.
Args:
loc: Float-like `Tensor` that is the same dtype and is
broadcastable with `scale`.
This is `loc` in `Y = g(X) = exp(-exp(-(X - loc) / scale))`.
scale: Positive Float-like `Tensor` that is the same dtype and is
broadcastable with `loc`.
This is `scale` in `Y = g(X) = exp(-exp(-(X - loc) / scale))`.
validate_args: Python `bool` indicating whether arguments should be
checked for correctness.
name: Python `str` name given to ops managed by this object.
"""
self._graph_parents = []
self._name = name
self._validate_args = validate_args
with self._name_scope("init", values=[loc, scale]):
self._loc = tf.convert_to_tensor(loc, name="loc")
self._scale = tf.convert_to_tensor(scale, name="scale")
tf.assert_same_float_dtype([self._loc, self._scale])
if validate_args:
self._scale = control_flow_ops.with_dependencies([
tf.assert_positive(
self._scale, message="Argument scale was not positive")
], self._scale)
super(Gumbel, self).__init__(
validate_args=validate_args,
forward_min_event_ndims=0,
name=name)
开发者ID:lewisKit,项目名称:probability,代码行数:35,代码来源:gumbel.py
示例17: test_multivariate_normal
def test_multivariate_normal(session_tf, x, mu, cov_sqrt):
cov = np.dot(cov_sqrt, cov_sqrt.T)
L = np.linalg.cholesky(cov)
if len(x.shape) != 2 or len(mu.shape) != 2:
with pytest.raises(Exception) as e_info:
gp_result = logdensities.multivariate_normal(
tf.convert_to_tensor(x),
tf.convert_to_tensor(mu),
tf.convert_to_tensor(L))
else:
x_tf = tf.placeholder(settings.float_type)
mu_tf = tf.placeholder(settings.float_type)
gp_result = logdensities.multivariate_normal(
x_tf, mu_tf, tf.convert_to_tensor(L))
gp_result = session_tf.run(gp_result, feed_dict={x_tf: x, mu_tf: mu})
if mu.shape[1] > 1:
if x.shape[1] > 1:
sp_result = [mvn.logpdf(x[:,i], mu[:,i], cov) for i in range(mu.shape[1])]
else:
sp_result = [mvn.logpdf(x.ravel(), mu[:, i], cov) for i in range(mu.shape[1])]
else:
sp_result = mvn.logpdf(x.T, mu.ravel(), cov)
assert_allclose(gp_result, sp_result)
开发者ID:sanket-kamthe,项目名称:GPflow,代码行数:26,代码来源:test_logdensities.py
示例18: check_split_latent_conditioning
def check_split_latent_conditioning(self, merge_std):
with tf.Graph().as_default():
rng = np.random.RandomState(0)
x_rand = rng.randn(12, 32, 32, 32).astype(np.float32)
latent_rand = rng.randn(12, 32, 32, 16).astype(np.float32)
x_t = tf.convert_to_tensor(x_rand)
latent_t = tf.convert_to_tensor(latent_rand)
hparams = glow.glow_hparams()
hparams.level_scale = merge_std
hparams.add_hparam("latent_dist_encoder", "pointwise")
# Test initalization.
# x2 ~ N(scale * latent, 1.0) where initial scale is 1.0
exp_x2 = x_rand[:, :, :, 16:]
exp_eps = x_rand[:, :, :, 16:] - latent_rand
x_inv, _, eps, x2_t, _ = glow_ops.split(
merge_std, x_t, cond_latents=latent_t, hparams=hparams,
condition=True)
# Test reversibility.
x_inv_inv, _, _ = glow_ops.split(
merge_std, x_inv, cond_latents=latent_t, eps=eps, reverse=True,
hparams=hparams, condition=True)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
actual_eps, actual_x2, diff_np = sess.run([eps, x2_t, x_inv_inv - x_t])
self.assertTrue(np.allclose(diff_np, 0.0, atol=1e-5))
self.assertTrue(np.allclose(actual_eps, exp_eps))
self.assertTrue(np.allclose(exp_x2, actual_x2))
开发者ID:qixiuai,项目名称:tensor2tensor,代码行数:28,代码来源:glow_ops_test.py
示例19: _teacher_forcing_ratio_decay
def _teacher_forcing_ratio_decay(init_tfr, global_step, hparams):
#################################################################
# Narrow Cosine Decay:
# Phase 1: tfr = 1
# We only start learning rate decay after 10k steps
# Phase 2: tfr in ]0, 1[
# decay reach minimal value at step ~280k
# Phase 3: tfr = 0
# clip by minimal teacher forcing ratio value (step >~ 280k)
#################################################################
#Compute natural cosine decay
tfr = tf.train.cosine_decay(init_tfr,
global_step=global_step - hparams.tacotron_teacher_forcing_start_decay, #tfr = 1 at step 10k
decay_steps=hparams.tacotron_teacher_forcing_decay_steps, #tfr = 0 at step ~280k
alpha=hparams.tacotron_teacher_forcing_decay_alpha, #tfr = 0% of init_tfr as final value
name='tfr_cosine_decay')
#force teacher forcing ratio to take initial value when global step < start decay step.
narrow_tfr = tf.cond(
tf.less(global_step, tf.convert_to_tensor(hparams.tacotron_teacher_forcing_start_decay)),
lambda: tf.convert_to_tensor(init_tfr),
lambda: tfr)
return narrow_tfr
开发者ID:duvtedudug,项目名称:Tacotron-2,代码行数:27,代码来源:helpers.py
示例20: testSingleExampleWithSparseAndDense
def testSingleExampleWithSparseAndDense(self):
original = example(features=features(
{"c": float_feature([3, 4]),
"st_a": float_feature([3.0, 4.0])}))
serialized = original.SerializeToString()
expected_st_a = (
np.array([[0], [1]], dtype=np.int64), # indices
np.array([3.0, 4.0], dtype=np.float32), # values
np.array([2], dtype=np.int64)) # shape: max_values = 2
a_default = [1, 2, 3]
b_default = np.random.rand(3, 3).astype(bytes)
expected_output = {
"st_a": expected_st_a,
"a": [a_default],
"b": b_default,
"c": np.array([3, 4], dtype=np.float32),
}
self._test({
"example_names": tf.convert_to_tensor("in1"),
"serialized": tf.convert_to_tensor(serialized),
"features": {
"st_a": tf.VarLenFeature(tf.float32),
"a": tf.FixedLenFeature((1, 3), tf.int64, default_value=a_default),
"b": tf.FixedLenFeature((3, 3), tf.string, default_value=b_default),
# Feature "c" must be provided, since it has no default_value.
"c": tf.FixedLenFeature((2,), tf.float32),
}
}, expected_output)
开发者ID:bgyss,项目名称:tensorflow,代码行数:32,代码来源:parsing_ops_test.py
注:本文中的tensorflow.convert_to_tensor函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论