• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensorflow.assert_equal函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.assert_equal函数的典型用法代码示例。如果您正苦于以下问题:Python assert_equal函数的具体用法?Python assert_equal怎么用?Python assert_equal使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了assert_equal函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: CombineArcAndRootPotentials

def CombineArcAndRootPotentials(arcs, roots):
  """Combines arc and root potentials into a single set of potentials.

  Args:
    arcs: [B,N,N] tensor of batched arc potentials.
    roots: [B,N] matrix of batched root potentials.

  Returns:
    [B,N,N] tensor P of combined potentials where
      P_{b,s,t} = s == t ? roots[b,t] : arcs[b,s,t]
  """
  # All arguments must have statically-known rank.
  check.Eq(arcs.get_shape().ndims, 3, 'arcs must be rank 3')
  check.Eq(roots.get_shape().ndims, 2, 'roots must be a matrix')

  # All arguments must share the same type.
  dtype = arcs.dtype.base_dtype
  check.Same([dtype, roots.dtype.base_dtype], 'dtype mismatch')

  roots_shape = tf.shape(roots)
  arcs_shape = tf.shape(arcs)
  batch_size = roots_shape[0]
  num_tokens = roots_shape[1]
  with tf.control_dependencies([
      tf.assert_equal(batch_size, arcs_shape[0]),
      tf.assert_equal(num_tokens, arcs_shape[1]),
      tf.assert_equal(num_tokens, arcs_shape[2])]):
    return tf.matrix_set_diag(arcs, roots)
开发者ID:ALISCIFP,项目名称:models,代码行数:28,代码来源:digraph_ops.py


示例2: square_error

 def square_error(estimated, target):
     with tf.name_scope('evaluation'):
         with tf.control_dependencies([tf.assert_equal(count(tf.to_int32(target) - tf.to_int32(target)), 0.)]):
             tf.assert_equal(count(tf.cast(target - estimated, tf.int32)), 0.)
             squared_difference = tf.pow(estimated - target, 2, name='squared_difference')
             square_error = tf.reduce_sum(squared_difference, name='summing_square_errors')
             square_error = tf.to_float(square_error)
             return square_error
开发者ID:MehdiAB161,项目名称:Autoencoder-Stability,代码行数:8,代码来源:Evaluation.py


示例3: logp

 def logp(self, F, Y):
     with tf.control_dependencies(
             [
                 tf.assert_equal(tf.shape(Y)[1], 1),
                 tf.assert_equal(tf.cast(tf.shape(F)[1], settings.int_type),
                                 tf.cast(self.num_classes, settings.int_type))
             ]):
         return -tf.nn.sparse_softmax_cross_entropy_with_logits(logits=F, labels=Y[:, 0])[:, None]
开发者ID:sanket-kamthe,项目名称:GPflow,代码行数:8,代码来源:likelihoods.py


示例4: prepare_serialized_examples

  def prepare_serialized_examples(self, serialized_example,
      max_quantized_value=2, min_quantized_value=-2):

    contexts, features = tf.parse_single_sequence_example(
        serialized_example,
        context_features={"id": tf.FixedLenFeature(
            [], tf.string),
                          "labels": tf.VarLenFeature(tf.int64)},
        sequence_features={
            feature_name : tf.FixedLenSequenceFeature([], dtype=tf.string)
            for feature_name in self.feature_names
        })

    # read ground truth labels
    labels = (tf.cast(
        tf.sparse_to_dense(contexts["labels"].values, (self.num_classes,), 1,
            validate_indices=False),
        tf.bool))

    # loads (potentially) different types of features and concatenates them
    num_features = len(self.feature_names)
    assert num_features > 0, "No feature selected: feature_names is empty!"

    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    num_frames = -1  # the number of frames in the video
    feature_matrices = [None] * num_features  # an array of different features
    for feature_index in range(num_features):
      feature_matrix, num_frames_in_this_feature = self.get_video_matrix(
          features[self.feature_names[feature_index]],
          self.feature_sizes[feature_index],
          self.max_frames,
          max_quantized_value,
          min_quantized_value)
      if num_frames == -1:
        num_frames = num_frames_in_this_feature
      else:
        tf.assert_equal(num_frames, num_frames_in_this_feature)

      feature_matrices[feature_index] = feature_matrix

    # cap the number of frames at self.max_frames
    num_frames = tf.minimum(num_frames, self.max_frames)

    # concatenate different features
    video_matrix = tf.concat(feature_matrices, 1)

    # convert to batch format.
    # TODO: Do proper batch reads to remove the IO bottleneck.
    batch_video_ids = tf.expand_dims(contexts["id"], 0)
    batch_video_matrix = tf.expand_dims(video_matrix, 0)
    batch_labels = tf.expand_dims(labels, 0)
    batch_frames = tf.expand_dims(num_frames, 0)

    return batch_video_ids, batch_video_matrix, batch_labels, batch_frames
开发者ID:vijayky88,项目名称:youtube-8m,代码行数:57,代码来源:readers.py


示例5: discretized_mix_logistic_loss

def discretized_mix_logistic_loss(y_hat, y, num_classes=256,
		log_scale_min=-7.0, reduce=True):
	'''Discretized mix of logistic distributions loss.

	Note that it is assumed that input is scaled to [-1, 1]

	Args:
		y_hat: Tensor [batch_size, channels, time_length], predicted output.
		y: Tensor [batch_size, time_length, 1], Target.
	Returns:
		Tensor loss
	'''
	with tf.control_dependencies([tf.assert_equal(tf.mod(tf.shape(y_hat)[1], 3), 0), tf.assert_equal(tf.rank(y_hat), 3)]):
		nr_mix = tf.shape(y_hat)[1] // 3

	#[Batch_size, time_length, channels]
	y_hat = tf.transpose(y_hat, [0, 2, 1])

	#unpack parameters. [batch_size, time_length, num_mixtures] x 3
	logit_probs = y_hat[:, :, :nr_mix]
	means = y_hat[:, :, nr_mix:2 * nr_mix]
	log_scales = tf.maximum(y_hat[:, :, 2* nr_mix: 3 * nr_mix], log_scale_min)

	#[batch_size, time_length, 1] -> [batch_size, time_length, num_mixtures]
	y = y * tf.ones(shape=[1, 1, nr_mix], dtype=tf.float32)

	centered_y = y - means
	inv_stdv = tf.exp(-log_scales)
	plus_in = inv_stdv * (centered_y + 1. / (num_classes - 1))
	cdf_plus = tf.nn.sigmoid(plus_in)
	min_in = inv_stdv * (centered_y - 1. / (num_classes - 1))
	cdf_min = tf.nn.sigmoid(min_in)

	log_cdf_plus = plus_in - tf.nn.softplus(plus_in) # log probability for edge case of 0 (before scaling)
	log_one_minus_cdf_min = -tf.nn.softplus(min_in) # log probability for edge case of 255 (before scaling)

	#probability for all other cases
	cdf_delta = cdf_plus - cdf_min

	mid_in = inv_stdv * centered_y
	#log probability in the center of the bin, to be used in extreme cases
	#(not actually used in this code)
	log_pdf_mid = mid_in - log_scales - 2. * tf.nn.softplus(mid_in)

	log_probs = tf.where(y < -0.999, log_cdf_plus,
		tf.where(y > 0.999, log_one_minus_cdf_min,
			tf.where(cdf_delta > 1e-5,
				tf.log(tf.maximum(cdf_delta, 1e-12)),
				log_pdf_mid - np.log((num_classes - 1) / 2))))
	#log_probs = log_probs + tf.nn.log_softmax(logit_probs, -1)

	log_probs = log_probs + log_prob_from_logits(logit_probs)

	if reduce:
		return -tf.reduce_sum(log_sum_exp(log_probs))
	else:
		return -tf.expand_dims(log_sum_exp(log_probs), [-1])
开发者ID:duvtedudug,项目名称:Tacotron-2,代码行数:57,代码来源:mixture.py


示例6: step

	def step(self, x, c=None, g=None, softmax=False):
		"""Forward step

		Args:
			x: Tensor of shape [batch_size, channels, time_length], One-hot encoded audio signal.
			c: Tensor of shape [batch_size, cin_channels, time_length], Local conditioning features.
			g: Tensor of shape [batch_size, gin_channels, 1] or Ids of shape [batch_size, 1], 
				Global conditioning features.
				Note: set hparams.use_speaker_embedding to False to disable embedding layer and 
				use extrnal One-hot encoded features.
			softmax: Boolean, Whether to apply softmax.

		Returns:
			a Tensor of shape [batch_size, out_channels, time_length]
		"""
		#[batch_size, channels, time_length] -> [batch_size, time_length, channels]
		batch_size = tf.shape(x)[0]
		time_length = tf.shape(x)[-1]

		if g is not None:
			if self.embed_speakers is not None:
				#[batch_size, 1] ==> [batch_size, 1, gin_channels]
				g = self.embed_speakers(tf.reshape(g, [batch_size, -1]))
				#[batch_size, gin_channels, 1]
				with tf.control_dependencies([tf.assert_equal(tf.rank(g), 3)]):
					g = tf.transpose(g, [0, 2, 1])

		#Expand global conditioning features to all time steps
		g_bct = _expand_global_features(batch_size, time_length, g, data_format='BCT')

		if c is not None and self.upsample_conv is not None:
			#[batch_size, 1, cin_channels, time_length]
			c = tf.expand_dims(c, axis=1)
			for transposed_conv in self.upsample_conv:
				c = transposed_conv(c)

			#[batch_size, cin_channels, time_length]
			c = tf.squeeze(c, [1])
			with tf.control_dependencies([tf.assert_equal(tf.shape(c)[-1], tf.shape(x)[-1])]):
				c = tf.identity(c, name='control_c_and_x_shape')

		#Feed data to network
		x = self.first_conv(x)
		skips = None
		for conv in self.conv_layers:
			x, h = conv(x, c, g_bct)
			if skips is None:
				skips = h
			else:
				skips = skips + h
		x = skips

		for conv in self.last_conv_layers:
			x = conv(x)

		return tf.nn.softmax(x, axis=1) if softmax else x
开发者ID:duvtedudug,项目名称:Tacotron-2,代码行数:56,代码来源:wavenet.py


示例7: _get_window

 def _get_window(window_length, dtype):
   if self._window == "hanning":
       window = tf.contrib.signal.hann_window(window_length, dtype=dtype)
   if self._window == "blackman":
       tf.assert_equal(frame_size, window_length)
       import scipy.signal
       window = tf.constant(scipy.signal.blackman(frame_size), dtype=tf.float32)
   if self._window == "None" or self._window == "ones":
     window = tf.ones((window_length,), dtype=dtype)
   return window
开发者ID:rwth-i6,项目名称:returnn,代码行数:10,代码来源:TFNetworkSigProcLayer.py


示例8: __init__

  def __init__(self, l_overwrite=None, p_overwrite=None, q_overwrite=None, filter_input=None, parameters=None, noise_estimation=None, average_parameters=False, **kwargs):
    """
    :param float|None l_overwrite: if given overwrites the l value of the parametric wiener filter with the given constant
    :param float|None p_overwrite: if given overwrites the p value of the parametric wiener filter with the given constant
    :param float|None q_overwrite: if given overwrites the q value of the parametric wiener filter with the given constant
    :param LayerBase|None filter_input: name of layer containing input for wiener filter
    :param LayerBase|None parameters: name of layer containing parameters for wiener filter
    :param LayerBase|None noise_estimation: name of layer containing noise estimate for wiener filter
    :param bool average_parameters: if set to true the parameters l, p and q are averaged over the time axis
    """
    from tfSi6Proc.audioProcessing.enhancement.singleChannel import TfParametricWienerFilter
    super(ParametricWienerFilterLayer, self).__init__(**kwargs)

    class _NoiseEstimator(object):
      def __init__(self, noise_power_spectrum_tensor):
        self._noise_power_spectrum_tensor = noise_power_spectrum_tensor

      @classmethod
      def from_layer(cls, layer):
        return cls(layer.output.get_placeholder_as_batch_major())

      def getNoisePowerSpectrum(self):
        return self._noise_power_spectrum_tensor

    def _getParametersFromConstructorInputs(parameters, l_overwrite, p_overwrite, q_overwrite, average_parameters):
      parameter_vector = None
      if parameters is not None:
        parameter_vector = parameters.output.get_placeholder_as_batch_major()
        tf.assert_equal(parameter_vector.shape[-1], 3)
      if (l_overwrite is None) or (p_overwrite is None) or (q_overwrite is None):
        assert parameter_vector is not None
        if average_parameters:
          parameter_vector= tf.tile(tf.reduce_mean(parameter_vector, axis=1, keep_dims=True), [1, tf.shape(parameter_vector)[1], 1])
      if l_overwrite is not None:
        l = tf.constant(l_overwrite, dtype=tf.float32)
      else:
        l = tf.expand_dims(parameter_vector[:, :, 0], axis=-1)
      if p_overwrite is not None:
        p = tf.constant(p_overwrite, dtype=tf.float32)
      else:
        p = tf.expand_dims(parameter_vector[:, :, 1], axis=-1)
      if q_overwrite is not None:
        q = tf.constant(q_overwrite, dtype=tf.float32)
      else:
        q = tf.expand_dims(parameter_vector[:, :, 2], axis=-1)
      return l, p, q

    filter_input_placeholder = filter_input.output.get_placeholder_as_batch_major()
    if filter_input_placeholder.dtype != tf.complex64:
      filter_input_placeholder = tf.cast(filter_input_placeholder, dtype=tf.complex64)
    tf.assert_equal(noise_estimation.output.get_placeholder_as_batch_major().shape[-1], filter_input_placeholder.shape[-1])
    ne = _NoiseEstimator.from_layer(noise_estimation)
    l, p, q = _getParametersFromConstructorInputs(parameters, l_overwrite, p_overwrite, q_overwrite, average_parameters)
    wiener = TfParametricWienerFilter(ne, [], l, p, q, inputTensorFreqDomain=filter_input_placeholder)
    self.output.placeholder = wiener.getFrequencyDomainOutputSignal()
开发者ID:rwth-i6,项目名称:returnn,代码行数:55,代码来源:TFNetworkSigProcLayer.py


示例9: compute_loss

  def compute_loss(self, unreduced_loss):
    """Computes scaled loss based on mask out size."""
    # construct mask to identify zero padding that was introduced to
    # make the batch rectangular
    batch_duration = tf.shape(self.pianorolls)[1]
    indices = tf.to_float(tf.range(batch_duration))
    pad_mask = tf.to_float(
        indices[None, :, None, None] < self.lengths[:, None, None, None])

    # construct mask and its complement, respecting pad mask
    mask = pad_mask * self.masks
    unmask = pad_mask * (1. - self.masks)

    # Compute numbers of variables
    # #timesteps * #variables per timestep
    variable_axis = 3 if self.hparams.use_softmax_loss else 2
    dd = (
        self.lengths[:, None, None, None] * tf.to_float(
            tf.shape(self.pianorolls)[variable_axis]))
    reduced_dd = tf.reduce_sum(dd)

    # Compute numbers of variables to be predicted/conditioned on
    mask_size = tf.reduce_sum(mask, axis=[1, variable_axis], keep_dims=True)
    unmask_size = tf.reduce_sum(unmask, axis=[1, variable_axis], keep_dims=True)

    unreduced_loss *= pad_mask
    if self.hparams.rescale_loss:
      unreduced_loss *= dd / mask_size

    # Compute average loss over entire set of variables
    self.loss_total = tf.reduce_sum(unreduced_loss) / reduced_dd

    # Compute separate losses for masked/unmasked variables
    # NOTE: indexing the pitch dimension with 0 because the mask is constant
    # across pitch. Except in the sigmoid case, but then the pitch dimension
    # will have been reduced over.
    self.reduced_mask_size = tf.reduce_sum(mask_size[:, :, 0, :])
    self.reduced_unmask_size = tf.reduce_sum(unmask_size[:, :, 0, :])

    assert_partition_op = tf.group(
        tf.assert_equal(tf.reduce_sum(mask * unmask), 0.),
        tf.assert_equal(self.reduced_mask_size + self.reduced_unmask_size,
                        reduced_dd))
    with tf.control_dependencies([assert_partition_op]):
      self.loss_mask = (
          tf.reduce_sum(mask * unreduced_loss) / self.reduced_mask_size)
      self.loss_unmask = (
          tf.reduce_sum(unmask * unreduced_loss) / self.reduced_unmask_size)

    # Check which loss to use as objective function.
    self.loss = (
        self.loss_mask if self.hparams.optimize_mask_only else self.loss_total)
开发者ID:czhuang,项目名称:magenta-autofill,代码行数:52,代码来源:lib_graph.py


示例10: _kl_independent

def _kl_independent(a, b, name="kl_independent"):
  """Batched KL divergence `KL(a || b)` for Independent distributions.

  We can leverage the fact that
  ```
  KL(Independent(a) || Independent(b)) = sum(KL(a || b))
  ```
  where the sum is over the `reinterpreted_batch_ndims`.

  Args:
    a: Instance of `Independent`.
    b: Instance of `Independent`.
    name: (optional) name to use for created ops. Default "kl_independent".

  Returns:
    Batchwise `KL(a || b)`.

  Raises:
    ValueError: If the event space for `a` and `b`, or their underlying
      distributions don't match.
  """
  p = a.distribution
  q = b.distribution

  # The KL between any two (non)-batched distributions is a scalar.
  # Given that the KL between two factored distributions is the sum, i.e.
  # KL(p1(x)p2(y) || q1(x)q2(y)) = KL(p1 || q1) + KL(q1 || q2), we compute
  # KL(p || q) and do a `reduce_sum` on the reinterpreted batch dimensions.
  if a.event_shape.is_fully_defined() and b.event_shape.is_fully_defined():
    if a.event_shape == b.event_shape:
      if p.event_shape == q.event_shape:
        num_reduce_dims = a.event_shape.ndims - p.event_shape.ndims
        reduce_dims = [-i - 1 for i in range(0, num_reduce_dims)]

        return tf.reduce_sum(
            kullback_leibler.kl_divergence(p, q, name=name), axis=reduce_dims)
      else:
        raise NotImplementedError("KL between Independents with different "
                                  "event shapes not supported.")
    else:
      raise ValueError("Event shapes do not match.")
  else:
    with tf.control_dependencies([
        tf.assert_equal(a.event_shape_tensor(), b.event_shape_tensor()),
        tf.assert_equal(p.event_shape_tensor(), q.event_shape_tensor())
    ]):
      num_reduce_dims = (
          tf.shape(a.event_shape_tensor()[0]) - tf.shape(
              p.event_shape_tensor()[0]))
      reduce_dims = tf.range(-num_reduce_dims - 1, -1, 1)
      return tf.reduce_sum(
          kullback_leibler.kl_divergence(p, q, name=name), axis=reduce_dims)
开发者ID:asudomoeva,项目名称:probability,代码行数:52,代码来源:independent.py


示例11: _build_clp_multiplication

 def _build_clp_multiplication(self, clp_kernel):
   from TFUtil import safe_log
   input_placeholder = self.input_data.get_placeholder_as_batch_major()
   tf.assert_equal(tf.shape(clp_kernel)[1], tf.shape(input_placeholder)[2] // 2)
   tf.assert_equal(tf.shape(clp_kernel)[2], self._nr_of_filters)
   input_real = tf.strided_slice(input_placeholder, [0, 0, 0], tf.shape(input_placeholder), [1, 1, 2])
   input_imag = tf.strided_slice(input_placeholder, [0, 0, 1], tf.shape(input_placeholder), [1, 1, 2])
   kernel_real = self._clp_kernel[0, :, :]
   kernel_imag = self._clp_kernel[1, :, :]
   output_real = tf.einsum('btf,fp->btp', input_real, kernel_real) - tf.einsum('btf,fp->btp', input_imag, kernel_imag)
   output_imag = tf.einsum('btf,fp->btp', input_imag, kernel_real) + tf.einsum('btf,fp->btp', input_real, kernel_imag)
   output_uncompressed = tf.sqrt(tf.pow(output_real, 2) + tf.pow(output_imag, 2))
   output_compressed = safe_log(output_uncompressed)
   return output_compressed
开发者ID:rwth-i6,项目名称:returnn,代码行数:14,代码来源:TFNetworkSigProcLayer.py


示例12: test_doesnt_raise_when_both_empty

 def test_doesnt_raise_when_both_empty(self):
   with self.test_session():
     larry = tf.constant([])
     curly = tf.constant([])
     with tf.control_dependencies([tf.assert_equal(larry, curly)]):
       out = tf.identity(larry)
     out.eval()
开发者ID:3kwa,项目名称:tensorflow,代码行数:7,代码来源:check_ops_test.py


示例13: sample_from_discretized_mix_logistic

def sample_from_discretized_mix_logistic(y, log_scale_min=-7.):
	'''
	Args:
		y: Tensor, [batch_size, channels, time_length]
	Returns:
		Tensor: sample in range of [-1, 1]
	'''
	with tf.control_dependencies([tf.assert_equal(tf.mod(tf.shape(y)[1], 3), 0)]):
		nr_mix = tf.shape(y)[1] // 3

	#[batch_size, time_length, channels]
	y = tf.transpose(y, [0, 2, 1])
	logit_probs = y[:, :, :nr_mix]

	#sample mixture indicator from softmax
	temp = tf.random_uniform(tf.shape(logit_probs), minval=1e-5, maxval=1. - 1e-5)
	temp = logit_probs - tf.log(-tf.log(temp))
	argmax = tf.argmax(temp, -1)

	#[batch_size, time_length] -> [batch_size, time_length, nr_mix]
	one_hot = tf.one_hot(argmax, depth=nr_mix, dtype=tf.float32)
	#select logistic parameters
	means = tf.reduce_sum(y[:, :, nr_mix:2 * nr_mix] * one_hot, axis=-1)
	log_scales = tf.maximum(tf.reduce_sum(
		y[:, :, 2 * nr_mix:3 * nr_mix] * one_hot, axis=-1), log_scale_min)

	#sample from logistic & clip to interval
	#we don't actually round to the nearest 8-bit value when sampling
	u = tf.random_uniform(tf.shape(means), minval=1e-5, maxval=1. - 1e-5)
	x = means + tf.exp(log_scales) * (tf.log(u) - tf.log(1 -u))

	return tf.minimum(tf.maximum(x, -1.), 1.)
开发者ID:duvtedudug,项目名称:Tacotron-2,代码行数:32,代码来源:mixture.py


示例14: _maybe_validate_perm

def _maybe_validate_perm(perm, validate_args, name=None):
  """Checks that `perm` is valid."""
  with tf.name_scope(name, 'maybe_validate_perm', [perm]):
    assertions = []
    if not perm.dtype.is_integer:
      raise TypeError('`perm` must be integer type')

    msg = '`perm` must be a vector.'
    if perm.shape.ndims is not None:
      if perm.shape.ndims != 1:
        raise ValueError(
            msg[:-1] + ', saw rank: {}.'.format(perm.shape.ndims))
    elif validate_args:
      assertions += [tf.assert_rank(perm, 1, message=msg)]

    perm_ = tf.contrib.util.constant_value(perm)
    msg = '`perm` must be a valid permutation vector.'
    if perm_ is not None:
      if not np.all(np.arange(np.size(perm_)) == np.sort(perm_)):
        raise ValueError(msg[:-1] + ', saw: {}.'.format(perm_))
    elif validate_args:
      assertions += [tf.assert_equal(
          tf.contrib.framework.sort(perm),
          tf.range(tf.size(perm)),
          message=msg)]

    return assertions
开发者ID:asudomoeva,项目名称:probability,代码行数:27,代码来源:transpose.py


示例15: zero_state

    def zero_state(self, batch_size, dtype):
        with tf.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
            if self._initial_cell_state is not None:
                cell_state = self._initial_cell_state
            else:
                cell_state = self._cell.zero_state(batch_size, dtype)
            error_message = (
                "zero_state of AttentionWrapper %s: " % self._base_name +
                "Non-matching batch sizes between the memory "
                "(encoder output) and the requested batch size.")
            with tf.control_dependencies(
                [tf.assert_equal(batch_size,
                    self._attention_mechanism.batch_size,
                    message=error_message)]):
                cell_state = nest.map_structure(
                    lambda s: tf.identity(s, name="checked_cell_state"),
                    cell_state)
            alignment_history = ()

            _zero_state_tensors = rnn_cell_impl._zero_state_tensors
            return AttentionWrapperState(
                cell_state=cell_state,
                time=tf.zeros([], dtype=tf.int32),
                attention=_zero_state_tensors(self._attention_size, batch_size,
                dtype),
                alignments=self._attention_mechanism.initial_alignments(
                    batch_size, dtype),
                alignment_history=alignment_history)
开发者ID:laurii,项目名称:DeepChatModels,代码行数:28,代码来源:_rnn.py


示例16: test_doesnt_raise_when_equal_and_broadcastable_shapes

 def test_doesnt_raise_when_equal_and_broadcastable_shapes(self):
   with self.test_session():
     small = tf.constant([1, 2], name="small")
     small_2 = tf.constant([1, 2], name="small_2")
     with tf.control_dependencies([tf.assert_equal(small, small_2)]):
       out = tf.identity(small)
     out.eval()
开发者ID:3kwa,项目名称:tensorflow,代码行数:7,代码来源:check_ops_test.py


示例17: maybe_check_quadrature_param

def maybe_check_quadrature_param(param, name, validate_args):
  """Helper which checks validity of `loc` and `scale` init args."""
  with tf.name_scope(name="check_" + name, values=[param]):
    assertions = []
    if param.shape.ndims is not None:
      if param.shape.ndims == 0:
        raise ValueError("Mixing params must be a (batch of) vector; "
                         "{}.rank={} is not at least one.".format(
                             name, param.shape.ndims))
    elif validate_args:
      assertions.append(
          tf.assert_rank_at_least(
              param,
              1,
              message=("Mixing params must be a (batch of) vector; "
                       "{}.rank is not at least one.".format(name))))

    # TODO(jvdillon): Remove once we support k-mixtures.
    if param.shape.with_rank_at_least(1)[-1] is not None:
      if param.shape[-1].value != 1:
        raise NotImplementedError("Currently only bimixtures are supported; "
                                  "{}.shape[-1]={} is not 1.".format(
                                      name, param.shape[-1].value))
    elif validate_args:
      assertions.append(
          tf.assert_equal(
              tf.shape(param)[-1],
              1,
              message=("Currently only bimixtures are supported; "
                       "{}.shape[-1] is not 1.".format(name))))

    if assertions:
      return control_flow_ops.with_dependencies(assertions, param)
    return param
开发者ID:asudomoeva,项目名称:probability,代码行数:34,代码来源:vector_diffeomixture.py


示例18: _filtering_step

 def _filtering_step(self, current_times, current_values, state, predictions):
   """Update model state based on observations.
   Note that we don't do much here aside from computing a loss. In this case
   it's easier to update the RNN state in _prediction_step, since that covers
   running the RNN both on observations (from this method) and our own
   predictions. This distinction can be important for probabilistic models,
   where repeatedly predicting without filtering should lead to low-confidence
   predictions.
   Args:
     current_times: A [batch size] integer Tensor.
     current_values: A [batch size, self.num_features] floating point Tensor
       with new observations.
     state: The model's state tuple.
     predictions: The output of the previous `_prediction_step`.
   Returns:
     A tuple of new state and a predictions dictionary updated to include a
     loss (note that we could also return other measures of goodness of fit,
     although only "loss" will be optimized).
   """
   state_from_time, prediction, lstm_state = state
   with tf.control_dependencies(
           [tf.assert_equal(current_times, state_from_time)]):
     transformed_values = self._transform(current_values)
     # Use mean squared error across features for the loss.
     predictions["loss"] = tf.reduce_mean(
         (prediction - transformed_values) ** 2, axis=-1)
     # Keep track of the new observation in model state. It won't be run
     # through the LSTM until the next _imputation_step.
     new_state_tuple = (current_times, transformed_values, lstm_state)
   return (new_state_tuple, predictions)
开发者ID:Lagogoy,项目名称:Deep-Learning-21-Examples,代码行数:30,代码来源:train_lstm_multivariate.py


示例19: _expectation

def _expectation(p, mean, none, kern, feat, nghp=None):
    """
    Compute the expectation:
    expectation[n] = <x_n K_{x_n, Z}>_p(x_n)
        - K_{.,.} :: RBF kernel

    :return: NxDxM
    """
    Xmu, Xcov = p.mu, p.cov

    with tf.control_dependencies([tf.assert_equal(
            tf.shape(Xmu)[1], tf.constant(kern.input_dim, settings.tf_int),
            message="Currently cannot handle slicing in exKxz.")]):
        Xmu = tf.identity(Xmu)

    with params_as_tensors_for(kern), params_as_tensors_for(feat):
        D = tf.shape(Xmu)[1]
        lengthscales = kern.lengthscales if kern.ARD \
            else tf.zeros((D,), dtype=settings.float_type) + kern.lengthscales

        chol_L_plus_Xcov = tf.cholesky(tf.matrix_diag(lengthscales ** 2) + Xcov)  # NxDxD
        all_diffs = tf.transpose(feat.Z) - tf.expand_dims(Xmu, 2)  # NxDxM

        sqrt_det_L = tf.reduce_prod(lengthscales)
        sqrt_det_L_plus_Xcov = tf.exp(tf.reduce_sum(tf.log(tf.matrix_diag_part(chol_L_plus_Xcov)), axis=1))
        determinants = sqrt_det_L / sqrt_det_L_plus_Xcov  # N

        exponent_mahalanobis = tf.cholesky_solve(chol_L_plus_Xcov, all_diffs)  # NxDxM
        non_exponent_term = tf.matmul(Xcov, exponent_mahalanobis, transpose_a=True)
        non_exponent_term = tf.expand_dims(Xmu, 2) + non_exponent_term  # NxDxM

        exponent_mahalanobis = tf.reduce_sum(all_diffs * exponent_mahalanobis, 1)  # NxM
        exponent_mahalanobis = tf.exp(-0.5 * exponent_mahalanobis)  # NxM

        return kern.variance * (determinants[:, None] * exponent_mahalanobis)[:, None, :] * non_exponent_term
开发者ID:vincentadam87,项目名称:GPflow,代码行数:35,代码来源:expectations.py


示例20: __init__

    def __init__(self, tensors: List[tf.Tensor], cluster_indexes: tf.Tensor, n_splits, seed, train_sampling=1.0,
                 test_sampling=1.0):
        size = tensors[0].shape[0].value
        self.seed = seed
        clustered_index = self.cluster_pages(cluster_indexes)
        index_len = tf.shape(clustered_index)[0]
        assert_op = tf.assert_equal(index_len, size, message='n_pages is not equals to size of clustered index')
        with tf.control_dependencies([assert_op]):
            split_nitems = int(round(size / n_splits))
            split_size = [split_nitems] * n_splits
            split_size[-1] = size - (n_splits - 1) * split_nitems
            splits = tf.split(clustered_index, split_size)
            complements = [tf.random_shuffle(tf.concat(splits[:i] + splits[i + 1:], axis=0), seed) for i in
                           range(n_splits)]
            splits = [tf.random_shuffle(split, seed) for split in splits]

        def mk_name(prefix, tensor):
            return prefix + '_' + tensor.name[:-2]

        def prepare_split(i):
            test_size = split_size[i]
            train_size = size - test_size
            test_sampled_size = int(round(test_size * test_sampling))
            train_sampled_size = int(round(train_size * train_sampling))
            test_idx = splits[i][:test_sampled_size]
            train_idx = complements[i][:train_sampled_size]
            test_set = [tf.gather(tensor, test_idx, name=mk_name('test', tensor)) for tensor in tensors]
            tran_set = [tf.gather(tensor, train_idx, name=mk_name('train', tensor)) for tensor in tensors]
            return Split(test_set, tran_set, test_sampled_size, train_sampled_size)

        self.splits = [prepare_split(i) for i in range(n_splits)]
开发者ID:JXieHao,项目名称:kaggle-web-traffic,代码行数:31,代码来源:input_pipe.py



注:本文中的tensorflow.assert_equal函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensorflow.assert_less函数代码示例发布时间:2022-05-27
下一篇:
Python tensorflow.as_dtype函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap